Smart Production Workers in Terms of Creativity and Innovation: The Implication for Open Innovation
Abstract
:1. Introduction
2. Research Methodology
3. Industry 4.0 and Employees in Scientific and Research Studies
3.1. Frameworks of Employee Skills and Competencies in Industry 4.0
3.2. Frameworks for Skills and Capabilities of Operator 4.0
3.3. Frameworks for Skills of Employee in Steel Industry on the Way to I4.0
4. Case Studies—The Metallurgical Profession in Company Requirements and Educational Programmes
4.1. Analysis of Steel Company Recruitment Offers
4.2. Metallurgy 4.0 in Educational Programmes of Technical Universities
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, J.; Bagheri, B.; Kao, H. Research Letters: A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett. 2015, 3, 18–23. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, Y.; Wang, B.; Yao, S.; Liu, Z. Review on cyber-physical systems. IEEE/CAA J. Autom. Sin. 2017, 4, 27–40. [Google Scholar] [CrossRef]
- Kagermann, H.; Wahlster, W.; Helbig, J. (Eds.) Recommendations for Implementing the Strategic Initiative Industrie 4.0; Final Report of the Industrie 4.0, Working Group: Industrie 4.0: Mit dem Internet der Dinge auf dem Weg zur 4. Industriellen Revolution, VDI-Nachrichten, April 2011; Acatech-National Academy of Science and Engineering: München, Germany, 2011; Available online: http://forschungsunion.de/pdf/industrie_4_0_final_report.pdf (accessed on 15 March 2022).
- Davies, R. Industry 4.0 Digitalisation for Productivity and Growth; PE 568.337; European Parliament: Strasbourg, France, 2015. Available online: https://www.europarl.europa.eu/RegData/etudes/BRIE/2015/568337/EPRS_BRI(2015)568337_EN.pdf (accessed on 15 July 2021).
- Koronios Mavromati, M.; Kriemandis, A. Motivating Public Sector Employees: Evidence from Greece. Int. J. Bus. Econ. Sci. Appl. Res. 2017, 10, 7–12. [Google Scholar] [CrossRef]
- Dimitropoulos, P.E.; Koronios, K. Board Gender Diversity and Cash Holdings: Empirical Evidence from the European Sport and Leisure Sector. Int. J. Financ. Stud. 2021, 9, 64. [Google Scholar] [CrossRef]
- Koronios, K.; Kriemadis, A.; Dimitropoulos, P.; Papadopoulos, A. A values framework for measuring the influence of ethics and motivation regarding the performance of employees. Bus. Entrep. J. 2019, 8, 1–19. [Google Scholar]
- Ntasis, L.; Koronios, K.; Pappas, T. The impact of COVID-19 on the technology sector: The case of TATA Consultancy Services. Strateg. Chang. 2021, 30, 137–144. [Google Scholar] [CrossRef]
- Gajdzik, B. Autonomous and professional maintenance in metallurgical enterprises as activities within Total Productive Maintenance. Metalurgija 2014, 1, 269–272. [Google Scholar]
- Gajdzik, B.; Grabowska, S.; Saniuk, S. A Theoretical Framework for Industry 4.0 and Its Implementation with Selected Practical Schedules. Energies 2021, 14, 940. [Google Scholar] [CrossRef]
- Romero, D.; Noran, O.; Stahre, J.; Bernus, P.; Fast-Berglund, Å. Towards a human-centred reference architecture for next generation balanced automation systems: Human-automation symbiosis. Adv. Prod. Manag. Syst. 2015, 460, 556–566. [Google Scholar]
- Romero, D.; Bernus, P.; Noran, O.; Stahre, J.; Fast-Berglund, Å. The Operator 4.0: Human Cyber-Physical Systems & Adaptive Automation Towards Human-Automation Symbiosis Work Systems. In APMS 2016, Advances in Production Management Systems: Initiatives for a Sustainable World, IFIP International Conference on Advances in Production Management Systems; Springer: Cham, Switzerland, 2016; pp. 677–686. Available online: https://link.springer.com/chapter/10.1007/978-3-319-51133-7_80 (accessed on 15 July 2021).
- Bayat, P.; Daraei, M.; Rahimikia, A. Designing of an open innovation model in science and technology parks. J. Innov. Entrep. 2022, 11, 4. [Google Scholar] [CrossRef]
- Gao, Y.; Lin, R.; Lu, Y. A Visualized Analysis of the Research Current Hotspots and Trends on Innovation Chain Based on the Knowledge Map. Sustainability 2022, 14, 1708. [Google Scholar] [CrossRef]
- Pratapa, P.; Subramoniam, R.; Gaur, J. Role of Standards as an Enabler in a Digital Remanufacturing Industry. Sustainability 2022, 14, 1643. [Google Scholar] [CrossRef]
- Ji, Y.; Yu, X.; Sun, M.; Zhang, B. Exploring the Evolution and Determinants of Open Innovation: A Perspective from Patent Citations. Sustainability 2022, 14, 1618. [Google Scholar] [CrossRef]
- Mei, L.; Shao, W. The effect of firm size on regional innovation efficiency in China. Mod. Econ. 2016, 7, 1035–1049. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wang, J.; Chen, R.; Xi, Y.; Liu, S.Q.; Wu, F.; Masoud, M.; Wu, X. Innovation-driven industrial green development: The moderating role of regional factors. J. Clean. Prod. 2019, 222, 344–354. [Google Scholar] [CrossRef]
- Jiang, Q.; Liu, W.; Li, T.; Cong, W.; Zhang, H.; Shi, J. A Principal component analysis based three-dimensional sustainability assessmement model to evaluate corporate sustainable performance. J. Clean. Prod. 2018, 187, 625–637. [Google Scholar] [CrossRef]
- Yang, J.S. The Governance Environment and Innovative SMEs, the 2015 Doing Business: Past, Present and Future of Business Regulation Conference; World Bank: Washington, DC, USA, 2016; pp. 1–27. [Google Scholar]
- Mellor, R.B. Entrepreneurship for Everyone; SAGE: London, UK, 2009; pp. 18–30. [Google Scholar]
- Buhr, D. Industry 4.0—New Task for Innovation Policy. 2017. Available online: https://library.fes.de/pdf-files/wiso/11480.pdf (accessed on 4 February 2022).
