Identification of Potential Trypanosoma cruzi Trans-Sialidase Inhibitors by Computational Drug Repositioning Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Molecular Modeling and Building of the 3D Structure of TcTS from T. cruzi
2.2. Molecular Docking-Based Virtual Screening
2.3. Prediction of In Silico Activity and Toxicity of Selected Compounds by Virtual Screening against T. cruzi TcTS
3. Results
3.1. Structural Analysis and Identification of Motifs of Two TcTS Proteins from T. cruzi
3.2. In Silico Identification of Potential Inhibitors against TcTS of T. cruzi
3.3. In Silico Prediction of Biological Activity and Toxicity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chagas Disease. Available online: https://www.paho.org/es/temas/enfermedad-chagas (accessed on 3 March 2024).
- Ochoa, R.; Rocha-Roa, C.; Marín-Villa, M.; Robledo, S.M.; Varela-M, R.E. Search of Allosteric Inhibitors and Associated Proteins of an AKT-like Kinase from Trypanosoma cruzi. Int. J. Mol. Sci. 2018, 19, 3951. [Google Scholar] [CrossRef] [PubMed]
- Morillo, C.A.; Marin-Neto, J.A.; Avezum, A.; Sosa-Estani, S.; Rassi, A., Jr.; Rosas, F.; Villena, E.; Quiroz, R.; Bonilla, R.; Britto, C.; et al. Randomized Trial of Benznidazole for Chronic Chagas’ Cardiomyopathy. N. Engl. J. Med. 2015, 37, e124–e125. [Google Scholar] [CrossRef] [PubMed]
- Urbina, J.A.; Docampo, R. Specific Chemotherapy of Chagas Disease: Controversies and Advances. Trends Parasitol. 2003, 19, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Molina, I.; Salvador, F.; Sánchez-Montalvá, A.; Treviño, B.; Serre, N.; Avilés, A.S.; Almirante, B. Toxic Profile of Benznidazole in Patients with Chronic Chagas Disease: Risk Factors and Comparison of the Product from Two Different Manufacturers. Antimicrob. Agents Chemother. 2015, 59, 6125–6131. [Google Scholar] [CrossRef]
- Khare, S.; Liu, X.; Stinson, M.; Rivera, I.; Groessl, T.; Tuntland, T.; Yeh, V.; Wen, B.; Molteni, V.; Glynne, R.; et al. Antitrypanosomal Treatment with Benznidazole Is Superior to Posaconazole Regimens in Mouse Models of Chagas Disease. Antimicrob. Agents Chemother. 2015, 59, 6385–6394. [Google Scholar] [CrossRef]
- Alonso-Padilla, J.; Cortés-Serra, N.; Pinazo, M.J.; Bottazzi, M.E.; Abril, M.; Barreira, F.; Sosa-Estani, S.; Hotez, P.J.; Gascón, J. Strategies to Enhance Access to Diagnosis and Treatment for Chagas Disease Patients in Latin America. Expert Rev. Anti-Infect. Ther. 2019, 17, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Schenkman, S.; Ferguson, M.A.J.; Heise, N.; Cardoso de Almeida, M.L.; Mortara, R.A.; Yoshida, N. Mucin-like Glycoproteins Linked to the Membrane by Glycosylphosphatidylinositol Anchor Are the Major Acceptors of Sialic Acid in a Reaction Catalyzed by Trans-Sialidase in Metacyclic Forms of Trypanosoma cruzi. Mol. Biochem. Parasitol. 1993, 59, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Nardy, A.F.F.R.; Freire-de-Lima, C.G.; Pérez, A.R.; Morrot, A. Role of Trypanosoma cruzi Trans-Sialidase on the Escape from Host Immune Surveillance. Front. Microbiol. 2016, 7, 348. [Google Scholar] [CrossRef] [PubMed]
