How Do Alliance Portfolio Factors Affect a Precision Medicine Firm’s Innovation Performance?
Abstract
:1. Introduction
2. Background and Hypotheses
2.1. Precision Medicine
2.2. Functional Diversity of Alliance Portfolio in Value Chain
2.3. Industrial Diversity of Alliance Portfolio
2.4. Alliance Management Capability in Alliance Portfolio
2.5. The Moderating Effect of Research Organizations in Alliance Portfolio
3. Method
3.1. Data
3.2. Variables
3.2.1. Dependent Variable
3.2.2. Independent Variables
3.2.3. Control Variables
3.3. Model
4. Results and Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hudson, K.; Lifton, R.; Patrick-Lake, B.; Burchard, E.G.; Coles, T.; Collins, R. The Precision Medicine Initiative Cohort Program—Building a Research Foundation for 21st Century Medicine; Precision Medicine Initiative (PMI) Working Group Report to the Advisory Committee to the Director; National Institutes of Health: Bethesda, MD, USA, 2015. [Google Scholar]
- Collins, D.C.; Sundar, R.; Lim, J.S.; Yap, T.A. Towards precision medicine in the clinic: From biomarker discovery to novel therapeutics. Trends Pharmacol. Sci. 2017, 38, 25–40. [Google Scholar] [CrossRef]
- Mirnezami, R.; Nicholson, J.; Darzi, A. Preparing for precision medicine. N. Engl. J. Med. 2012, 366, 489–491. [Google Scholar] [CrossRef] [Green Version]
- Pisano, G.P. Science Business: The Promise, the Reality, and the Future of Biotech; Harvard Business School Press: Boston, MA, USA, 2006.
- George, G.; Shaker, A.Z.; Kathleen, K.W.; Khan, R. The effects of alliance portfolio characteristics and absorptive capacity on performance: A study of biotechnology firms. J. High Technol. Manag. Res. 2002, 12, 205–226. [Google Scholar] [CrossRef]
- Jiang, R.J.; Tao, Q.T.; Santoro, M.D. Alliance portfolio diversity and firm performance. Strateg. Manag. J. 2010, 31, 1136–1144. [Google Scholar] [CrossRef]
- Wuyts, S.; Dutta, S. Benefiting from alliance portfolio diversity: The role of past internal knowledge creation strategy. J. Manag. 2014, 40, 1653–1674. [Google Scholar] [CrossRef]
- Pokorska-Bocci, A.; Stewart, A.; Sagoo, G.S.; Hall, A.; Kroese, M.; Burton, H. ‘Personalized medicine’: What’s in a name? Pers. Med. 2014, 11, 197–210. [Google Scholar] [CrossRef] [PubMed]
- PCAST. Priorities for Personalized Medicine; Report of the President’s Council of Advisors on Science and Technology; US President’s Council of Advisors on Science and Technology: Washington, DC, USA, 2008.
- PWC. The New Science of Personalized Medicine: Translating the Promise into Practice; Price Water House Coopers: Newark, DE, USA, 2009. [Google Scholar]
- National Research Council. Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar]
- Prahalad, C.; Hamel, G. The core competence of the corporation. Harv. Bus. Rev. 1990, 68, 79–91. [Google Scholar]
- Teece, D.J.; Pisano, G.; Shuen, A. Dynamic capabilities and strategic management. Strateg. Manag. J. 1997, 18, 509–533. [Google Scholar] [CrossRef]
- Amit, R.; Schoemaker, P.J.H. Strategic assets and organizational rent. Strateg. Manag. J. 1993, 14, 33–46. [Google Scholar] [CrossRef]
- Mahoney, J.T.; Pandian, J.R. The resource-based view within the conversation of strategic management. Strateg. Manag. J. 1992, 13, 363–380. [Google Scholar] [CrossRef] [Green Version]
- Ramanathan, K.; Seth, A.; Thomas, H. Explaining joint ventures: Alternative theoretical perspectives. In Cooperative Strategies: Volume 1. North American Perspectives; Beamish, P.W., Killing, J.P., Eds.; New Lexington Press: San Francisco, CA, USA, 1997; pp. 51–85. [Google Scholar]
