Advances in the Production of PBCA Microparticles Using a Micromixer with HH-Geometry in a Microfluidic System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Microfluidic System
2.2.1. Geometry HH
2.2.2. Fabrication of the Microfluidic Device
2.2.3. Microfluidic System
2.3. Synthesis of Microparticles of PBCA
2.4. Characterization of the Microcapsules
2.4.1. Dynamic Light Scattering (DLS)
2.4.2. Particle Size Distribution
2.4.3. Scanning Electron Microscopy (SEM)
2.4.4. Fourier Transformation Infrared Spectroscopy (FTIR)
2.5. Statistical Analysis
3. Results and Discussion
3.1. Influence of Channel Number in Micromixer
3.2. Influence of Formulation Concentration Variation
3.3. Influence of Phase Proportion
3.4. FTIR
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Casanova, F.; Santos, L. Encapsulation of Cosmetic Active Ingredients for Topical Application—A Review. J. Microencapsul. 2016, 33, 1–17. [Google Scholar] [CrossRef]
- Kouassi, M.C.; Grisel, M.; Gore, E. Multifunctional Active Ingredient-Based Delivery Systems for Skincare Formulations: A Review. Colloids Surf. B Biointerfaces 2022, 217, 112676. [Google Scholar] [CrossRef]
- Parente, J.F.; Sousa, V.I.; Marques, J.F.; Forte, M.A.; Tavares, C.J. Biodegradable Polymers for Microencapsulation Systems. Adv. Polym. Technol. 2022, 2022, 4640379. [Google Scholar] [CrossRef]
- Zhang, F.; Fan, J.B.; Wang, S. Interfacial Polymerization: From Chemistry to Functional Materials. Angew. Chem. Int. Ed. 2020, 59, 21840–21856. [Google Scholar] [CrossRef]
- El-Damrawi, G.; Hassan, A.K.; Meikhail, M.S. Principles of Polymerization; Wiley: Hoboken, NJ, USA, 1996; Volume 37, ISBN 3175723993. [Google Scholar]
- El-hoshoudy, A.N.M.B. Emulsion Polymerization Mechanism. In Recent Research in Polymerization; InTech: Houston, TX, USA, 2018. [Google Scholar]
- Landfester, K.; Musyanovych, A.; Mailänder, V. From Polymeric Particles to Multifunctional Nanocapsules for Biomedical Applications Using the Miniemulsion Process. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 493–515. [Google Scholar] [CrossRef]
- Musyanovych, A.; Landfester, K. Polymer Micro- and Nanocapsules as Biological Carriers with Multifunctional Properties. Macromol. Biosci. 2014, 14, 458–477. [Google Scholar] [CrossRef]
- Soni, D.; Trivedi, M.; Ameta, R. Microwave-Assisted Organic Synthesis; Ameta, S.C., Punjabi, P.B., Ameta, R., Ameta, C., Eds.; Apple Academic Press: Burlington, ON, Canada, 2014; ISBN 9781482254242. [Google Scholar]
- Mills, N.; Jenkins, M.; Kukureka, S. Molecular Structures and Polymer Manufacture. In Plastics: Microstructure and Engineering Applications; Elsevier: Amsterdam, The Netherlands, 2020; pp. 13–31. [Google Scholar] [CrossRef]
- Margerison, D.; East, G.C. Ionic Polymerization; Elsevier Inc.: Amsterdam, The Netherlands, 1967; ISBN 9780124095472. [Google Scholar]
- Hansali, F.; Poisson, G.; Wu, M.; Bendedouch, D.; Marie, E. Miniemulsion Polymerizations of N-Butyl Cyanoacrylate via Two Routes: Towards a Control of Particle Degradation. Colloids Surf. B Biointerfaces 2011, 88, 332–338. [Google Scholar] [CrossRef]
- Bagad, M.; Khan, Z.A. Poly(n-Butylcyanoacrylate) Nanoparticles for Oral Delivery of Quercetin: Preparation, Characterization, and Pharmacokinetics and Biodistribution Studies in Wistar Rats. Int. J. Nanomed. 2015, 10, 3921–3935. [Google Scholar] [CrossRef]
