Assessment of Antimicrobial and Antioxidant Activities of Nepeta trachonitica: Analysis of Its Phenolic Compounds Using HPLC-MS/MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Samples
2.2. Preparation of the Extract
2.3. Antioxidant Activity Studies
2.3.1. CUPRAC Assay
2.3.2. FRAP Assay
3.3.3. DPPH Assay
2.4. HPLC-MS/MS Analysis and Instrumentation
2.5. Antimicrobial Activity
2.5.1. Microorganisms
2.5.2. Microbiological Assay
3. Results and Discussion
3.1. HPLC-MS/MS Analyses
3.2. Identification of Phenols
3.3. Quantification of Phenols
3.4. Antioxidant Activity
3.5. Antimicrobial Activity
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Ross, J.A.; Kasum, C.M. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 2002, 22, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Bursal, E.; Köksal, E.; Gülçin, İ.; Bilsel, G.; Gören, A.C. Antioxidant activity and polyphenol content of cherry stem (Cerasus avium L.) determined by LC-MS/MS. Food Res. Int. 2013, 51, 66–74. [Google Scholar] [CrossRef]
- Gülçin, İ. Antioxidant activity of food constituents: an overview. Arch. Toxicol. 2012, 86, 345–391. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Howard, L.R.; Villalón, B. Flavonoids and antioxidant activity of fresh pepper (Capsicum annuum) cultivars. J. Food Sci. 1995, 60, 473–476. [Google Scholar] [CrossRef]
- Van Dam, R.M.; Naidoo, N.; Landberg, R. Dietary flavonoids and the development of type 2 diabetes and cardiovascular diseases: review of recent findings. Curr. Opin. Lipidol. 2013, 24, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Jang, D.S.; Park, E.J.; Kang, Y.H.; Hawthorne, M.E.; Vigo, J.S.; Graham, J.G.; Cabieses, F.; Fong, H.H.; Mehta, R.G.; Pezzuto, J.M.; et al. Potential cancer chemopreventive flavonoids from the stems of Tephrosia toxicaria. J. Nat. Prod. 2003, 66, 1166–1170. [Google Scholar] [CrossRef] [PubMed]
- Topal, M.; Gocer, H.; Topal, F.; Kalin, P.; Polat Köse, P.; Gülçin, İ.; Çakmak, K.C.; Küçük, M.; Durmaz, L.; Gören, A.C.; et al. Antioxidant, antiradical and anticholinergic properties of cynarin purified from the illyrian thistle (Onopordum illyricum L.). J. Enzyme Inhib. Med. Chem. 2016, 31, 266–275. [Google Scholar] [CrossRef] [PubMed]
- Işık, M.; Beydemir, S.; Yılmaz, A.; Naldan, M.E.; Aslan, H.E.; Gülçin, İ. Oxidative stress and mRNA expression of acetylcholinesterase in the leukocytes of ischemic patients. Biomed. Pharmacother. 2017, 87, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Gülçin, İ. Antioxidant and antiradical activities of L-Carnitine. Life Sci. 2006, 78, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Köksal, E.; Bursal, E.; Gülçin, İ.; Korkmaz, M.; Çağlayan, C.; Gören, A.C.; Alwasel, S.H. Antioxidant activity and polyphenol content of Turkish thyme (Thymus vulgaris) monitored by LC-MS/MS. Int. J. Food Prop. 2017, 20, 514–525. [Google Scholar] [CrossRef]