- Dixit, A.; Jakhar, S.K.; Kumar, P. Does lean and sustainable manufacturing lead to Industry 4.0 adoption: The mediating role of ambidextrous innovation capabilities. Technol. Forecast. Soc. Chang. 2022, 175, 121328. [Google Scholar] [CrossRef]
- Gülel, F.E.; Arpacı, Ö.Y. The Impact of Outsourcing and Innovation on Industry 4.0. In Advances in Econometrics, Operational Research, Data Science and Actuarial Studies. Contributions to Economics; Terzioğlu, M.K., Ed.; Springer: Cham, Switzerland, 2022; pp. 235–250. [Google Scholar]
- Top 10 Industry 4.0 Trends & Innovations in 2022. Available online: https://www.startus-insights.com/innovators-guide/top-10-industry-4-0-trends-innovations-in-2021/ (accessed on 4 February 2022).
- Bigliardi, B.; Bottani, E.; Casella, G. Enabling technologies, application areas and impact of industry 4.0: A bibliographic analysis. Procedia Manuf. 2020, 42, 322–326. [Google Scholar] [CrossRef]
- Ibarra, D.; Ganzarain, J.; Igartua, J.I. Business model innovation through Industry 4.0: A review. Procedia Manuf. 2017, 22, 4–10. [Google Scholar] [CrossRef]
- Ghobakhloo, M.; Iranmanesh, M.; Grybauskas, A.; Vilkas, M.; Petraitė, M. Process innovation through industry 4.0 technologies, lean practices and green supply chains. Res. Transp. Econ. 2022, 90, 100869. [Google Scholar]
- Dilyard, J.; Zhao, S.; You, J.J. Digital innovation and Industry 4.0 for global value chain resilience: Lessons learned and ways forward. Thunderbird Int. Bus. Rev. 2021, 63, 577–584. [Google Scholar] [CrossRef]
- Müceldili, B.; Tatar, B.; Erdil, O. Can Curious Employees Be More Agile? The Role of Cognitive Style and Creative Process En-Gagement in Agility Performance. Glob. Bus. Organ. Excell. 2020, 39, 29–52. [Google Scholar]
- Santipiriyapon, S.; Leelapanyalert, K.; Kohlbacher, F. The Rebranding of Srichand: Transforming a 70-year-old Small and Medium Enterprise into a Disruptive Global Player. Glob. Bus. Organ. Excel. 2020, 39, 6–14. [Google Scholar] [CrossRef]
- Varshney, D. Employees’ Job Involvement and Satisfaction in a Learning Organization: A Study in India’s Manufacturing Sector. Glob. Bus. Organ. Excell. 2019, 39, 51–61. [Google Scholar] [CrossRef]
- Arira, S.; Patro, A. Inclusivity and empowerment—Grow and Let Grow. Glob. Bus. Organ. Excell. 2021, 41, 21–30. [Google Scholar] [CrossRef]
- Kimble, C. Successful Knowledge Management in High-Sociability Organizations. Glob. Bus. Organ. Excell. 2020, 39, 38. [Google Scholar] [CrossRef]
- Lacan, A. Think tank—From the Liberated to a Liberating Company: The Cruciality of Managerial Transformation. Glob. Bus. Organ. Excel. 2021, 40, 6–18. [Google Scholar] [CrossRef]
- Webb, G.R.; Chevreau, F.R. Planning to Improvise: The Importance of Creativity and Flexibility in Crisis Response. Int. J. Emerg. Manag. 2006, 3, 66–72. [Google Scholar] [CrossRef]
- Jonek-Kowalska, I.; Wolniak, R. The Creative Services Sector in Polish Cities. J. Open Innov. Technol. Mark. Complex 2022, 8, 17. [Google Scholar]
- Howkins, J. The Creative Economy: How People Make More Money from Ideas; England Penguin: London, UK, 2001. [Google Scholar]
- Priambodo, I.T.; Sasmoko, S.; Abdinagoro, S.B.; Badndur, A. E-Commerce Readiness of Creative Industry During the COVID-19 Pandemic in Indonesia. J. Asian Financ. Econ. Bus. 2021, 8, 865–873. [Google Scholar]
- Balietti, S.; Riedl, C. Incentives, competition, and inequality in markets for creative production. Res. Policy 2021, 50, 104212. [Google Scholar] [CrossRef]
- Cerreta, M.; Daldanise, G.; La Rocca, L.; Panaro, S. Triggering Active Communities for Cultural Creative Cities: The “Hack the City” Play ReCH Mission in the Salerno Historic Centre (Italy). Sustainability 2021, 13, 11877. [Google Scholar] [CrossRef]
- Henry, C.; de Bruin, A. Entrepreneurship and the Creative Economy: Process Practice and Policy; Edward Elgar Publishing Limited: Cheltenham, UK, 2011. [Google Scholar]
- Jaaniste, L. Placing the creative sector within innovation: The full gamut. Innovation 2009, 11, 215–229. [Google Scholar] [CrossRef]
- Ceci, M.W.; Kumar, V.K. A Correlational Study of Creativity, Happiness, Motivation, and Stress from Creative Pursuits. J. Happiness Stud. 2015, 17, 609–626. [Google Scholar] [CrossRef]
- Klement, B.; Strambach, S. Innovation in Creative Industries: Does (Related) Variety Matter for the Creativity of Urban Music Scenes? Econ. Geogr. 2019, 95, 385–417. [Google Scholar] [CrossRef]
- Rozmirez-Montoya, M.S.; Castillo-Martinez, I.S.; Sanabria-Z, J.; Miranda, J. Complex Thinking in the Framework of Education 4.0 and Open Innovation—A Systematic Literature Review. J. Open Innov. Technol. Mark. Complex. 2022, 8, 4. [Google Scholar] [CrossRef]
- Sun, L. Sustainable design: Integrate the creative thinking and innovation into graphical communications. Eng. Des. Graph. J. 2018, 82, 13–28. [Google Scholar]
- Passig, D.; Cohen, L. Measuring the style of innovative thinking among engineering students. Res. Sci. Technol. Educ. 2013, 32, 56–77. [Google Scholar] [CrossRef]
- Sloane, P. A Guide to Open Innovation and Crowdsourcing. Advice from Leading Experts; Kogan Page Limited: London, UK, 2011; pp. 22–36. [Google Scholar]
- Seo, R.; Park, J.-H. When is interorganizational learning beneficial for inbound open innovation of ventures? A contingent role of entrepreneurial orientation. Technovation 2022, 116, 102514. [Google Scholar] [CrossRef]
- Xiaoguang, Z. Incorporation of sticky information and product diversification into static game of open innovation. Int. J. Innov. Stud. 2022, 6, 11–25. [Google Scholar] [CrossRef]
- Ruppert, T.; Jaskó, S.; Holczinger, T.; Abonyi, J. Enabling Technologies for Operator 4.0: A Survey. Appl. Sci. 2018, 8, 1650. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, M.; Rüßmann, M.; Strack, R.; Lueth, K.; Bolle, M. Man and Machine in Industry 4.0. How Will Technology Transform the Industrial Workforce Through 2025? BCG Perspectives. 28 September 2015. Available online: https://www.bcg.com/publications/2015/technology-business-transformation-engineered-products-infrastructure-man-machine-industry-4 (accessed on 15 August 2021).