- Buscaglia, C.A.; Alfonso, J.; Campetella, O.; Frasch, A.C.C. Tandem Amino Acid Repeats from Trypanosoma cruzi Shed Antigens Increase the Half-Life of Proteins in Blood. Blood 1999, 93, 2025–2032. [Google Scholar] [CrossRef]
- Atwood, J.A.; Weatherly, D.B.; Minning, T.A.; Bundy, B.; Cavola, C.; Opperdoes, F.R.; Orlando, R.; Tarleton, R.L. The Trypanosoma cruzi Proteome. Science 2005, 309, 473–476. [Google Scholar] [CrossRef] [PubMed]
- Freitas, L.M.; dos Santos, S.L.; Rodrigues-Luiz, G.F.; Mendes, T.A.O.; Rodrigues, T.S.; Gazzinelli, R.T.; Teixeira, S.M.R.; Fujiwara, R.T.; Bartholomeu, D.C. Genomic Analyses, Gene Expression and Antigenic Profile of the Trans-Sialidase Superfamily of Trypanosoma cruzi Reveal an Undetected Level of Complexity. PLoS ONE 2011, 6, e25914. [Google Scholar] [CrossRef] [PubMed]
- Buschiazzo, A.; Amaya, M.F.; Cremona, M.L.; Frasch, A.C.; Alzari, P.M. The Crystal Structure and Mode of Action of Trans-Sialidase, a Key Enzyme in Trypanosoma cruzi Pathogenesis. Mol. Cell 2002, 10, 757–768. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.A.R.; de Vasconcelos, V.d.C.S.; Colli, W.; Alves MJ, M.; Giordano, R.J. Trypanosoma cruzi Binds to Cytokeratin through Conserved Peptide Motifs Found in the Laminin-G-Like Domain of the Gp85/Trans-Sialidase Proteins. PLoS Negl. Trop. Dis. 2015, 9, e0004099. [Google Scholar] [CrossRef] [PubMed]
- Amaya, M.F.; Buschiazzo, A.; Nguyen, T.; Alzari, P.M. The High Resolution Structures of Free and Inhibitor-Bound Trypanosoma Rangeli Sialidase and Its Comparison with T. Cruzi Trans-Sialidase. J. Mol. Biol. 2003, 325, 773–784. [Google Scholar] [CrossRef] [PubMed]
- Arioka, S.; Sakagami, M.; Uematsu, R.; Yamaguchi, H.; Togame, H.; Takemoto, H.; Hinou, H.; Nishimura, S.I. Potent Inhibitor Scaffold against Trypanosoma cruzi Trans-Sialidase. Bioorg. Med. Chem. 2010, 18, 1633–1640. [Google Scholar] [CrossRef] [PubMed]
- Gomes, D.; Silvestre, S.; Duarte, A.P.; Venuti, A.; Soares, C.P.; Passarinha, L.; Sousa, Â. In Silico Approaches: A Way to Unveil Novel Therapeutic Drugs for Cervical Cancer Management. Pharmaceuticals 2021, 14, 741. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A Webserver for the Prediction of Toxicity of Chemicals. Nucleic Acids Res. 2018, 46, W257–W263. [Google Scholar] [CrossRef] [PubMed]
- Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the Biological Activity Spectra of Organic Compounds Using the Pass Online Web Resource. Chem. Heterocycl. Compd. 2014, 50, 444–457. [Google Scholar] [CrossRef]