- Hamad, H.O.; Alma, M.H.; Gülçin, İ.; Yılmaz, M.A.; Karaoğul, E. Evaluation of phenolic contents and bioactivity of root and nutgall extracts from Iraqian Quercus infectoria Olivier. Rec. Nat. Prod. 2017, 11, 205–210. [Google Scholar]
- Talaz, O.; Gülçin, İ.; Göksu, S.; Saracoglu, N. Antioxidant activity of 5,10-dihydroindeno[1,2-b]indoles containing substituents on dihydroindeno part. Bioorg. Med. Chem. 2009, 17, 6583–6589. [Google Scholar] [CrossRef] [PubMed]
- Şerbetçi Tohma, H.; Gülçin, İ. Antioxidant and radical scavenging activity of aerial parts and roots of Turkish liquorice (Glycyrrhiza glabra L.). Int. J. Food Propert. 2010, 13, 657–671. [Google Scholar] [CrossRef]
- Gülçin, İ. Antioxidant properties of resveratrol: A structure-activity insight. Innov. Food Sci. Emerg. 2010, 11, 210–218. [Google Scholar] [CrossRef]
- Ouattara, B.; Simard, R.E.; Holley, R.A.; Piette, G.J.P.; Bégin, A. Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. Int. J. Food Microbiol. 1997, 37, 155–162. [Google Scholar] [CrossRef]
- Rauha, J.P.; Remes, S.; Heinonen, M.; Hopia, A.; Kähkönen, M.; Kujala, T.; Pihlaja, K.; Vuorela, H.; Vuorela, P. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int. J. Food Microbiol. 2000, 56, 3–12. [Google Scholar] [CrossRef]
- Bae, J.H.; Park, Y.J.; Namiesnik, J.; Gülçin, İ.; Kim, T.C.; Kim, H.C.; Heo, B.G.; Gorinstein, S.; Ku, Y.G. Effects of artificial lighting on bioactivity of sweet red pepper (Capsicum annuum L.). Int. J. Food Sci. Technol. 2016, 51, 1378–1385. [Google Scholar] [CrossRef]
- Gulcin, İ. Antioxidant activity of eugenol-a structure and activity relationship study. J. Med. Food 2011, 14, 975–985. [Google Scholar] [CrossRef] [PubMed]
- Gülçin, İ.; Topal, F.; Çakmakçı, R.; Gören, A.C.; Bilsel, M.; Erdoğan, U. Pomological features, nutritional quality, polyphenol content analysis and antioxidant properties of domesticated and three wild ecotype forms of raspberries (Rubus idaeus L.). J. Food Sci. 2011, 76, C585–C593. [Google Scholar] [CrossRef] [PubMed]
- Tohma, H.; Köksal, E.; Kılıç, Ö.; Alan, Y.; Yılmaz, M.A.; Gülçin, İ.; Bursal, E.; Alwasel, S.H. RP-HPLC/MS/MS analysis of the phenolic compounds, antioxidant and antimicrobial activities of Salvia L. species. Antioxidants 2016, 5, 38. [Google Scholar] [CrossRef] [PubMed]
- Gülcin, İ. The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds. Int. J. Food Sci. Nutr. 2005, 56, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Kaya, A.; Demirci, B.; Baser, K.H.C. Micromorphology of glandular trichomes of Nepeta congesta Fisch. and Mey. var. congesta (Lamiaceae) and chemical analysis of the essential oils. S. Afr. J. Bot. 2007, 73, 29–34. [Google Scholar] [CrossRef]
- Ozhatay, N.; Kultur, Ş.; Aslan, S. Check-list of additional taxa to the supp. Flora of Turkey IV. Turk. J. Bot. 2009, 33, 191–226. [Google Scholar]
- Tepe, B.; Daferera, D.; Tepe, A.S.; Polissiou, M.; Sokmen, A. Antioxidant activity of the essential oil and various extracts of Nepeta flavida Hub.-Mor. from Turkey. Food Chem. 2007, 103, 1358–1364. [Google Scholar] [CrossRef]