- Rai, R.; Tiwari, M.K.; Ivanov, D.; Dolgui, A. Machine Learning in Manufacturing and Industry 4.0 Applications. Int. J. Prod. Res. 2021, 59, 4773–4778. [Google Scholar] [CrossRef]
- Acatech. Umsetzungsstrategic Industrie 4.0 Ergebnisbreicht der Platform Industrie 4.0. Acatech. April 2015. Available online: https://www.its-owl.de/fileadmin/PDF/Industrie_4.0/2015-04-10_Umsetzungsstrategie_Industrie_4.0_Plattform_Industrie_4.0.pdf (accessed on 15 August 2021).
- Ana, A.; Meirawan, D.; Dwiyanti, V.; Saripudin, S. Character of Industrial 4.0 Skilled Workers. Int. J. Eng. Technol. 2018, 7, 166–170. Available online: www.sciencepubco.com/index.php/ (accessed on 15 February 2021).
- Darwish, H.; van Dyk, L. The industrial engineering identity: From historic skills to modern values, duties, and roles. S. Afr. J. Ind. Eng. 2016, 27, 50–63. [Google Scholar] [CrossRef] [Green Version]
- Seet, P.-S.; Jones, J.; Spoehr, J.; Hordacre, A.-L. Jobs are Changing, and Fast. Here’s What the VET Sector (and Employers) Need to Do to Keep Up. The Conversation. 2019. Available online: https://theconversation.com/jobs-are-changing-and-fast-heres-what-the-vet-sector-and-employers-need-to-do-to-keep-up-118524 (accessed on 5 August 2021).
- Seet, P.-S.; Jones, J.; Spoehr, J.; Hordacre, A.-L. The Fourth Industrial Revolution and Its Impact on Skills, Training and Learning; Cowan University: Joondalup, WA, Australia, 2019. [Google Scholar]
- Deloitte. Preparing Tomorrow’s Workforce for the Fourth Industrial Revolution for Business: A Framework for Action; Deloitte: London, UK, 2018; p. 16. [Google Scholar]
- Saniuk, S.; Caganova, D.; Saniuk, A. Knowledge and Skills of Industrial Employees and Managerial Staff for the Industry 4.0 Implementation; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Cotet, G.B.; Balgiu, B.A.; Zaleschi, V.C. Assessment Procedure for the Soft Skills Requested by Industry 4.0. MATEC Web of Conferences 121, 07005, MSE. 2017. Available online: https://www.matec-conferences.org/articles/matecconf/abs/2017/35/matecconf_mse2017_07005/matecconf_mse2017_07005.html (accessed on 15 March 2022).
- Skill Development for Industry 4.0 BRICS Skill Development Working Group; FICCI: New Delhi, India; Roland Berger: Munich, Germany, 2016.
- Gajdzik, B.; Wolniak, R. Influence of Industry 4.0 Projects on Business Operations: Literature and Empirical Pilot Studies Based on Case Studies in Poland. J. Open Innov. Technol. Mark. Complex. 2022, 8, 44. [Google Scholar] [CrossRef]
- Ahrens, D.; Spottl, G. Industrie 4.0 und Herausforderungen für Diequalifizierung von Fachkraften. Digitalisierung Industrieller Arbeit; Hirsch-Kreinsen, H., Itterman, P., Niechaus, J., Eds.; Nomos Verlagsgesellschaft GmbH & Co. KG: Baden, Germany, 2015; pp. 184–205. [Google Scholar]
- Business. New Skills Needed for Industry 4.0. 2019. Available online: https://studyonline.rmit.edu.au/blog/categories/business (accessed on 6 February 2019).
- Jansson, C.; Tägtsten, S. Product Development in the Building Industry based on Industrial Thinking Method for Connection Design. Master’s Thesis, Chalmers University of Technology, Göteborg, Sweden, 2007. [Google Scholar]
- Bueth, L.; Blume, S.; Posselt, G.; Herrmann, C. Training concept for and with digitalization in learning factories: An energy efficiency training case. Proc. Manuf. 2018, 23, 171–176. [Google Scholar] [CrossRef]
- Bendkowski, J. Zmiany w pracy produkcyjnej w perspektywie koncepcji Przemysł 4.0. Zeszyty Naukowe Politechniki Śląskiej. Organ. Zarządzanie 2017, 112, 21–33. [Google Scholar]
- Graczyk-Kucharska, M.; Szafrański, M.; Goliński, M.; Spychala, M.; Borsekova, K. Model of competency Management in the Network of production Enterprises in Industry 4.0-assumptions. In Advances in Manufacturing; Springer: Cham, Switzerland, 2018; pp. 195–204. [Google Scholar]
- Mohelska, H.; Sokolova, M. Management approaches for industry 4.0—The organizational culture perspective. Technol. Econ. Dev. Econ. 2018, 24, 2225–2240. [Google Scholar] [CrossRef] [Green Version]
- Sivathanu, B.; Pillai, R. Smart HR 4.0—How industry 4.0 is disrupting HR. Hum. Resour. Manag. Int. Dig. 2018, 26, 7–11. [Google Scholar] [CrossRef]
- Shamim, S.; Cang, S.; Yu, H.; Li, Y. Management approaches for industry 4.0: A human resource management perspective. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 5309–5316. [Google Scholar]
- Ghislieri, C.; Molino, M.; Cortese, C.G. Work and organizational psychology looks at the fourth industrial revolution: How to support workers and organizations? Front. Psychol. 2018, 9, 2365. [Google Scholar] [CrossRef]
- Benesova, A.; Tupa, J. Requirements for education and qualification of people in Industry 4.0. Procedia Manuf. 2017, 11, 2195–2202. [Google Scholar] [CrossRef]