- Cremona, M.L.; Sánchez, D.O.; Frasch, A.C.C.; Campetella, O. A Single Tyrosine Differentiates Active and Inactive Trypanosoma cruzi Trans-Sialidases. Gene 1995, 160, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Marroquin-Quelopana, M.; Oyama, S.; Pertinhez, T.A.; Spisni, A.; Juliano, M.A.; Juliano, L.; Colli, W.; Alves, M.J.M. Modeling the Trypanosoma cruzi Tc85–11 Protein and Mapping the Laminin-Binding Site. Biochem. Biophys. Res. Commun. 2004, 325, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Planer, J.D.; Hulverson, M.A.; Arif, J.A.; Ranade, R.M.; Don, R.; Buckner, F.S. Synergy Testing of FDA-Approved Drugs Identifies Potent Drug Combinations against Trypanosoma cruzi. PLoS Negl. Trop. Dis. 2014, 8, e2977. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, S.; Malik, Y.S.; Tomar, S. Identification of SARS-CoV-2 Cell Entry Inhibitors by Drug Repurposing Using in Silico Structure-Based Virtual Screening Approach. Front. Immunol. 2020, 11, 1664. [Google Scholar] [CrossRef]
- Ghazwani, M.Y.; Bakheit, A.H.; Hakami, A.R.; Alkahtani, H.M.; Almehizia, A.A.; Barakat, A.; Novikov, A.S. Virtual Screening and Molecular Docking Studies for Discovery of Potential RNA-Dependent RNA Polymerase Inhibitors. Crystals 2021, 11, 471. [Google Scholar] [CrossRef]
- Talevi, A.; Carrillo, C.; Comini, M. The Thiol-Polyamine Metabolism of Trypanosoma cruzi: Molecular Targets and Drug Repurposing Strategies. Curr. Med. Chem. 2018, 26, 6614–6635. [Google Scholar] [CrossRef]
- Santana, K.; do Nascimento, L.D.; Lima e Lima, A.; Damasceno, V.; Nahum, C.; Braga, R.C.; Lameira, J. Applications of Virtual Screening in Bioprospecting: Facts, Shifts, and Perspectives to Explore the Chemo-Structural Diversity of Natural Products. Front. Chem. 2021, 9, 662–688. [Google Scholar] [CrossRef] [PubMed]
- Ul Qamar, M.T.; Ashfaq, U.A.; Tusleem, K.; Mumtaz, A.; Tariq, Q.; Goheer, A.; Ahmed, B. In-Silico Identification and Evaluation of Plant Flavonoids as Dengue NS2B/NS3 Protease Inhibitors Using Molecular Docking and Simulation Approach. Pak. J. Pharm. Sci. 2017, 30, 2119–2137. [Google Scholar]
- Juárez-saldivar, A.; Barbosa-cabrera, E.; Lara-ramírez, E.E.; Paz-gonzález, A.D.; Martínez-vázquez, A.V.; Bocanegra-garcía, V.; Palos, I.; Campillo, N.E.; Rivera, G. Virtual Screening of FDA-Approved Drugs against Triose Phosphate Isomerase from Entamoeba Histolytica and Giardia Lamblia Identifies Inhibitors of Their Trophozoite Growth Phase. Int. J. Mol. Sci. 2021, 22, 5943. [Google Scholar] [CrossRef]
- Kashif, M.; Chacón-Vargas, K.F.; López-Cedillo, J.C.; Nogueda-Torres, B.; Paz-González, A.D.; Ramírez-Moreno, E.; Agusti, R.; Uhrig, M.L.; Reyes-Arellano, A.; Peralta-Cruz, J.; et al. Synthesis, Molecular Docking and Biological Evaluation of Novel Phthaloyl Derivatives of 3-Amino-3-Aryl Propionic Acids as Inhibitors of Trypanosoma cruzi Trans-Sialidase. Eur. J. Med. Chem. 2018, 156, 252–268. [Google Scholar] [CrossRef]