- Dogan, A.; Tuzlaci, E. Wild edible plants of Pertek (Tunceli-Turkey). Marmara Pharm. J. 2015, 19, 126–135. [Google Scholar] [CrossRef]
- Iscan, G.; Kose, Y.B.; Demirci, B.; Baser, K.H.C. Anticandidal activity of the essential oil of Nepeta transcaucasica Grossh. Chem. Biodiver. 2011, 8, 2144–2148. [Google Scholar] [CrossRef] [PubMed]
- Davis, P. Flora of Turkey and the East Aegean Islands Vol. 7; Edinburgh University Press: Edinburgh, UK, 1982. [Google Scholar]
- Pandey, A.K.; Mohan, M.; Singh, P.; Tripathi, N.N. Chemical composition, antioxidant and antimicrobial activities of the essential oil of Nepeta hindostana (Roth) Haines from India. Rec. Nat. Prod. 2015, 9, 224–233. [Google Scholar]
- Ezzatzadeh, E.; Sofla, S.F.I.; Pourghasem, E.; Rustaiyan, A.; Zarezadeh, A. Antimicrobial activity and chemical constituents of the essential oils from root, leaf and aerial part of Nepeta asterotricha from Iran. J. Essent. Oil Bear. Plants 2014, 17, 415–421. [Google Scholar] [CrossRef]
- Al-Kahraman, Y.M.S.A.; Baloch, N.; Kakar, A.M.; Nabi, S. In Vitro antimicrobial, insecticidal, antitumor, antioxidant activities and their phytochemical estimation of methanolic extract and its fractions of Nepeta praetervũιsa L. leaves. Int. J. Phytomed. 2012, 4, 531–536. [Google Scholar]
- Sehitoglu, M.H.; Han, H.; Kalin, P.; Gülçin, İ.; Ozkan, A.; Aboul-Enein, H.Y. Pistachio (Pistacia vera L.) Gum: A potent inhibitor of reactive oxygen species. J. Enzyme Inhib. Med. Chem. 2015, 30, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Apak, R.; Güçlü, K.; Demirata, B.; Ozyürek, M.; Celik, S.E.; Bektaşoğlu, B.; Berker, K.I.; Ozyurt, D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef] [PubMed]
- Gülçin, İ. Measurement of antioxidant ability of melatonin and serotonin by the DMPD and CUPRAC methods as trolox equivalent. J. Enzyme Inhib. Med. Chem. 2008, 23, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Aksu, K.; Topal, F.; Gülçin, I.; Tümer, F.; Göksu, S. Acetylcholinesterase inhibitory and antioxidant activities of novel symmetric sulfamides derived from phenethylamines. Arch. Pharm. 2015, 348, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Oyaizu, M. Studies on products of browning reaction-antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef]
- Çakmakçı, S.; Topdaş, E.F.; Kalın, P.; Han, H.; Şekerci, P.; Polat Kose, L.; Gülçin, İ. Antioxidant capacity and functionality of oleaster (Elaeagnus angustifolia L.) flour and crust in a new kind of fruity ice cream. Int. J. Food Sci. Technol. 2015, 50, 472–481. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Işık, M.; Korkmaz, M.; Bursal, E.; Gülçin, İ.; Köksal, E.; Tohma, H. Determination of antioxidant properties of Gypsophila bitlisensis. Int. J. Pharmacol. 2015, 11, 366–371. [Google Scholar]
- Bursal, E.; Gülçin, İ. Polyphenol contents and in vitro antioxidant activities of lyophilized aqueous extract of kiwifruit (Actinidia deliciosa). Food Res. Int. 2011, 44, 1482–1489. [Google Scholar] [CrossRef]