- Sackey, S.M.; Bester, A. Industrial engineering curriculum in industry 4.0 in a south African context. S. Afr. J. Ind. Eng. 2016, 27, 101–114. [Google Scholar] [CrossRef]
- Romero, D.; Stahre, J.; Wuest, T.; Noran, O.; Bernus, P.; Fast-Berglund, Å.; Gorecky, D. Towards an Operator 4.0 Typology: A Human-Centric Perspective on the Fourth Industrial Revolution Technologies. In Proceedings of the International Conference on Computers and Industrial Engineering (CIE46), Tianjin, China, 29–31 October 2016; Volume 11, pp. 1–11. [Google Scholar]
- Gazzaneo, L.; Padovano, A.; Umbrello, S. Designing Smart Operator 4.0 for Human Values: A Value Sensitive Design Approach. Procedia Manuf. 2020, 42, 219–226. [Google Scholar] [CrossRef]
- Di Pasquale, V.; De Simone, V.; Miranda, S.; Riemma, S. Smart operators: How Industry 4.0 is affecting the worker’s performance in manufacturing contexts. Procedia Comput. Sci. 2021, 180, 958–967. [Google Scholar]
- Tortora, A.M.R.; Di Pasquale, V.; Franciosi, C.; Miranda, S.; Iannone, R. The Role of Maintenance Operator in Industrial Manufacturing Systems: Research Topics and Trends. Appl. Sci. 2021, 11, 3193. [Google Scholar] [CrossRef]
- Muñoz, J.; Mahiques, A.; Solanes, X.; Martí, J.E.; Gracia, A.; Tornero, L. Mixed reality-based user interface for quality control inspection of car body surfaces. J. Manuf. Syst. 2019, 53, 75–92. [Google Scholar] [CrossRef]
- Razak, I.H.A.; Kamaruddin, S.; Azid, I.A. Development of Human Reliability Model for Evaluating Maintenance Workforce Reliability: A Case Study in Electronic Packaging Industry. In Proceedings of the IEEE/CPMT International Electronics Manufacturing Technology (IEMT) Symposium, Penang, Malaysia, 4–6 November 2008. [Google Scholar]
- Armstrong, M. Zarządzanie Zasobami Ludzkimi; Wydawnictwo Oficyna The Wolters Kluwer Business (wyd. IV): Kraków, Poland, 2007; pp. 354–360. [Google Scholar]
- Siqueira, F.; Davis, J.G. Service Computing for Industry 4.0: State of the Art, Challenges, and Research Opportunities. ACM Comput. Surv. 2022, 54, 188. [Google Scholar] [CrossRef]
- ASTOR. Inżynierowie Przemysłu 4.0 (Nie)gotowi do Zmian? Whitepaper, Kraków. 2017. Available online: https://www.astor.com.pl/images/Industry_4-0_Przemysl_4-0/ASTOR_Inzynierowie_4.0_whitepaper.pdf (accessed on 29 July 2021).
- Gaspar, M.; Juliao, J. Impacts of Industry 4.0 on Operations Management: Challenges for Operations Strategy. In Proceedings of the ICIEA 2021, Europe: 2021 The 8th International Conference on Industrial Engineering and Applications (Europe), Barcelona, Spain, 8–11 January 2021. [Google Scholar] [CrossRef]
- Schlund, S.; Hämmerle, M.; Strölin, T. Industrie 4.0 Eine Revolution der Arbeitsgestaltung—Wie Automatisierung und Digitalisierung Unsere Produktion Verändern Wird; Ingenics AG: Ulm/Stuttgart, Germany, 2014; p. 26. [Google Scholar]
- Cedefop. Metal & Machinery Workers: Skills Opportunities and Challenges. Skills Panorama. 2019. Available online: https://skillspanorama.cedefop.europa.eu/en/analytical_highlights/metal-machinery-workers-skills-opportunities-and-challenges (accessed on 6 May 2019).
- Gehrke, L.; Kühn, A.T.; Rule, D.; Paul, M.; Bellmann, C.; Siemes, S.; Dania, D.; Lakshmi, S.; Julie, K.; Matthew, S. A Discussion of Qualifications and Skills in the Factory of the Future: A German and American Perspective; ASME: New York, NY, USA, 2015; pp. 8–13. [Google Scholar]
- Wu, H.-Y.; Chen, J.-K.; Chen, I.-S. Performance evaluation of aircraft maintenance staff using a fuzzy MCDM approach. Int. J. Innov. Comput. Inf. Control 2012, 8, 3919–3937. [Google Scholar]
- Kurz, C. Industrie 4.0 Verändert die Arbeitswelt. Gewerkschaftliche Gestaltungsimpulse für „Bessere“ Arbeit. In Identität in der Virtualität: Einblicke in Neue Arbeitswelten und „Industrie 4.0“; Schröter, W., Ed.; Talheimer Verlag: Mössingen, Germany, 2014. [Google Scholar]
- European Commission. Blueprint for Sectoral Cooperation on Skills: Towards an EU Strategy Addressing the Skills Needs of the Steel Sector. European Vision on Steel-Related Skills and Supporting Actions to Solve the Skills Gap Today and Tomorrow in Europe, May 2020. Available online: https://op.europa.eu/en/publication-detail/-/publication/ff0f8660-ca07-11e9-992f-01aa75ed71a1 (accessed on 15 March 2022).
- Hecklau, F.; Galeitzke, M.; Flachs, S.; Kohl, H. Holistic approach for human resource Management in Industry 4.0. Procedia CIRP 2016, 54, 1–6. [Google Scholar] [CrossRef]
- Gracel, J.; Wojtulewicz, M.; Domarecki, W. Jak Zbudować Fabrykę Przyszłości. Available online: https://automatykab2b.pl/prezentacje/53170-jak-zbudowac-fabryke-przyszlosci (accessed on 20 March 2020).