- Das, T.K.; Teng, B.S. A resource-based theory of strategic alliances. J. Manag. 2000, 26, 31–61. [Google Scholar] [CrossRef]
- Lin, C.H.; Wu, Y.J.; Chang, C.C.; Wang, W.H.; Lee, C.Y. The alliance innovation performance of R&D alliances-the absorptive capacity perspective. Technovation 2012, 32, 282–292. [Google Scholar]
- De Faria, P.; Lima, F.; Santos, R. Cooperation in innovation activities: The importance of partners. Res. Policy 2010, 39, 1082–1092. [Google Scholar] [CrossRef]
- Macklis, R.M.; Sharma, N. Convergence technology in cancer medicine. Expert Rev. Med. Devices 2011, 8, 263–273. [Google Scholar] [CrossRef]
- Moon, H.; Lee, S. Vertical alliance portfolios and the business performance of small technology-based firms. Technol. Anal. Strateg. Manag. 2017, 29, 462–475. [Google Scholar] [CrossRef]
- Hamel, G.; Doz, Y.L.; Prahalad, C.K. Collaborate with your competitors and win. Harv. Bus. Rev. 1989, 67, 133–139. [Google Scholar]
- Nelson, R.R. Why do firms differ, and how does it matter? Strateg. Manag. J. 1991, 12, 61–74. [Google Scholar] [CrossRef]
- Rumelt, R.P.; Schendel, D.; Teece, D.J. Strategic management and economics. Strateg. Manag. J. 1991, 12, 5–29. [Google Scholar] [CrossRef]
- Dussauge, P.; Garrette, B.; Mitchell, W. Learning from competing partners: Outcomes and durations of scale and link alliances in Europe, North America and Asia. Strateg. Manag. J. 2000, 21, 99–126. [Google Scholar] [CrossRef]
- Santoro, M.D.; McGill, J.P. The effect of uncertainty and asset co specialization on governance in biotechnology alliances. Strateg. Manag. J. 2005, 26, 1261–1269. [Google Scholar] [CrossRef]
- Roth, K.; O’Donnell, S. Foreign subsidiary compensation strategy: An agency theory perspective. Acad. Manag. J. 1996, 39, 678–703. [Google Scholar]
- Goerzen, A.; Beamish, P.W. The effect of alliance network diversity on multinational enterprise performance. Strateg. Manag. J. 2005, 26, 333–354. [Google Scholar] [CrossRef]
- Marhold, K.; Kim, M.; Kang, J. The effects of alliance portfolio diversity on innovation performance: A study of partner and alliance characteristics in the bio-pharmaceutical industry. Int. J. Innov. Manag. 2017, 21, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Martinez, M.; Zouaghi, F.; Garcia, M. Capturing value from alliance portfolio diversity: The mediating role of R&D human capital in high and low tech industries. Technovation 2017, 59, 55–67. [Google Scholar]
- Yoon, S.; Jo, G.; Kang, J. Alliance portfolios and firm performance: Focusing on the interaction between resources and bargaining power. Int. Bus. J. 2015, 26, 63–97. [Google Scholar] [CrossRef]
- Leitao, J.; Pereira, D.; Brito, S. Inbound and outbound practices of open innovation and eco-innovation: Contrasting bioeconomy and non-bioeconomy firms. J. Open Innov. Technol. Mark. Complex. 2020, 6, 145. [Google Scholar] [CrossRef]
- Rocha-Goncalves, F.; Gonçalves, V.D.C. The role of the alliance management capability. Serv. Ind. J. 2011, 31, 1961–1978. [Google Scholar] [CrossRef]
- Duysters, G.; Heimeriks, K.H.; Lokshin, B.; Meijer, E.; Sabidussi, A. Do firms learn to manage alliance portfolio diversity? The diversity-performance relationship and the moderating effects of experience and capability. Eur. Manag. Rev. 2012, 9, 139–152. [Google Scholar] [CrossRef] [Green Version]
- Hoang, H.; Rothaermel, F.T. The effect of general and partner-specific alliance experience on joint R&D project performance. Acad. Manag. J. 2005, 48, 332–345. [Google Scholar]