- Ertas, A.; Boga, M.A.; Yilmaz, M.A.; Yesil, Y.; Tel, G.; Temel, H.; Haşimi, N.; Gazioglu, I.; Ozturk, M.; Ugurlu, P. A detailed study on the chemical and biological profiles of essential oil and methanol extract of Thymus nummularius (Anzer tea): Rosmarinic acid. Ind. Crops Prod. 2015, 67, 336–345. [Google Scholar] [CrossRef]
- Gülçin, İ.; Oktay, M.; Kireçci, E.; Küfrevioğlu, Ö.İ. Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chem. 2003, 83, 371–382. [Google Scholar]
- Polat Köse, L.; Gülçin, İ.; Gören, A.C.; Namiesnik, J.; Martinez-Ayala, A.L.; Gorinstein, S. LC-MS/MS analysis, antioxidant and anticholinergic properties of galanga (Alpinia officinarum Hance) rhizomes. Ind. Crops Prod. 2015, 74, 712–721. [Google Scholar] [CrossRef]
- Gülçin, İ.; Küfrevioğlu, Ö.İ.; Oktay, M.; Büyükokuroğlu, M.E. Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J. Ethnopharmacol. 2004, 90, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Gülçin, İ.; Tel, A.Z.; Kirecci, E. Antioxidant, antimicrobial, antifungal and antiradical activities of Cyclotrichium niveum (Boiss.) Manden and Scheng. Int. J. Food Prop. 2008, 11, 450–471. [Google Scholar] [CrossRef]
- Gülçin, İ.; Kirecci, E.; Akkemik, E.; Topal, F.; Hisar, O. Antioxidant and antimicrobial activities of an aquatic plant: Duckweed (Lemna minor L.). Turk. J. Biol. 2010, 34, 175–188. [Google Scholar]
- Molehin, O.R.; Adefegha, S.A.; Oboh, G.; Saliu, J.A.; Athayde, M.L.; Boligon, A.A. Comparative study on the phenolic content, antioxidant properties and HPLC fingerprinting of three varieties of Celosia species. J. Food Biochem. 2014, 38, 575–583. [Google Scholar] [CrossRef]
- Gökbulut, A. Validated RP-HPLC method for quantification of phenolic compounds in methanol extracts of aerial parts and roots of Thymus sipyleus and evaluation of antioxidant potential. Trop. J. Pharm. Res. 2015, 14, 1871–1877. [Google Scholar] [CrossRef]
- Križman, M.; Baričevič, D.; Prošek, M. Determination of phenolic compounds in fennel by HPLC and HPLC-MS using a monolithic reversed-phase column. J. Pharm. Biomed. Anal. 2007, 43, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Li, S.; Lin, Z.; Yang, R.; Zhao, Y.; Liu, J.; Yang, S.; Chen, A. Identification and quantitation of phenolic compounds from the seed and pomace of Perilla frutescens using HPLC/PDA and HPLC-ESI/QTOF/MS/MS. Phytochem. Anal. 2014, 25, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Janicsák, G.; Mathe, I.; Vari, V.M.; Blunden, G. Comparative studies of the rosmarinic and caffeic acid contents of Lamiaceae species. Biochem. Syst. Ecol. 1999, 27, 733–738. [Google Scholar]
- Han, S.; Yang, S.; Cai, Z.; Pan, D.; Li, Z.; Huang, Z.; Zhang, P.; Zhu, H.; Lei, L.; Wang, W. Anti-warburg effect of rosmarinic acid via miR-155 in gastric cancer cells. Drugs Des. Develop. Ther. 2015, 9, 2695–2703. [Google Scholar]
- Zunjar, V.; Mammen, D.; Trivedi, B.M. Antioxidant activities and phenolics profiling of different parts of Carica papaya by LC/MS-MS. Nat. Prod. Res. 2015, 29, 2097–2099. [Google Scholar] [CrossRef] [PubMed]