- Kebande, V.R. Industrial internet of things (IIoT) forensics: The forgotten concept in the race towards industry 4.0. Forensic Sci. Int. 2022, 5, 100257. [Google Scholar] [CrossRef]
- Parhi, S.; Joshi, K.; Wuest, T.; Akarte, M. Factors affecting Industry 4.0 adoption—A hybrid SEM-ANN approach. Comput. Ind. Engin. 2022, 168, 108062. [Google Scholar] [CrossRef]
- Afsar, B.F.; Badir, Y.; Bin Saeed, B. Transformational leadership and innovative work behaviour. Ind. Manag. Data Syst. 2014, 114, 1270–1300. [Google Scholar] [CrossRef]
- Aryee, S.; Walumbwa, F.O.; Zhou, Q.; Hartnell, C.A. Transformational leadership, innovative behaviour, and task performance: Test of mediation and moderation processes. Hum. Perform. 2012, 25, 1–25. [Google Scholar] [CrossRef]
- Slåtten, T. Determinants and effects of employee’s creative self-efficacy on innovative activities. Int. J. Qual. Serv. Sci. 2014, 6, 326–347. [Google Scholar] [CrossRef]
- Muceldili, B.; Turan, H.; Erdil, O. The Influence of Authentic Leadership on Creativity and Innovativeness. Procedia Soc. Behav. Sci. 2013, 99, 673–681. [Google Scholar] [CrossRef] [Green Version]
- Hancock, P.A.; Jagacinski, R.J.; Parasuraman, R.; Wickens, C.D.; Wilson, G.F.; Kaber, D.B. Human-automation interaction research: Past present and future. Ergon. Des. 2013, 21, 9–14. Available online: http://scholar.google.com/scholar_lookup?title=Human-automation%20interaction%20research%3A%20past%20present%20and%20future&author=PA.%20Hancock&author=RJ.%20Jagacinski&author=R.%20Parasuraman&journal=Ergon.%20Des.&volume=21&issue=2&pages=9-14&publication_year=2013 (accessed on 15 March 2022). [CrossRef] [Green Version]
- Sheridan, T.; Parasuraman, R. Human-automation interaction. Hum. Factors Ergon. 2006, 1, 89–129. [Google Scholar] [CrossRef]
- Gajdzik, B. Concentration on knowledge and change management at the metallurgical company. Metalurgija 2008, 2, 142–144. [Google Scholar]
- Botthof, A.; Hartmann, E.A. Zukunft der Arbeit in Industrie 4.0—Neue Perspektiven und offene Fragen. In Zukunft der Arbeit in Industrie 4.0; Botthof, A., Hartmann, E.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Becker, K.-D. Arbeit in der Industrie 4.0—Erwartungen des Instituts für angewandte Arbeitswissenschaft e.V. In Zukunft der Arbeit in Industrie 4.0; Botthof, A., Hartmann, E.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Szyszko-Bohusz, A. Pedagogika holistyczne oraz samodoskonalenie osobowości i bezpieczeństwo w dobie globalizacji. Pol. J. Arts Cult. 2013, 7, 201–207. [Google Scholar]
- Gorecky, D.; Schmitt, M.; Loskyll, M.; Zühlke, D. Human-machine-interaction in the Industry 4.0 era. In Proceedings of the 2014 12th IEEE International Conference on Industrial Informatics (INDIN), Porto Alegre, Brazil, 27–30 July 2014; pp. 289–294. [Google Scholar]
- Molinaro, M.; Orzes, G. From forest to finished products: The contribution of Industry 4.0 technologies to the wood sector. Comput. Ind. 2022, 138, 103637. [Google Scholar] [CrossRef]
- White, H.A.; Shah, P. Scope of Semantic Activation and Innovative Thinking in College Students with ADHD. Creat. Res. J. 2016, 28, 275–282. [Google Scholar] [CrossRef]
- Olszewski, M. Podstawy Mechatroniki; Wydawnictwo REA: Warszawa, Poland, 2006; p. 17. [Google Scholar]
- Rüßmann, M.; Lorenz, M.; Gerbert, P.; Waldner, M.; Justus, J.; Engel, P.; Harnisch, M. Industry 4.0. The Future of Productivity and Growth in Manufacturing Industries; Consulting Group: Boston, MA, USA, 2015. [Google Scholar]
- Gajdzik, B.; Wolniak, R. Digitalisation and Innovation in the Steel Industry in Poland—Selected Tools of ICT in an Analysis of Statistical Data and a Case Study. Energies 2021, 14, 3034. [Google Scholar] [CrossRef]
- Gajdzik, B.; Wolniak, R. Transitioning of Steel Producers to the Steelworks 4.0—Literature Review with Case Studies. Energies 2021, 14, 4109. [Google Scholar] [CrossRef]
- Cugno, M.; Castagnoli, R.; Büchi, G.; Pini, M. Industry 4.0 and production recovery in the COVID era. Technovation 2022, 114, 102443. [Google Scholar] [CrossRef]
- The European Steel Skills Agenda (ESSA), EC, Brussels. Available online: https://www.estep.eu/essa/essa-project/ (accessed on 15 March 2022).
- STEM. H.R.2528—STEM Opportunities Act of 2019116th Congress (2019–2020). USA. 15 October 2019. Available online: https://www.congress.gov/bill/116th-congress/house-bill/2528/text (accessed on 17 March 2022).