- Fadili, M.E.l.; Er-Rajy, M.; Kara, M.; Assouguem, A.; Belhassan, A.; Alotaibi, A.; Mrabti, N.N.; Fidan, H.; Ullah, R.; Ercisli, S.; et al. QSAR, ADMET In Silico Pharmacokinetics, Molecular Docking and Molecular Dynamics Studies of Novel Bicyclo (Aryl Methyl) Benzamides as Potent GlyT1 Inhibitors for the Treatment of Schizophrenia. Pharmaceuticals 2022, 15, 670. [Google Scholar] [CrossRef]
- de Almeida, V.M.; Santos-Filho, O.A. Identification of Potential Allosteric Site Binders of Indoleamine 2,3-Dioxygenase 1 from Plants: A Virtual and Molecular Dynamics Investigation. Pharmaceuticals 2022, 15, 1099. [Google Scholar] [CrossRef] [PubMed]
- Avato, P.; Argentieri, M.P. Brassicaceae: A Rich Source of Health Improving Phytochemicals. Phytochem. Rev. 2015, 14, 1019–1033. [Google Scholar] [CrossRef]
- Jeffery, E.H.; Araya, M. Physiological Effects of Broccoli Consumption. Phytochem. Rev. 2009, 8, 283–298. [Google Scholar] [CrossRef]
- Vanduchova, A.; Anzenbacher, P.; Anzenbacherova, E. Isothiocyanate from Broccoli, Sulforaphane, and Its Properties. J. Med. Food 2019, 22, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Szczesny-Malysiak, E.; Stojak, M.; Campagna, R.; Grosicki, M.; Jamrozik, M.; Kaczara, P.; Chlopicki, S. Bardoxolone Methyl Displays Detrimental Effects on Endothelial Bioenergetics, Suppresses Endothelial ET-1 Release, and Increases Endothelial Permeability in Human Microvascular Endothelium. Oxid. Med. Cell. Longev. 2020, 2020, 4678252. [Google Scholar] [CrossRef] [PubMed]
- Kelloff, G.J.; Crowell, J.A.; Steele, V.E.; Lubet, R.A.; Malone, W.A.; Boone, C.W.; Kopelovich, L.; Hawk, E.T.; Lieberman, R.; Lawrence, J.A.; et al. Progress in Cancer Chemoprevention: Development of Diet-Derived Chemopreventive Agents. J. Nutr. 2000, 130, S467–S471. [Google Scholar] [CrossRef] [PubMed]
- Janczewski, L. Sulforaphane and Its Bifunctional Analogs: Synthesis and Biological Activity. Molecules 2022, 27, 1750. [Google Scholar] [CrossRef] [PubMed]
- Paiva, C.N.; Feijó, D.F.; Dutra, F.F.; Carneiro, V.C.; Freitas, G.B.; Alves, L.S.; Mesquita, J.; Fortes, G.B.; Figueiredo, R.T.; Souza, H.S.P.; et al. Oxidative Stress Fuels Trypanosoma cruzi Infection in Mice. J. Clin. Investig. 2012, 122, 2531–2542. [Google Scholar] [CrossRef]
- Florentino, P.T.V.; Mendes, D.; Vitorino, F.N.L.; Martins, D.J.; Cunha, J.P.C.; Mortara, R.A.; Menck, C.F.M. DNA Damage and Oxidative Stress in Human Cells Infected by Trypanosoma cruzi. PLoS Pathog. 2021, 17, e1009502. [Google Scholar] [CrossRef] [PubMed]
- Manso Alves, M.J.; Abuin, G.; Kuwajima, V.Y.; Colli, W. Partial Inhibition of Trypomastigote Entry into Cultured Mammalian Cells by Monoclonal Antibodies against a Surface Glycoprotein of Trypanosoma cruzi. Mol. Biochem. Parasitol. 1986, 21, 75–82. [Google Scholar] [CrossRef]