- Beara, I.; Živković, J.; Lesjak, M.; Ristić, J.; Šavikin, K.; Maksimović, Z.; Janković, T. Phenolic profile and anti-inflammatory activity of three Veronica species. Ind. Crops Prod. 2015, 63, 276–280. [Google Scholar] [CrossRef]
- Gülçin, İ.; Elmastaş, M.; Aboul-Enein, H.Y. Antioxidant activity of clove oil-A powerful antioxidant source. Arab. J. Chem. 2012, 5, 489–499. [Google Scholar] [CrossRef]
- Gülçin, I.; Beydemir, S. Phenolic compounds as antioxidants: carbonic anhydrase isoenzymes inhibitors. Mini Rev. Med. Chem. 2013, 13, 408–430. [Google Scholar] [PubMed]
- Göçer, H.; Akıncıoğlu, A.; Öztaşkın, N.; Göksu, S.; Gülçin, İ. Synthesis, antioxidant, and antiacetylcholinesterase activities of sulfonamide derivatives of dopamine-related compounds. Arch. Pharm. 2013, 346, 783–792. [Google Scholar] [CrossRef] [PubMed]
- López-Jaén, A.B.; Codoñer-Franch, P.; Valls-Bellés, V. Free radicals: A review. J. Pediatr. Biochem. 2013, 3, 115–121. [Google Scholar]
- Bochi, G.V.; Torbitz, V.D.; Cargnin, L.P.; de Carvalho, J.A.; Gomes, P.; Moresco, R.N. An alternative pathway through the fenton reaction for the formation of advanced oxidation protein products, a new class of inflammatory mediators. Inflammation 2014, 37, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Gülçin, I.; Oktay, M.; Köksal, E.; Serbetci, H.; Beydemir, S. Antioxidant and radical scavenging activities of uric acid. Asian J. Chem. 2008, 20, 2079–2090. [Google Scholar]
- Adiguzel, A.; Ozer, H.; Sokmen, M.; Gulluce, M.; Sokmen, A.; Kilic, H.; Sahin, F.; Baris, O. Antimicrobial and antioxidant activity of the essential oil and methanol extract of Nepeta cataria. Pol. J. Microbiol. 2009, 58, 69–76. [Google Scholar]
- Cigremis, Y.; Ulukanli, Z.; Ilcim, A.; Akgoz, M. In vitro antioxidant and antimicrobial assays of acetone extracts from Nepeta meyeri Bentham. Eur. Rev. Med. Pharmacol. Sci. 2010, 14, 661–668. [Google Scholar] [PubMed]
- Dudonné, S.; Vitrac, X.; Coutiere, P.; Woillez, M.; Mérillon, J.M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Agulló, A.; Pereira, E.; Freire, M.S.; Valentão, P.; Andrade, P.B.; González-Álvareza, J.; Pereira, J.A. Influence of solvent on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) green husk extracts. Ind. Crops Prod. 2013, 42, 126–132. [Google Scholar] [CrossRef]
- Moon, S.; Sridhar, D.; Pate, M.A.; Jha, A.K.; Clinton, C.; Delaunay, S.; Edwin, V.; Fallah, M.; Fidler, D.P.; Garrett, L.; et al. Will Ebola change the game? Ten essential reforms before the next pandemic. The Report of the Harvard-LSHTM Independent Panel on the Global Response to Ebola. Lancet 2015, 386, 2204–2221. [Google Scholar] [CrossRef]
- Ahmad, I.; Beg, A.Z. Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J. Ethnopharmacol. 2001, 74, 113–123. [Google Scholar] [CrossRef]