- Martindale, C.; Greenough, J. The differential effect of increased arousal on creative and intellectual performance. J. Genet. Psychol. 1973, 123, 329–335. [Google Scholar] [CrossRef]
- Pandya, S.P. Enhancing high schoolers’ creative thinking and complex problem-solving abilities: Examining the effectiveness of spirituality. Psychol. Sch. 2022, 59, 213–241. [Google Scholar] [CrossRef]
- Rokhmat, J.; Gunada, I.W.; Ayub, S.; Hikmawati; Wulandari, T. The use of causalitic learning model to encourage abilities of problem solving and creative thinking in momentum and impulse. J. Phys. Conf. Ser. 2022, 2165, 012052. [Google Scholar] [CrossRef]
- Mursid, R.; Saragih, A.H.; Hartono, R. The Effect of the Blended Project-based Learning Model and Creative Thinking Ability on Engineering Students’ Learning Outcomes. Int. J. Educ. Math. Sci. Technol. 2022, 10, 218–235. [Google Scholar] [CrossRef]
- Brozzi, R.; Rauch, E.; Riedl, M.; Matt, D.T. Industry 4.0 roadmap for SMEs: Validation of moderation techniques for creativity workshops. Int. J. Agil. Syst. Manag. 2021, 14, 276–291. [Google Scholar] [CrossRef]
- Croplewy, A. Creativity-focused Technology Education in the Age of Industry 4.0. Creat. Res. J. 2020, 32, 1–8. [Google Scholar] [CrossRef]
- Teece, D.J. Explicating Dynamic Capabilities: The Nature and Microfoundations of (Sustainable) Enterprise Performance. Strateg. Manag. J. 2007, 28, 319–350. [Google Scholar] [CrossRef] [Green Version]
- Eisenhardt, K.M.; Martin, J.A. Dynamic capabilities: What are they? Strateg. Manag. J. 2000, 21, 1105–1121. [Google Scholar] [CrossRef]
- Neef, C.; Hirzel, S.; Arens, M. Industry 4.0 in the European Iron and Steel Industry: Towards an Overview of Implementations and Perspectives; Fraunhofer ISI: Karlsruhe, Germany, 2018. [Google Scholar]
- Nikghadam-Hojjati, S.; Barata, J. Computational Creativity to Design Cyber-Physical Systems in Industry 4.0. IFIP Adv. Inf. Commun. Technol. 2019, 568, 29–40. [Google Scholar]
- Chern, M.J.; Hsia, H.J.; Chen, S.F.; Chen, H.L.; Kuan, W.S. Education of innovation and creativity thinking on Industry 4.0 course and project. In Proceedings of the 45th SEFI Annual Conference 2017—Education Excellence for Sustainability, Angra do Heroísmo, Portugal, 18–21 September 2017; pp. 1362–1369. [Google Scholar]
- Lee, M.; Yun, J.J.; Pyka, A.; Won, D.; Kodama, F.; Schiuma, G.; Park, H.; Jeon, J.; Park, K.; Jung, K.; et al. How to Respond to the Fourth Industrial Revolution, or the Second Information Technology Revolution? Dynamic New Combinations between Technology, Market, and Society through Open Innovation. J. Open Innov. Technol. Mark. Complex. 2018, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Pichlak, M.; Szromek, A. Eco-Innovation, Sustainability and Business Model Innovation by Open Innovation Dynamics. J. Open Innov. Technol. Mark. Complex. 2021, 7, 149. [Google Scholar] [CrossRef]
- Yun, J.J.; Liu, Z. Micro- and Macro-Dynamics of Open Innovation with a Quadruple-Helix Model. Sustainability 2019, 11, 3301. [Google Scholar] [CrossRef] [Green Version]
- Yun, J.J.; Won, D.; Park, K. Entrepreneurial cyclical dynamics of open innovation. J. Evol. Econ. 2018, 28, 1151–1174. [Google Scholar] [CrossRef]
- Saebi, T.; Foss, N.J. Business models for open innovation: Matching heterogeneous open innovation strategies with business model dimensions. Eur. Manag. J. 2015, 33, 201–213. [Google Scholar] [CrossRef] [Green Version]
- Müller, J.M.; Buliga, O.; Voigt, K.I. Fortune Favors the Prepared: How SMSs Approach Business Model Innovations in Industry 4.0. Technol. Forecast. Soc. Chang. 2018, 132, 2–17. [Google Scholar] [CrossRef]
- Diaconu, M. Technological Innovation: Concept, Process, Typology and Implications in the Economy. Theor. Appl. Econ. 2011, 18, 127–144. [Google Scholar]
- Gjergji, R.; Lazzarotti, V.; Visconti, F. Socioemotional wealth, entrepreneurial behaviour and open innovation breadth in family firms: The joint effect on innovation performance. Creat. Innov. Manag. 2022, 31, 93–108. [Google Scholar] [CrossRef]
- Chaudhary, S.; Kaur, P.; Talwar, S.; Islam, N.; Dhir, A. Way off the mark? Open innovation failures: Decoding what really matters to chart the future course of action. J. Bus. Res. 2022, 142, 1010–1025. [Google Scholar] [CrossRef]
- Bertello, A.; De Bernardi, P.; Ferraris, A.; Bresciani, S. Shedding lights on organizational decoupling in publicly funded R&D consortia: An institutional perspective on open innovation. Technol. Forecast. Soc. Chang. 2022, 176, 121433. [Google Scholar]
- Oliveira-Dias, D.; Maqueira-Marín, J.M.; Moyano-Fuentes, J. The link between information and digital technologies of industry 4.0 and agile supply chain: Mapping current research and establishing new research avenues. Comput. Ind. Eng. 2022, 167, 108000. [Google Scholar] [CrossRef]
- Gajdzik, B.; Grzybowska, K. Qualifications versus useful knowledge in metallurgical enterprise. Metalurgija 2014, 53, 119–122. [Google Scholar]
- Sroka, W.; Cygler, J.; Gajdzik, B. Knowledge transfer in networks—The case of steel enterprises in Poland. Metalurgija 2014, 1, 101–104. [Google Scholar]
- Amabile, T.M. Creativity and Innovation in Organizations; Harvard Business School: Boston, MA, USA, 1996. [Google Scholar]
- Lekan, A.; Clinton, A.; James, O. The disruptive adaptations of construction 4.0 and industry 4.0 as a pathway to a sustainable innovation and inclusive industrial technological development. Buildings 2021, 11, 79. [Google Scholar] [CrossRef]
- Hizam-Hanafiah, M.; Soomro, M.A. The situation of technology companies in industry 4.0 and the open innovation. J. Open Innov. 2021, 7, 34. [Google Scholar] [CrossRef]
- Patrucco, A.S.; Trabucchi, D.; Frattini, F.; Lynch, J. The impact of COVID-19 on innovation policies promoting Open Innovation. R D Manag. 2022, 52, 273–293. [Google Scholar] [CrossRef]
- Gafour, W.A.O.; Gafour, W.A.S. Creative Thinking Skills—A Review Article. Available online: https://www.researchgate.net/publication/349003763_Creative_Thinking_skills_-A_Review_article (accessed on 8 March 2022).