- Kashif, M.; Moreno-Herrera, A.; Lara-Ramirez, E.E.; Ramírez-Moreno, E.; Bocanegra-García, V.; Ashfaq, M.; Rivera, G. Recent Developments in Trans-Sialidase Inhibitors of Trypanosoma cruzi. J. Drug Target. 2017, 25, 485–498. [Google Scholar] [CrossRef] [PubMed]
- Ferrero-Garcia, M.A.; Sanchez, D.O.; Frasch, A.C.C.; Parodi, A.J. The Effect of Pyridoxal 5′-Phosphate and Related Compounds on Trypanosoma cruzi Trans-Sialidase. An. Asoc. Quim. Argent. 1993, 81, 127–132. [Google Scholar]
- Watts, A.G.; Damager, I.; Amaya, M.L.; Buschiazzo, A.; Alzari, P.; Frasch, A.C.; Withers, S.G. Trypanosoma cruzi Trans-Sialidase Operates through a Covalent Sialyl-Enzyme Intermediate: Tyrosine Is the Catalytic Nucleophile. J. Am. Chem. Soc. 2003, 125, 7532–7533. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.A.; Kartha, K.P.R.; Turnbull, W.B.; Scheuerl, S.L.; Naismith, J.H.; Schenkman, S.; Field, R.A. Hydrolase and Sialyltransferase Activities of Trypanosoma cruzi Trans-Sialidase towards NeuAc-α-2,3-Gal-β-O-PNP. Bioorg. Med. Chem. Lett. 2001, 11, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Neres, J.; Bonnet, P.; Edwards, P.N.; Kotian, P.L.; Buschiazzo, A.; Alzari, P.M.; Bryce, R.A.; Douglas, K.T. Benzoic Acid and Pyridine Derivatives as Inhibitors of Trypanosoma cruzi Trans-Sialidase. Bioorg. Med. Chem. 2007, 15, 2106–2119. [Google Scholar] [CrossRef] [PubMed]
- Lara-Ramirez, E.E.; López-Cedillo, J.C.; Nogueda-Torres, B.; Kashif, M.; Garcia-Perez, C.; Bocanegra-Garcia, V.; Agusti, R.; Uhrig, M.L.; Rivera, G. An in Vitro and in Vivo Evaluation of New Potential Trans-Sialidase Inhibitors of Trypanosoma cruzi Predicted by a Computational Drug Repositioning Method. Eur. J. Med. Chem. 2017, 132, 249–261. [Google Scholar] [CrossRef]
- Manu, P.; Mensah, J.O.; Gasu, E.N.; Borquaye, L.S. The Amaryllidaceae Alkaloid, Montanine, Is a Potential Inhibitor of the Trypanosoma cruzi Trans-Sialidase Enzyme. J. Biomol. Struct. Dyn. 2023, 300, 1–17. [Google Scholar] [CrossRef]
- Burle-Caldas, G.A.; Dos Santos, N.S.A.; de Castro, J.T.; Mugge, F.L.B.; Grazielle-Silva, V.; Oliveira, A.E.R.; Pereira, M.C.A.; Reis-Cunha, J.L.; Dos Santos, A.C.; Gomes, D.A.; et al. Disruption of Active Trans-Sialidase Genes Impairs Egress from Mammalian Host Cells and Generates Highly Attenuated Trypanosoma cruzi Parasites. mBio 2022, 13, e0347821. [Google Scholar] [CrossRef]
TcTS-Active | TcTS-Inactive | ||
---|---|---|---|
Compounds | Affinity (Kcal/mol) | Compounds | Affinity (Kcal/mol) |
N-[(4-methyl-6-oxo-1h-pyrimidin-2-yl)methyl]benzamide | −9.5 | N-[(4-methyl-6-oxo-1h-pyrimidin-2-yl)methyl]benzamide | −9.3 |
Elbasvir | −9.5 | 6-hydroxybenzanthrone | −9.2 |
6-hydroxybenzanthrone | −9.4 | N-[(4-fluorophenyl)methyl]tetrazolo[1,5-b]pyridazin-6-amine | −9.2 |