- Fratianni, F.; Ombra, M.N.; Cozzolino, A.; Riccardi, R.; Spigno, P.; Tremonte, P.; Coppola, R.; Nazzaro, F. Phenolic constituents, antioxidant, antimicrobial and anti-proliferative activities of different endemic Italian varieties of garlic (Allium sativum L.). J. Funct. Foods 2016, 21, 240–248. [Google Scholar] [CrossRef]
- Estevinho, L.; Pereira, A.P.; Moreira, L.; Dias, L.G.; Pereira, E. Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food Chem. Toxicol. 2008, 46, 3774–3779. [Google Scholar] [CrossRef] [PubMed]
No | Analytes | RT a | Parent ion (m/z) b | Ionization Mode | r2 c | RSD (%) d | Linearity Range (µg/L) | LOD/LOQ (µg/L) e | Recovery (%) | U f | Nepeta trachonitica |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Quinic acid | 3.32 | 190.95 | Negative | 0.9927 | 0.0388 | 250–10,000 | 22.3/74.5 | 103.3 | 4.8 | 109.2 ± 5.2 |
2 | Malic acid | 3.54 | 133.05 | Negative | 0.9975 | 0.1214 | 250–10,000 | 19.2/64.1 | 101.4 | 5.3 | ND |
3 | trans-Aconitic acid | 4.13 | 172.85 | Negative | 0.9933 | 0.3908 | 250–10,000 | 15.6/51.9 | 102.8 | 4.9 | ND |
4 | Gallic acid | 4.29 | 169.05 | Negative | 0.9901 | 0.4734 | 25–1000 | 4.8/15.9 | 102.3 | 5.1 | ND |
5 | Chlorogenic acid | 5.43 | 353 | Negative | 0.9932 | 0.1882 | 250–10,000 | 7.3/24.3 | 99.7 | 4.9 | 160.15 ± 7.84 |
6 | Protocatechuic acid | 5.63 | 152.95 | Negative | 0.9991 | 0.5958 | 100–4000 | 25.8/85.9 | 100.2 | 5.1 | ND |
7 | Tannic acid | 6.46 | 182.95 | Negative | 0.9955 | 0.9075 | 100–4000 | 10.2/34.2 | 97.8 | 5.1 | ND |
8 | trans- Caffeic acid | 7.37 | 178.95 | Negative | 0.9942 | 1.0080 | 25–1000 | 4.4/14.7 | 98.6 | 5.2 | 28.97 ± 1.5 |
9 | Vanillin | 8.77 | 151.05 | Negative | 0.9995 | 0.4094 | 250–10,000 | 10.1/33.7 | 99.2 | 4.9 | 62.78 ± 3.08 |
10 | p-Coumaric acid | 9.53 | 162.95 | Negative | 0.9909 | 1.1358 | 100–4000 | 15.2/50.8 | 98.4 | 5.1 | 49.23 ± 2.51 |
11 | Rosmarinic acid | 9.57 | 358.9 | Negative | 0.9992 | 0.5220 | 250–10,000 | 10.4/34.8 | 101.7 | 4.9 | 250.06 ± 12.25 |
12 | Rutin | 10.18 | 609.1 | Negative | 0.9971 | 0.8146 | 250–10,000 | 17.0/56.6 | 102.2 | 5.0 | ND |
13 | Hesperidin | 9.69 | 611.1 | Positive | 0.9973 | 0.1363 | 250–10,000 | 21.6/71.9 | 100.2 | 4.9 | ND |
14 | Hyperoside | 10.43 | 463.1 | Negative | 0.9549 | 0.2135 | 100–4000 | 12.4/41.4 | 98.5 | 4.9 | ND |
15 | 4-OH Benzoic acid | 11.72 | 136.95 | Negative | 0.9925 | 1.4013 | 25–1000 | 3.0/10.0 | 106.2 | 5.2 | 4.4 ± 0.23 |
16 | Salicylic acid | 11.72 | 136.95 | Negative | 0.9904 | 0.6619 | 25–1000 | 4.0/13.3 | 106.2 | 5.0 | 4.39 ± 0.22 |
17 | Myricetin | 11.94 | 317 | Negative | 0.9991 | 2.8247 | 100–4000 | 9.9/32.9 | 106.0 | 5.9 | ND |
18 | Fisetin | 12.61 | 284.95 | Negative | 0.9988 | 2.4262 | 100–4000 | 10.7/35.6 | 96.9 | 5.5 | ND |
19 | Coumarin | 12.52 | 146.95 | Positive | 0.9924 | 0.4203 | 100–4000 | 9.1/30.4 | 104.4 | 4.9 | ND |
20 | Quercetin | 14.48 | 300.9 | Negative | 0.9995 | 4.3149 | 25–1000 | 2.0/6.8 | 98.9 | 7.1 | ND |
21 | Naringenin | 14.66 | 270.95 | Negative | 0.9956 | 2.0200 | 25–1000 | 2.6/8.8 | 97.0 | 5.5 | ND |
22 | Hesperetin | 15.29 | 300.95 | Negative | 0.9961 | 1.0164 | 25–1000 | 3.3/11.0 | 102.4 | 5.3 | ND |