- Eliot, M.; Turns, J. Constructing professional portfolios: Sense-making and professional identity development for engineering undergraduates. J. Eng. Educ. 2011, 100, 630. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, Z.; Cai, X.; Du, Q.; Fan, W. The more, the better? The effect of feedback and user’s past successes on idea implementation in open innovation communities. J. Assoc. Inf. Sci. Technol. 2022, 73, 376–392. [Google Scholar] [CrossRef]
- Gajdzik, B.; Grabowska, S.; Saniuk, S. Key socio-economic megatrends and trends in the context of the industry 4.0 framework. Forum Sci. Oecon. 2021, 9, 5–21. [Google Scholar] [CrossRef]
- Cooke, P.; Nunes, S.; Olivia, S.; Lazzeretti, L. Open Innovation, Soft Branding and Green Influencers: Critiquing ‘Fast Fashion’ and ‘Overtourism’. J. Open Innov. Technol. Mark. Complex. 2022, 8, 52. [Google Scholar] [CrossRef]
- Ingrassia, M.; Bellia, C.; Giurdanella, C.; Columba, P.; Chironi, S. Digital Influencers, Food and Tourism—A New Model of Open Innovation for Businesses in the Ho.Re.Ca. Sector. J. Open Innov. Technol. Mark. Complex. 2022, 8, 50. [Google Scholar] [CrossRef]
- Alam Khan, P.; Johl, S.K.; Akhtar, S.; Asif, M.; Salameh, A.A.; Kanesan, T. Open Innovation of Institutional Investors and Higher Education System in Creating Open Approach for SDG-4 Quality Education: A Conceptual Review. J. Open Innov. Technol. Mark. Complex. 2022, 8, 49. [Google Scholar] [CrossRef]
- Valdez-Juárez, L.E.; Castillo-Vergara, M.; Ramos-Escobar, E.A. Innovative Business Strategies in the Face of COVID-19: An Approach to Open Innovation of SMEs in the Sonora Region of Mexico. J. Open Innov. Technol. Mark. Complex. 2022, 8, 47. [Google Scholar] [CrossRef]
- Yan, X.; Huang, M. Leveraging university research within the context of open innovation: The case of Huawei. Telecommun. Policy 2022, 46, 101956. [Google Scholar] [CrossRef]
- Bertello, A.; Ferraris, A.; De Bernardi, P.; Bertoldi, B. Challenges to open innovation in traditional SMEs: An analysis of pre-competitive projects in university-industry-government collaboration. Int. Entrep. Manag. J. 2022, 18, 89–104. [Google Scholar] [CrossRef]
- Belitski, M.; Rejeb, N. Does Open Customer Innovation Model Hold for Family Firms? J. Bus. Res. 2022, 145, 334–346. [Google Scholar] [CrossRef]
- Shaikh, I.; Randhawa, K. Managing the Risks and Motivations of Technology Managers in Open Innovation: Bringing Stake-Holder-Centric Corporate Governance into Focus. Technovation 2022, 114, 102437. [Google Scholar] [CrossRef]
- Dall-Orsoletta, A.; Romero, F.; Ferreira, P. Open and Collaborative Innovation for the Energy Transition: An Exploratory Study. Technol. Soc. 2022, 69, 101955. [Google Scholar] [CrossRef]
- Naqshbandi, M.M.; Jasimuddin, S.M. The Linkage Between Open Innovation, Absorptive Capacity and Managerial Ties: A Cross-Country Perspective. J. Innov. Knowl. 2022, 7, 100167. [Google Scholar] [CrossRef]
- Jin, J.; Guo, M.; Zhang, Z. Selective Adoption of Open Innovation for New Product Development in High-Tech SMEs in Emerging Economies. IEEE Trans. Eng. Manag. 2019, 69, 329–337. [Google Scholar] [CrossRef]
- Tsujimura, S.; Yairi, M.; Okita, T. A Psychological Evaluation Model of a Good Conversation in Knowledge Creative Activities by Multiple People. Appl. Sci. 2022, 12, 2265. [Google Scholar] [CrossRef]
- Spath, D.; Ganschar, O.; Hämmerle, M.; Krause, T.; Schlund, S. Produktionsarbeit der Zukunft—Industrie 4.0; Studie: Stuttgart, Germany, 2013. [Google Scholar]
- Miranda, J.; Rosas-Fernandez, J.B.; Molina, A. Achieving Innovation and Entrepreneurship by Applying Education 4.0 and Open Innovation. In Proceedings of the 2020 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC), New York, NY, USA, 15–17 June 2020; pp. 1–6. [Google Scholar]
- Mhlanga, D. Artificial intelligence in the industry 4.0, and its impact on poverty, innovation, infrastructure development, and the sustainable development goals: Lessons from emerging economies? Sustainability 2021, 13, 5788. [Google Scholar] [CrossRef]
- Industry 4.0 and Open Innovations. Available online: https://iiot-world.com/industrial-iot/digital-disruption/industrial-iot-and-open-innovation/ (accessed on 4 February 2022).
- Katou, A.A. Building a Multilevel Integrated Framework of Ambidexterity: The Role of Dynamically Changing Environment and Human Capital Management in the Performance of Greek Firms. Glob. Bus. Organ. Excel. 2021, 40, 17–27. [Google Scholar] [CrossRef]
- Lim, W.M.; Rasul, T.; Kumar, S.; Ala, M. Past, Present, and Future of Customer Engagement. J. Bus. Res. 2021, 140, 439–458. [Google Scholar] [CrossRef]
- Vveinhardt, J.; Sroka, W. Mobbing and corporate social responsibility: Does the status of the organisation guarantee employee wellbeing and intentions to stay in the job? Oeconomia Copernic. 2020, 11, 743–778. [Google Scholar] [CrossRef]
Reference | Skills/Competencies/Capabilities (Citation According to the Source) | |
---|---|---|
[45] |
| |
[46] |
| |
[47] | Levels of industrial engineering model:
| |
[48,49] |
| |
[50] |
| |
[51] | Employees:
| Managerial staff:
|
[52] | Students (Machine tools, Robotics, Logistics)
| |
[53] | More focus:
| |
Less focus:
| ||
[54] |
|
knowledge |
|
| |
skills |
|
| |
| |
|
Specialised technical skills |
|
Basic procedural skills |
|
Advanced technological skills |
|
Digital skills and basic knowledge of IT |
|
Skills in using Big Data and Open Data |
|
The ability to build a collaborative Intelligent Machine Environment (I2M) |
|
Manual dexterity |
|
Leadership and decision-making skills |
|
R&D skills |
|
Soft skills |
|
Customer orientation |
|
Technological awareness |
|
Understanding of business |
|
Environmental knowledge (“Green Economy”) |
|
Lifelong learning (continuous improvement: CPD and lifelong learning: LLL) |
|
Creativity |
|
Focused on Production Processes | Focused on Digital Service Processes |
---|---|
Metallurgical engineer, R&D specialist, manufacturing and product quality control engineer or technician, materials science engineer or technician, metallurgist, metallurgical engineer or technician, metallurgical plant electrical engineer or technician, maintenance engineer (UR) welder, structural steel technician, industrial laboratory technician, metallurgical equipment mechanic, process design engineer, manufacturing process engineer, furnace and steel plant operator, metallurgical production manager | IT application specialist, data management specialist, industrial data analyst, system application manager, automation engineer, industrial robotics engineer, industrial robot operator, IT programmer, manufacturing support information systems operator, industrial cyber security specialist |
Technical knowledge |
|
Skills |
|
Education |
|
Foreign language |
|
Attitudes |
|
Category: exact sciences | |
Mathematics | Mathematical description of phenomena, formulation of mathematical models and their solution |
Physics | Measurement of basic physical quantities, analysis of physical phenomena, solving technical problems based on the laws of physics |