N-[(4-fluorophenyl)methyl]tetrazolo[1,5-b]pyridazin-6-amine | −9.3 | Cobicistat | −9.1 |
Ivermectin | −9.3 | Lopinavir | −9.0 |
Cobicistat | −9.2 | 3-(benzylcarbamoylamino)-3-oxopropanoic acid | −9.0 |
Ledipasvir | −9.2 | Ledipasvir | −9.0 |
3-(benzylcarbamoylamino)-3-oxopropanoic acid | −9.1 | Daclatasvir | −8.9 |
Daclatasvir | −8.8 | Elbasvir | −8.8 |
Lopinavir | −8.7 | Piperaquine | −8.8 |
Digitoxin | −8.6 | Ciclesonide | −8.4 |
Ciclesonide | −8.5 | Thiethylperazine | −8.3 |
Trametinib | −8.4 | Remdesivir | −8.2 |
Remdesivir | −8.2 | Imatinib | −8.2 |
Ivacaftor | −8.2 | Ritonavir | −8.1 |
Imatinib | −8.2 | Trametinib | −8.0 |
Loperamide | −8.1 | Abemaciclib | −8.0 |
Piperaquine | −8.1 | Darunavir | −8.0 |
Fluphenazine | −8.0 | Sildenafil | −8.0 |
Abemaciclib | −8.0 | Sofosbuvir | −7.9 |
Dasatinib | −7.9 | Gilteritinib | −7.9 |
Promethazine | −7.9 | Salinomycin | −7.8 |
Sildenafi | −7.8 | Hydroxyprogesterone | −7.8 |
Diosmin | −7.8 | Umifenovir | −7.8 |
Triflupromazine | −7.7 | Hexachlorophene | −7.8 |
Niclosamide | −7.5 | Digitoxin | −7.8 |
Umifenovir | −7.4 | Ruxolitinib | −7.7 |
Bazedoxifene | −7.3 | Tranilast | −7.7 |
Proscillaridin | −7.3 | Ivacaftor | −7.7 |
Thiethylperazine | −7.2 | Tilorone | −7.6 |
Ibuprofen | −7.1 | Niclosamide | −7.5 |
Fingolimod | −7.0 | Baloxavir | −7.5 |
Ruxolitinib | −6.9 | Azithromycin | −7.5 |
Hydroxychloroquine | −6.9 | Chloroquine | −7.5 |
Leflunomide | −6.8 | Methylprednisolone | −7.5 |
Nitazoxanide | −6.7 | Proscillaridin | −7.4 |
Chloroquine | −6.7 | Dexamethasone | −7.4 |
Gemcitabine | −6.6 | Ivermectin | −7.4 |
Dexamethasone | −6.6 | Loperamide | −7.3 |
Thalidomide | −6.6 | Bazedoxifene | −7.2 |
Oseltamivir | −6.5 | Nitazoxanide | −7.1 |
Penciclovir | −6.5 | Ibuprofen | −7.0 |
Methylprednisolone | −6.5 | Dasatinib | −6.9 |
Nafamostat | −6.3 | Oseltamivir | −6.9 |
Triazavirin | −6.2 | Penciclovir | −6.7 |
Acetylcysteine | −6.1 | Thalidomide | −6.6 |
Ascorbic acid | −6.1 | Sulforaphane | −6.5 |
Sulforaphane | −6.1 | Favipiravir | −6.1 |
Ribavirin | −6.1 | Ascorbic acid | −6.1 |
DANA | −6.1 | DANA | −6.5 |
ZINC ID | Compounds | Molecular Formula | Molecular Mass (g/Mole) | H-Bond Donors | H-Bond Acceptors | 2D Structure |
---|---|---|---|---|---|---|
ZINC20031597 | N-[(4-methyl-6-oxo-1H-pyrimidin-2-yl)methyl]benzamide | C13H13N3O2 | 243.26 | 2 | 3 | |
ZINC000022636338 | 6-Hydroxybenzanthrone | C17H10O2 | 246.26 | 1 | 2 | |
ZINC000008724771 | N-[(4-fluorophenyl)methyl]tetrazolo[1,5-b]pyridazin-6-amine | C11H9FN6 | 244.23 | 1 | 6 | |
ZINC000004375877 | 3-(benzylcarbamoylamino)-3-oxopropanoic acid | C11H12N2O4 | 236.22 | 2 | 4 | |
ZINC3875035 | Sulforaphane | C6H11NOS2 | 177.3 | 0 | 4 | |
ZINC4096466 | DANA | C11H17NO8 | 291.2 | 5 | 8 |
Compounds | Predicted Activity | Score | 2D Structure |
---|---|---|---|