- Ireland, R.D.; Hitt, M.A.; Vaidyanath, D. Alliance management as a source of competitive advantage. J. Manag. 2002, 28, 413–446. [Google Scholar] [CrossRef]
- Rothaermel, F.M.; Deeds, D. Alliance type, alliance experience and alliance management capability in high-technology ventures. J. Bus. Ventur. 2006, 21, 429–460. [Google Scholar] [CrossRef]
- Findikoglu, M.; Lavie, D. The contingent value of the dedicated alliance function. Strateg. Org. 2019, 17, 177–209. [Google Scholar] [CrossRef]
- Shukla, D.M.; Mital, A. Effect of firm’s diverse experiences on its alliance portfolio diversity: Evidence from India. J. Manag. Org. 2018, 24, 748–778. [Google Scholar] [CrossRef]
- Cho, S.Y.; Arthurs, J.D. The influence of alliance experience on acquisition premiums and post-acquisition performance. J. Bus. Res. 2018, 88, 1–10. [Google Scholar] [CrossRef]
- Huang, K.F. Antecedents for forming simultaneous alliances or one-by-one alliances. Ind. Corp. Chang. 2017, 26, 73–101. [Google Scholar] [CrossRef]
- Culpan, R. Open Innovation through Strategic Alliances: Approaches for Product, Technology, and Business Model Creation; Palgrave Macmillan: New York, NY, USA, 2014. [Google Scholar]
- Zucker, L.G.; Darby, M.R. Capturing technological opportunity via Japan’s star scientists: Evidence from Japanese firms’ biotech patents and products. J. Technol. Transf. 2001, 26, 37–58. [Google Scholar] [CrossRef]
- Silva, M.J.; Leitao, J. Cooperation in innovation practices among firms in Portugal: Do external partners stimulate innovative advances? Int. J. Entrep. Small Bus. 2009, 7, 391–403. [Google Scholar] [CrossRef]
- Moon, S.; Jang, K.; Kim, H. Success strategy of precision medicine. Korea Inst. Sci. Technol. Eval. Plan. 2016, 15, 14–32. [Google Scholar]
- Ministry of Health and Welfare. Developed Precision Medical Technology Based on Genome: Health-ICT Convergence; Ministry of Health and Welfare: Sejong, Korea, 2016. [Google Scholar]
- Laursen, K.; Salter, A. Open for innovation: The role of openness in explaining innovation performance among UK manufacturing firms. Strateg. Manag. J. 2006, 27, 131–150. [Google Scholar] [CrossRef]
- Branch, B. R&D activity and profitability: A distributed lag analysis. J. Political Econ. 1974, 82, 999–1011. [Google Scholar]
- Pakes, A.; Griliches, Z. Patents and R&D at the firm level: A first look. In R&D, Patents, and Productivity; Griliches, Z., Ed.; The University of Chicago Press: Chicago, IL, USA, 1984; pp. 55–72. [Google Scholar]
- Lee, H.; Baek, C.; Lee, J. Analysis on time lag effect of firm’s R&D investment. J. Technol. Innov. 2014, 22, 1–22. [Google Scholar]
- Kim, G.; Kim, G. A study on the relation between R&D investment and patent in Korean pharmaceutical industry. Korean J. Health Econ. Policy 2016, 22, 21–38. [Google Scholar]
- Gulati, R. Social structure and alliance formation patterns: A longitudinal analysis. Admin. Sci. Q. 1995, 40, 619–652. [Google Scholar] [CrossRef]
- Lee, C. Strategic alliances influence on small and medium firm performance. J. Bus. Res. 2007, 60, 731–741. [Google Scholar] [CrossRef]
- Champonnois, S. What Determines the Distribution of Firm Sizes? Working Paper; Mimeo, UCSD: San Diego, CA, USA, 2008. [Google Scholar]
- Thornhill, S.; Amit, R. Learning about failure: Bankruptcy, firm age, and the resource-based view. Org. Sci. 2003, 14, 497–509. [Google Scholar] [CrossRef] [Green Version]
- Gittelman, M.; Kogut, B. Does good science lead to valuable knowledge? Biotechnology firms and the evolutionary logic of citation patterns. Manag. Sci. 2003, 49, 366–382. [Google Scholar] [CrossRef] [Green Version]