- Elzayat, A.; Adam-Cervera, I.; Álvarez-Bermúdez, O.; Muñoz-Espí, R. Nanoemulsions for Synthesis of Biomedical Nanocarriers. Colloids Surf. B Biointerfaces 2021, 203, 111764. [Google Scholar] [CrossRef]
- Gao, S.; Xu, Y.; Asghar, S.; Chen, M.; Zou, L.; Eltayeb, S.; Huo, M.; Ping, Q.; Xiao, Y. Polybutylcyanoacrylate Nanocarriers as Promising Targeted Drug Delivery Systems. J. Drug Target. 2015, 23, 481–496. [Google Scholar] [CrossRef]
- Tomcin, S.; Baier, G.; Landfester, K.; Mailänder, V. Pharmacokinetics on a Microscale: Visualizing Cy5-Labeled Oligonucleotide Release from Poly(n-Butylcyanoacrylate) Nanocapsules in Cells. Int. J. Nanomed. 2014, 9, 5471–5489. [Google Scholar] [CrossRef]
- Duan, J.; Mansour, H.M.; Zhang, Y.; Deng, X.; Chen, Y.; Wang, J.; Pan, Y.; Zhao, J. Reversion of Multidrug Resistance by Co-Encapsulation of Doxorubicin and Curcumin in Chitosan/Poly(Butyl Cyanoacrylate) Nanoparticles. Int. J. Pharm. 2012, 426, 193–201. [Google Scholar] [CrossRef]
- Limouzin, C.; Caviggia, A.; Ganachaud, F.; Hémery, P. Anionic Polymerization of N-Butyl Cyanoacrylate in Emulsion and Miniemulsion. Macromolecules 2003, 36, 667–674. [Google Scholar] [CrossRef]
- Al Khouri Fallouh, N.; Roblot-Treupel, L.; Fessi, H.; Devissaguet, J.P.; Puisieux, F. Development of a New Process for the Manufacture of Polyisobutylcyanoacrylate Nanocapsules. Int. J. Pharm. 1986, 28, 125–132. [Google Scholar] [CrossRef]
- Weiss, C.K.; Ziener, U.; Landfester, K. A Route to Nonfunctionalized and Functionalized Poly (n-Butylcyanoacrylate) Nanoparticles: Preparation in Miniemulsion. Macromolecules 2007, 40, 928–938. [Google Scholar] [CrossRef]
- Musyanovych, A.; Landfester, K. Synthesis of Poly(Butylcyanoacrylate) Nanocapsules by Interfacial Polymerization in Miniemulsions for the Delivery of DNA Molecules. In Surface and Interfacial Forces—From Fundamentals to Applications; Springer: Berlin/Heidelberg, Germany, 2007; Volume 134, pp. 120–127. ISBN 9783540680185. [Google Scholar]
- Hansali, F.; Wu, M.; Bendedouch, D.; Marie, E. N-Butyl Cyanoacrylate Miniemulsion Polymerization via the Phase Inversion Composition Method. Colloids Surf. A Physicochem. Eng. Asp. 2012, 393, 133–138. [Google Scholar] [CrossRef]
- Hardt, S.; Schönfeld, F. Microfluidic Technologies for Miniaturized Analysis Systems; Springer Science & Business Media: Berlin, Germany, 2007; ISBN 9780387285979. [Google Scholar]
- Cheng, J.; Deming, T.J. Micromixing Within Microfluidic Devices. Pept. Mater. 2011, 310, 1–26. [Google Scholar] [CrossRef]
- Kang, H.; Zhu, Y.; Shen, J.; Yang, X.; Chen, C.; Cao, H.; Li, C. Preparation of Silica-Sustained Electrospun Polyvinylpyrrolidone Fibers with Uniform Mesopores via Oxidative Removal of Template Molecules by H2O2 Treatment. Mater. Res. Bull. 2010, 45, 830–837. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Goel, S. Microfluidic Devices for Synthesizing Nanomaterials—A Review. Nano Express 2020, 1, 032004. [Google Scholar] [CrossRef]
- Cai, G.; Xue, L.; Zhang, H.; Lin, J. A Review on Micromixers. Micromachines 2017, 8, 274. [Google Scholar] [CrossRef]