Chemistry | Understanding of chemical transformations and their significance in industrial processes, in particular metallurgical processes |
Mathematical Statistics | Understanding and application of statistical methods for data handling and econometric modelling |
Category: technical sciences | |
Raw material preparation and extraction metallurgy | Understanding of metallurgical processes, knowledge of preparation of raw materials for steelmaking |
Ferrous and non-ferrous metallurgy | Selection of metal alloys for technical applications, design of processes for shaping the properties of metals and their alloys |
Processing of metals and alloys | Design of metallurgical technologies and their application to the manufacture of engineering materials |
Materials science and engineering materials | Selection of materials for technical applications in order to shape their structure and properties |
Crystallography | Ability to describe metallic structures |
Shaping, testing the structure and properties of materials | Designing technological processes, shaping the structure and properties of materials and products, studying the influence of technological processes on the structure and properties of materials and products |
Metal casting | Understanding of casting processes, knowledge of casting methods and techniques |
Plastics for foundry moulds | Selection of plastics for casting moulds |
Thermal techniques | Application of the principles of thermodynamics to describe physical phenomena and mathematical modelling of thermal processes, knowledge of the principles of thermal technology, design and operation of energy devices |
Materials testing methods | Application of analytical methods in materials testing—mainly in metallurgy; use of testing apparatus; assessment of the structure and properties of metals and metal alloys |
Theory of elasticity and plasticity | Modelling of technological processes |
Technical mechanics | Application of computer techniques in technical mechanics; solving technical problems based on the laws of classical mechanics; modelling of mechanical phenomena and systems |
Category: information technology sciences | |
Basic informatics | Fundamentals of programming, internet applications, operating systems, advanced information technologies, theory of algorithms, data structure |
Industrial informatics | Use computer-aided technology to solve technical tasks |
Engineering graphics and design | Design and execution of strength calculations; graphic representation of machine elements and mechanical systems using computer aided design of machinery |
Computer science and programming techniques | Application of the basics of industrial computing, use of computer programs, programming: programming techniques, knowledge of programming languages |
Electrotechnology and electronics | Knowledge about electrics and electronics in manufacturing |
Basics of industrial automation and robotics | Use of automation and automatic control systems in engineering knowledge of advanced technologies in mechanical engineering, ability to design technological of lines |
Engineering design | Fundamentals of engineering design, project management (PM), design in CAD systems, introduction to rapid prototyping, “C” programming |
Modelling and computer-aided engineering | Basics of design and modelling of metallurgical technological processes |
Computer network, computer technical support | Use of computer networks and network applications; use of computer-aided metallurgy |
Automatics and robotics | Fundamentals of automation and robotics, machine learning, advanced technologies in mechanical engineering, process line design |
Category: engineering sciences | |
Manufacturing technology and production engineering | Knowledge about: production systems, manufacturing processes, metallurgical manufacturing technologies, organisation (design) of technological lines, technology and process control, information systems: CAM, optimisation, task scheduling, etc. |
Additive manufacturing | Understanding of the importance of additive manufacturing in metallurgy, operation of 3D printers based on metal powders, 3D printing of metal products |
Manufacturing management/production management systems | Knowledge about: process control, quality control (quality management methods and techniques, quality standards, TQM, statistical quality control), organization of production systems, computer systems (ERP, CRM, etc.) |
Work organisation and economics | Consideration of principles of work organisation, fundamentals of ergonomics and occupational health and safety in various forms of activity (including: ergonomics in metallurgy, working conditions in metallurgy, occupational risk assessment in metallurgy, safety standards in metallurgy) |
Simulation methods used to solve engineering problems and tasks | Use of computer simulation for solving engineering problems, computer simulation of manufacturing processes |
Metal recycling and treatment of process waste | Understanding of the principles of metallurgical waste management (recycling, treatment, utilization), knowledge of metallurgical waste, metallurgical environmental aspects, classification of metallurgical waste, product life cycle analysis: ALC, understanding of the importance of sustainable production for ecology and environment protection |
Management/entrepreneurship | Understanding entrepreneurship, measuring and evaluating productivity (KPIs), management methods, lean manufacturing |
Protection of intellectual property | Copyright law, patent law, data protection, basics of cyber security |
Category: social sciences and ethics | |
Business ethics and social responsibility (SR) | Ethical business principles, SR areas, humanisation of work, employee involvement |
Communication and work team | Forms of communication in organization, techniques, communication in group, work in teams |
Category: foreign languages (foreign language in business) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajdzik, B.; Wolniak, R. Smart Production Workers in Terms of Creativity and Innovation: The Implication for Open Innovation. J. Open Innov. Technol. Mark. Complex. 2022, 8, 68. https://doi.org/10.3390/joitmc8020068
Gajdzik B, Wolniak R. Smart Production Workers in Terms of Creativity and Innovation: The Implication for Open Innovation. Journal of Open Innovation: Technology, Market, and Complexity. 2022; 8(2):68. https://doi.org/10.3390/joitmc8020068
Chicago/Turabian StyleGajdzik, Bożena, and Radosław Wolniak. 2022. "Smart Production Workers in Terms of Creativity and Innovation: The Implication for Open Innovation" Journal of Open Innovation: Technology, Market, and Complexity 8, no. 2: 68. https://doi.org/10.3390/joitmc8020068
APA StyleGajdzik, B., & Wolniak, R. (2022). Smart Production Workers in Terms of Creativity and Innovation: The Implication for Open Innovation. Journal of Open Innovation: Technology, Market, and Complexity, 8(2), 68. https://doi.org/10.3390/joitmc8020068