- Lahiri, N.; Narayanan, S. Vertical integration, innovation, and alliance portfolio size: Implications for firm performance. Strateg. Manag. J. 2013, 34, 1042–1064. [Google Scholar] [CrossRef]
- Leeuw, T.; Lokshin, B.; Duysters, G. Returns to alliance portfolio diversity: The relative effects of partner diversity on firm’s innovative performance and productivity. J. Bus. Res. 2014, 67, 1839–1849. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Lin, K.; Wu, L.; Yu, P. Absorptive capacity and autonomous R&D climate roles in firm innovation. J. Bus. Res. 2015, 68, 87–94. [Google Scholar]
- Baum, J.A.C.; Calabrese, T.; Silverman, B.S. Don’t Go It Alone: Alliance Network Composition and Startups’ Performance in Canadian Biotechnology. Strateg. Manag. J. 2000, 21, 267–294. [Google Scholar] [CrossRef]
- Reuer, J.J.; Park, K.M.; Zollo, M. Experiential Learning in International Joint Ventures: The Roles of Experience Heterogeneity and Venture Novelty; INSEAD: Fontainebleau, France, 2002. [Google Scholar]
- Mowery, D.C.; Oxley, J.E.; Silverman, B.S. Strategic alliances and interfirm knowledge transfer. Strateg. Manag. J. 1996, 17, 77–91. [Google Scholar] [CrossRef] [Green Version]
- Hagedoorn, J.; Schakenraad, J. The effect of strategic technology alliances on company performance. Strateg. Manag. J. 1994, 15, 291–309. [Google Scholar] [CrossRef]
- McGee, J.E.; Dowling, M.J. Using R&D cooperative arrangements to leverage managerial experience: A study of technology-intensive new ventures. J. Bus. Ventur. 1994, 9, 33–48. [Google Scholar]
- McGee, J.E.; Dowling, M.J.; Meggingson, W. Cooperative strategy and new venture performance: The role of business strategy and management experience. Strateg. Manag. J. 1995, 16, 565–580. [Google Scholar] [CrossRef]
- Mitchel, W.; Shaver, J.; Yeung, B. Performance following changes of international presence in domestic and transition industries. J. Int. Bus. Stud. 1993, 24, 647–669. [Google Scholar] [CrossRef]
- Song, J.; Kim, H. Knowledge transfer and acquisition through strategic alliances: A study of Asian firms’ strategic alliances in the high-tech sector. J. Strateg. Manag. 2007, 10, 1–18. [Google Scholar] [CrossRef]
- Deeds, D.L.; Hill, C.W.L. Strategic alliances and the rate of new product development: An empirical study of entrepreneurial biotechnology firms. J. Bus. Ventur. 1996, 11, 41–55. [Google Scholar] [CrossRef]
- Gulati, R. Alliances and networks. Strateg. Manag. J. 1998, 19, 293–317. [Google Scholar] [CrossRef]
- Lichtenthaler, U.; Lichtenthaler, E. A capability-based framework for open innovation: Complementing absorptive capacity. J. Manag. Stud. 2009, 46, 1315–1338. [Google Scholar] [CrossRef]
- De las Heras-Rosas, C.; Herrera, J. Research trends in open innovation and the role of the university. J. Open Innov. Technol. Mark. Complex. 2021, 7, 29. [Google Scholar] [CrossRef]
- Shin, K.; KIM, S.J.; PARK, G. How does the partner type in R&D alliances impact technological innovation performance? A study on the Korean biotechnology industry. Asia Pac. J. Manag. 2016, 33, 141–164. [Google Scholar]
- Yeom, K.; Song, C.; Shin, K.; Choi, H.S. What Is Important for the Growth of Latecomers in the Medical Device Industry? J. Open Innov. Technol. Mark. Complex. 2021, 7, 13. [Google Scholar] [CrossRef]
- Valdez-Juárez, L.E.; Castillo-Vergara, M. Technological Capabilities, Open Innovation, and Eco-Innovation: Dynamic Capabilities to Increase Corporate Performance of SMEs. J. Open Innov. Technol. Mark. Complex. 2021, 7, 8. [Google Scholar] [CrossRef]