- Shen, J.; Shafiq, M.; Ma, M.; Chen, H. Synthesis and Surface Engineering of Inorganic Nanomaterials Based on Microfluidic Technology. Nanomaterials 2020, 10, 1177. [Google Scholar] [CrossRef]
- Alrifaiy, A.; Lindahl, O.A.; Ramser, K. Polymer-Based Microfluidic Devices for Pharmacy, Biology and Tissue Engineering. Polymers 2012, 4, 1349–1398. [Google Scholar] [CrossRef]
- Raza, W.; Hossain, S.; Kim, K.Y. A Review of Passive Micromixers with a Comparative Analysis. Micromachines 2020, 11, 455. [Google Scholar] [CrossRef]
- Gomez, H.C.; Cardoso, R.M.; de Novais Schianti, J.; de Oliveira, A.M.; Gongora-Rubio, M.R. Fab on a Package: LTCC Microfluidic Devices Applied to Chemical Process Miniaturization. Micromachines 2018, 9, 285. [Google Scholar] [CrossRef]
- Valencia, P.M.; Pridgen, E.M.; Rhee, M.; Langer, R.; Farokhzad, O.C.; Karnik, R. Microfluidic Platform for Combinatorial Synthesis and Optimization of Targeted Nanoparticles for Cancer Therapy. ACS Nano 2013, 7, 10671–10680. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Q.; Ma, Y.; Sun, J. Microfluidic Methods for Fabrication and Engineering of Nanoparticle Drug Delivery Systems. ACS Appl. Bio Mater. 2020, 3, 107–120. [Google Scholar] [CrossRef]
- Ribeiro-costa, R.M.; Rodrigues, M.; Gongora-rubio, M.R.; Michaluart-júnior, P.; Ré, M.I. Preparation of Protein-Loaded-PLGA Microspheres by an Emulsion/Solvent Evaporation Process Employing LTCC Micromixers. Powder Technol. 2009, 190, 107–111. [Google Scholar] [CrossRef]
- Malecha, K.; Dawgul, M.; Pijanowska, D.G.; Golonka, L.J. LTCC Microfluidic Systems for Biochemical Diagnosis. Biocybern. Biomed. Eng. 2011, 31, 31–41. [Google Scholar] [CrossRef]
- Nimafar, M.; Viktorov, V.; Martinelli, M. Experimental Comparative Mixing Performance of Passive Micromixers with H-Shaped Sub-Channels. Chem. Eng. Sci. 2012, 76, 37–44. [Google Scholar] [CrossRef]
- Kruss, W.C.; Lucia, M.; Bejarano, M.; Ferreira, K.; Cruz, D.N.; Lima, A.P.; Lanigra, K. LTCC 3D Passive Micromixers to Oil in Water Emulsion Scale-Up; Instituto de Pesquisas Tecnológicas: São Paulo, Brazil, 2019. [Google Scholar]
- Mae, K.; Maki, T.; Hasegawa, I.; Eto, U.; Mizutani, Y.; Honda, N. Development of a New Micromixer Based on Split/Recombination for Mass Production and Its Application to Soap Free Emulsifier. Chem. Eng. J. 2004, 101, 31–38. [Google Scholar] [CrossRef]
- Matsuyama, K.; Mine, K.; Kubo, H.; Mae, K. Design of Micromixer for Emulsification and Application to Conventional Commercial Plant for Cosmetic. Chem. Eng. J. 2011, 167, 727–733. [Google Scholar] [CrossRef]
- Makgwane, P.R.; Ray, S.S. Synthesis of Nanomaterials by Continuous-Flow Microfluidics: A Review. J. Nanosci. Nanotechnol. 2014, 14, 1338–1363. [Google Scholar] [CrossRef]
- Gomez, H.C.; Agio, B.O.; Da Silva, J.G.; Pereira Cerize, N.N.; De Oliveira, A.M.; Guimaraes, K.L.; Da Cunha, M.R.; Seabra, A.C.; Gongora-Rubio, M.R. LTCC 3D Micromixers for Non-Miscible Fluids Microemulsion Generation. In Proceedings of the IMAPS/ACerS 12th International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies, CICMT 2016, Ventura, CA, USA, 17–20 January 2016; pp. 96–102. [Google Scholar] [CrossRef]
- Srikar, G.; Rani, A.P. Study on Influence of Polymer and Surfactant on in Vitro Performance of Biodegradable Aqueous-Core Nanocapsules of Tenofovirdisoproxil Fumarate by Response Surface Methodology. Braz. J. Pharm. Sci. 2019, 55, e18736. [Google Scholar] [CrossRef]