23 | Luteolin | 15.43 | 284.95 | Negative | 0.9992 | 3.9487 | 25–1000 | 5.8/19.4 | 105.4 | 6.9 | ND |
24 | Kaempferol | 15.43 | 284.95 | Negative | 0.9917 | 0.5885 | 25–1000 | 2.0/6.6 | 99.1 | 5.2 | 18.01 ± 0.92 |
25 | Apigenin | 17.31 | 268.95 | Negative | 0.9954 | 0.6782 | 25–1000 | 0.1/0.3 | 98.9 | 5.3 | 8.13 ± 0.43 |
26 | Rhamnetin | 18.94 | 314.95 | Negative | 0.9994 | 2.5678 | 25–1000 | 0.2/0.7 | 100.8 | 6.1 | ND |
27 | Chrysin | 21.18 | 253 | Negative | 0.9965 | 1.5530 | 25–1000 | 0.05/0.17 | 102.2 | 5.3 | 0.14 |
Microorganisms | Inhibition Zone Diameter (mm) | ||||||||
---|---|---|---|---|---|---|---|---|---|
N. trachonitica (20 mg/mL Ethanol) | Antibiotics | ||||||||
30 µL | 60 µL | 90 µL | Erythromycin (15 µg) | Ampicillin/ Sulbactam (20 µg) | Amikacin (30 µg) | Rifampicin (5 µg) | Fluconazole (25 µg) | ||
Gram positive | B. subtilis | 9 ± 0.00 | 10 ± 0.81 | 12 ± 1.24 | 20 ± 1.24 | 14 ± 0.47 | 11 ± 1.24 | 21 ± 1.24 | - |
S. aureus | - | - | - | 21 ± 0.00 | 10 ± 0.81 | 9 ± 0.00 | 18 ± 1.69 | - | |
B. megaterium | 10 ± 0.00 | 10 ± 0.00 | 11 ± 0.00 | 25 ± 1.69 | - | 10 ± 0.81 | 16 ± 1.24 | - | |
Gram negative | E. aerogenes | 9 ± 0.00 | 10 ± 0.47 | 11 ± 0.81 | 27 ± 1.24 | 10 ± 0.47 | 9 ± 0.00 | 16 ± 0.47 | - |
E. coli | - | 10 ± 0.47 | 12 ± 1.24 | 19 ± 0.00 | 13 ± 1.24 | 13 ± 0.81 | 18 ± 1.24 | - | |
P. aeroginosa | - | - | 9 ± 0.00 | 19 ± 1.69 | - | 14 ± 0.00 | 8 ± 0.00 | - | |
K. pneumoniae | - | - | - | 19 ± 0.47 | 16 ± 1.69 | 10 ± 0.47 | 19 ± 1.69 | - | |
Fungus | Y. lipolytica | - | - | - | - | - | - | - | 21 ± 0.00 |
C. albicans | 11 ± 0.81 | 13 ± 1.24 | 13 ± 0.00 | - | - | - | - | 23 ± 0.47 | |
S. cereviciae | 12 ± 0.47 | 15 ± 0.47 | 19 ± 1.69 | - | - | - | - | - |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Köksal, E.; Tohma, H.; Kılıç, Ö.; Alan, Y.; Aras, A.; Gülçin, İ.; Bursal, E. Assessment of Antimicrobial and Antioxidant Activities of Nepeta trachonitica: Analysis of Its Phenolic Compounds Using HPLC-MS/MS. Sci. Pharm. 2017, 85, 24. https://doi.org/10.3390/scipharm85020024
Köksal E, Tohma H, Kılıç Ö, Alan Y, Aras A, Gülçin İ, Bursal E. Assessment of Antimicrobial and Antioxidant Activities of Nepeta trachonitica: Analysis of Its Phenolic Compounds Using HPLC-MS/MS. Scientia Pharmaceutica. 2017; 85(2):24. https://doi.org/10.3390/scipharm85020024
Chicago/Turabian StyleKöksal, Ekrem, Hatice Tohma, Ömer Kılıç, Yusuf Alan, Abdülmelik Aras, İlhami Gülçin, and Ercan Bursal. 2017. "Assessment of Antimicrobial and Antioxidant Activities of Nepeta trachonitica: Analysis of Its Phenolic Compounds Using HPLC-MS/MS" Scientia Pharmaceutica 85, no. 2: 24. https://doi.org/10.3390/scipharm85020024
APA StyleKöksal, E., Tohma, H., Kılıç, Ö., Alan, Y., Aras, A., Gülçin, İ., & Bursal, E. (2017). Assessment of Antimicrobial and Antioxidant Activities of Nepeta trachonitica: Analysis of Its Phenolic Compounds Using HPLC-MS/MS. Scientia Pharmaceutica, 85(2), 24. https://doi.org/10.3390/scipharm85020024