- Robbins, P.; O’Gorman, C.; Huff, A.; Moselein, K. Multidexterity—A New Metaphor for Open Innovation. J. Open Innov. Technol. Mark. Complex. 2021, 7, 99. [Google Scholar] [CrossRef]
- Jeong, H.; Ko, Y. Configuring an alliance portfolio for eco-friendly innovation in the car industry: Hyndai and Toyota. J. Open Innov. Technol. Mark. Complex. 2016, 2, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Belderbos, R.; Jacob, J.; Lokshin, B. Corporate venture capital (CVC) investments and technological performance: Geographic diversity and the interplay with technology alliances. J. Bus. Ventur. 2018, 33, 20–34. [Google Scholar] [CrossRef] [Green Version]
Keywords | Sources |
---|---|
Big data, Biobank, Biosamples, Candidate gene, Common data mode (CDM), Chimeric antigen receptor, Chromosomal translocation, Clinical utility, Cloud, Cohort, CRISPR, Crowdsourcing, Database of Genotypes and Phenotypes (dbGap), Data-intensive, biology, Decision-support systems, Disease marker, Disease risk, Disease taxonomy, EHR-derived phenotype, Electronic health record (EHR), Electronic medical records, Epigenetic, Epigenome, Epiphenomenon, Etiology, Exposome, Gel electrophoresis, GenBank, Gene expression, Gene-environment interactions, Genetic data, Genetic privacy, Genome editing, Genome-wide association study, Genotype, Geographic information system, Health Insurance Portability and Accountability Act (HIPAA), Health kit, Heterozygous, Health information system (HIS), Human Microbiome Project, IoT, Cloud, Bigdata, and Mobile (ICBM), Institutional Review Board, International Classification of Diseases, Internet of Things (IoT), Keytruda, Lifelog, Lifestyle, Lipidome, Metabolic profiling, Metabolome, Microbiome, Molecular biology, Natural language procession, Next-generation sequencing (NGS), Ontology, Oophorectomy, Pathogenesis, Pathology, Pathophysiology, Personalized, Pharmacogenetics, Phenotype, Phenotype-genotype association, Precision, Precompetitive collaboration, Proteome, Radioisotopic labeling, Recombinant DNA, Sequelae, Signs and symptoms, Single nucleotide polymorphism, Single-molecule, sequencing, Smart phone, Social network, Systematized Nomenclature of Medicine (SNOMED), Transcription activator-like effector nuclease (TALEN), Transcriptome, Wearable device, Web platform, Whole-genome sequencing, Zinc finger | National Research Council [11] Moon et al. [45] Ministry of Health and Welfare [46] |
Variables | Sources | Database | |||
---|---|---|---|---|---|
Dependent variable | Patent | Number of patents (innovation performance) | Number of patents in US, EU, China, and Japan in year (t + 1) | Baum et al. [60] Reuer et al. [61] Pakes and Griliches [49] Mowery et al. [62] | United States Patent and Trademark Office (USPTO), Espacenet, Korea Intellectual Property Rights Information Service (KIPRIS) |
Independent variables | Form | Functional diversity in value chain | Herfindal–Hirschman Index (HHI) of alliance portfolio using contract types | Lin et al. [18] Hagedoorn and Schakenraad [63] George et al. [5] | Medtrack |
Industry | Industrial diversity | HHI of alliance portfolio using focal firm and partners’ Standard Industrial Classification (SIC) codes | Hamel et al. [22] Nelson [23] Rumelt et al. [24] Dussauge et al. [25] Santoro and McGill [26] Roth and O’Donnell [27] Goerzen and Beamish [28] Jiang et al. [6] | Wharton Research Data Services (WRDS), Medtrack | |
Experience | Firm’s alliance management capability | Number of cumulative alliances | Gulati [52] McGee and Dowling [64] McGee et al. [65] Mitchel et al. [66] | Medtrack | |