N-[(4-methyl-6-oxo-1H-pyrimidin-2-yl)methyl]benzamide | Leukopoiesis stimulant | 0.67 | |
Gastrin inhibitor | 0.64 | ||
Kidney function stimulant | 0.63 | ||
6-Hydroxybenzanthrone | CYP2C12 substrate | 0.95 | |
Histidine kinase inhibitor | 0.89 | ||
NAD(p)+arginine ADP-ribosyltransferase inhibitor | 0.89 | ||
Alkane 1-monooxygenase inhibitor | 0.87 | ||
Cytochrome P450 stimulant | 0.72 | ||
N-[(4-fluorophenyl)methyl]tetrazolo[1,5-b]pyridazin-6-amine | NAI | NAI | |
3-(benzylcarbamoylamino)-3-oxopropanoic acid | Mucomembranous protector | 0.89 | |
Polyporopepsin inhibitor | 0.87 | ||
Phobic disorders treatment | 0.84 | ||
Peptidyl-dipeptidase Dcp inhibitor | 0.82 | ||
Chymosin inhibitor | 0.82 | ||
Protein-glutamate methylesterase inhibitor | 0.73 | ||
Sulforaphane | Glutathione S-transferase substrate | 0.93 | |
Chemoprotective | 0.87 | ||
Apoptosis agonist | 0.87 | ||
CYP2E1 inhibitor | 0.70 |
Compounds | Hepatotoxicity | Carcinogenicity | Immunotoxicity | Acute Oral Toxicity (LD50: mg/kg−1) | Toxicity Class |
---|---|---|---|---|---|
N-[(4-methyl-6-oxo-1H-pyrimidin-2-yl)methyl]benzamide | Inactive | Inactive | Inactive | 200 | 3 |
6-Hydroxybenzanthrone | Inactive | Inactive | Active | 3570 | 5 |
N-[(4-fluorophenyl)methyl]tetrazolo[1,5-b]pyridazin-6-amine | Inactive | Inactive | Inactive | 500 | 4 |
3-(benzylcarbamoylamino)-3-oxopropanoic acid | Inactive | Inactive | Inactive | 800 | 4 |
Sulforaphane | Inactive | Inactive | Inactive | 1000 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uc-Chuc, M.A.; Cigarroa-Toledo, N.; Acosta-Viana, K.Y.; Chan-Pérez, J.I.; Pineda-Cortes, J.C.; Villanueva-Alonzo, H.d.J. Identification of Potential Trypanosoma cruzi Trans-Sialidase Inhibitors by Computational Drug Repositioning Approaches. Sci. Pharm. 2024, 92, 40. https://doi.org/10.3390/scipharm92030040
Uc-Chuc MA, Cigarroa-Toledo N, Acosta-Viana KY, Chan-Pérez JI, Pineda-Cortes JC, Villanueva-Alonzo HdJ. Identification of Potential Trypanosoma cruzi Trans-Sialidase Inhibitors by Computational Drug Repositioning Approaches. Scientia Pharmaceutica. 2024; 92(3):40. https://doi.org/10.3390/scipharm92030040
Chicago/Turabian StyleUc-Chuc, Miguel A., Nohemi Cigarroa-Toledo, Karla Y. Acosta-Viana, José I. Chan-Pérez, Juan C. Pineda-Cortes, and Hernán de J. Villanueva-Alonzo. 2024. "Identification of Potential Trypanosoma cruzi Trans-Sialidase Inhibitors by Computational Drug Repositioning Approaches" Scientia Pharmaceutica 92, no. 3: 40. https://doi.org/10.3390/scipharm92030040
APA StyleUc-Chuc, M. A., Cigarroa-Toledo, N., Acosta-Viana, K. Y., Chan-Pérez, J. I., Pineda-Cortes, J. C., & Villanueva-Alonzo, H. d. J. (2024). Identification of Potential Trypanosoma cruzi Trans-Sialidase Inhibitors by Computational Drug Repositioning Approaches. Scientia Pharmaceutica, 92(3), 40. https://doi.org/10.3390/scipharm92030040