Research organization | Whether a university or government participated | Whether a university or government participated in alliance portfolio (dummy variable) | George et al. [5] Rothaermel and Deeds [37] | Medtrack | |
Control variables | Size | Firm’s operating revenue | Firm’s operating revenue in year t (million dollar, log) | Lee [53] Champonnois [54] | Medtrack, WRDS, Orbis |
Age | Firm’s age | Years from date of incorporation (year) | Thornhill and Amit [55] Gittelman and Kogut [56] Lahiri and Narayanan [57] Leeuw et al. [58] | Medtrack, WRDS, Orbis | |
RD_exp | R&D investment | Firm’s R&D investment in year t (million dollar, log) | Wuyts and Dutta [7] Huang et al. [59] | Medtrack, WRDS, Orbis |
Variable | Mean | Standard Deviation | Form | Industry | Experience | Research Organization | Size | Age | RD_exp | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Form | 0.076 | 0.195 | 1 | ||||||||||||
Industry | 0.293 | 0.440 | 0.582 | *** | 1 | ||||||||||
Experience | 6.197 | 12.704 | 0.479 | *** | 0.357 | *** | 1 | ||||||||
Research organization | 0.042 | 0.202 | 0.345 | *** | 0.329 | *** | 0.193 | *** | 1 | ||||||
Size | 4.362 | 3.966 | 0.066 | 0.016 | 0.154 | 0.027 | 1 | ||||||||
Age | 27.348 | 29.486 | 0.080 | * | 0.016 | 0.326 | *** | -0.002 | 0.617 | *** | 1 | ||||
RD_exp | 2.400 | 2.282 | 0.094 | * | 0.040 | 0.383 | *** | -0.015 | 0.803 | *** | 0.422 | *** | 1 |
Variable | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 |
---|---|---|---|---|---|---|---|
Form | −0.630 ** (0.282) | −0.629 ** (0.285) | |||||
(Industry)2 | −1.730 ** (0.859) | ||||||
Industry | 1.501 * (0.863) | −0.218 * (0.113) | |||||
Experience | 0.078 *** (0.025) | 0.072(0.077) | |||||
Research organization | 0.398 ** (0.198) | 0.388 ** (0.184) | 0.322 * (0.187) | ||||
Form * research organization | 0.548 * (0.296) | ||||||
Industry * research organization | 0.304(0.206) | ||||||
Experience * research organization | 0.085 ** (0.037) | ||||||
Size | 0.103 ** (0.043) | 0.072 ** (0.043) | 0.094 ** (0.043) | −0.013(0.051) | 0.073 * (0.043) | 0.094 ** (0.043) | 0.100 ** (0.045) |
Age | −0.011 (0.007) | −0.007 (0.198) | −0.007 (0.007) | 0.004 (0.009) | −0.007 (0.007) | −0.010 (0.007) | −0.011 * (0.007) |
RD_exp | 0.375 *** (0.091) | 0.415 *** (0.090) | 0.371 *** (0.091) | 0.589 *** (0.107) | 0.410 *** (0.090) | 0.388 *** (0.091) | 0.399 *** (0.098) |
Likelihood-ratio test vs. pooled: | 414.63 | 362.66 | 422.41 | 416.01 | 363.20 | 358.35 | 415.67 |
Number of Observation | 281 | 281 | 281 | 281 | 281 | 281 | 281 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chon, Y.; Shin, K. How Do Alliance Portfolio Factors Affect a Precision Medicine Firm’s Innovation Performance? J. Open Innov. Technol. Mark. Complex. 2021, 7, 203. https://doi.org/10.3390/joitmc7030203
Chon Y, Shin K. How Do Alliance Portfolio Factors Affect a Precision Medicine Firm’s Innovation Performance? Journal of Open Innovation: Technology, Market, and Complexity. 2021; 7(3):203. https://doi.org/10.3390/joitmc7030203
Chicago/Turabian StyleChon, Yucheong, and Kwangsoo Shin. 2021. "How Do Alliance Portfolio Factors Affect a Precision Medicine Firm’s Innovation Performance?" Journal of Open Innovation: Technology, Market, and Complexity 7, no. 3: 203. https://doi.org/10.3390/joitmc7030203
APA StyleChon, Y., & Shin, K. (2021). How Do Alliance Portfolio Factors Affect a Precision Medicine Firm’s Innovation Performance? Journal of Open Innovation: Technology, Market, and Complexity, 7(3), 203. https://doi.org/10.3390/joitmc7030203