- Betz, M.; Kulozik, U. Microencapsulation of Bioactive Bilberry Anthocyanins by Means of Whey Protein Gels. Procedia Food Sci. 2011, 1, 2047–2056. [Google Scholar] [CrossRef]
- Rashidinejad, A.; Loveday, S.M.; Jameson, G.B.; Hindmarsh, J.P.; Singh, H. Rutin-Casein Co-Precipitates as Potential Delivery Vehicles for Flavonoid Rutin. Food Hydrocoll. 2019, 96, 451–462. [Google Scholar] [CrossRef]
- de Novais Schianti, J. Sistemas Microfluídicos Aplicados Na Produção de Micro e Nanopartículas. Ph.D. Thesis, Universidade de São Paulo: São Paulo, Brazil, 2012. [Google Scholar]
- Cobas Gomez, H. Sistemas Microfluídicos Cerâmicos Para Miniaturização de Processos Químicos Aplicados à Fabricação de Nanopartículas. Ph.D. Thesis, Universidade de São Paulo: São Paulo, Brazil, 2016. [Google Scholar]
- Tran-Minh, N.; Dong, T.; Karlsen, F. An Efficient Passive Planar Micromixer with Ellipse-like Micropillars for Continuous Mixing of Human Blood. Comput. Methods Programs Biomed. 2014, 117, 20–29. [Google Scholar] [CrossRef]
- Ng, N.; Rogers, M.A. Surfactants. In Encyclopedia of Food Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; Volume 1, pp. 276–282. ISBN 9780128140451. [Google Scholar]
- Lin, M.H.C.; Lai, P.S.; Chang, L.C.; Huang, W.C.; Lee, M.H.; Chen, K.T.; Chung, C.Y.; Yang, J.T. Characterization and Optimization of Chitosan-Coated Polybutylcyanoacrylate Nanoparticles for the Transfection-Guided Neural Differentiation of Mouse Induced Pluripotent Stem Cells. Int. J. Mol. Sci. 2021, 22, 8741. [Google Scholar] [CrossRef]
- Farn, R.J. Chemistry and Technology of Surfactants; Wiley: Hoboken, NJ, USA, 2007; ISBN 1405126965. [Google Scholar]
- Yordanov, G.G.; Dushkin, C.D. Preparation of Poly(Butylcyanoacrylate) Drug Carriers by Nanoprecipitation Using a Pre-Synthesized Polymer and Different Colloidal Stabilizers. Colloid Polym. Sci. 2010, 288, 1019–1026. [Google Scholar] [CrossRef]
- Keller, B.L.; Lohmann, C.A.; Kyeremateng, S.O.; Fricker, G. Synthesis and Characterization of Biodegradable Poly(Butyl Cyanoacrylate) for Drug Delivery Applications. Polymers 2022, 14, 998. [Google Scholar] [CrossRef]
- Hu, J.; Xiao, Z.; Zhou, R.; Li, Z.; Wang, M.; Ma, S. Synthesis and Characterization of Polybutylcyanoacrylate-Encapsulated Rose Fragrance Nanocapsule. Flavour Fragr. J. 2011, 26, 162–173. [Google Scholar] [CrossRef]
Ingredients | Function | Formulation | ||||
---|---|---|---|---|---|---|
PBCA_MP_1 | PBCA_MP_2 | PBCA_MP_3 | PBCA_MP_4 | PBCA_MP_5 | ||
Caprylic/capric triglycerides | oil phase vehicle | 31.7 | 42.2 | 48.7 | 61.9 | 73.4 |
n-butyl cyanoacrylate (n-BCA) | monomer | 19.2 | 9.8 | 4.9 | 5.0 | 5.1 |
Span 80 | emulsifier | 0.7 | 0.8 | 0.8 | 0.8 | 0.8 |
Purified water | aqueous phase vehicle | 26.4 | 36.0 | 40.4 | 27.4 | 15.4 |
Ethyl alcohol P.A. | initiator | 22.0 | 11.3 | 5.1 | 5.0 | 5.1 |
Micromixer Geometry | Nº of Channels | Total Flow | Residence Time | |
---|---|---|---|---|
(mL·min−1) | (m³·s) | (s) | ||
HH | 4 | 10 | 1.67 × 10−7 | 0.29 |
25 | 4.17 × 10−7 | 0.11 | ||
50 | 8.33 × 10−7 | 0.06 | ||
70 | 1.17 × 10−6 | 0.04 | ||
100 | 1.67 × 10−6 | 0.03 | ||
150 | 2.50 × 10−6 | 0.02 | ||
10 | 53 | 8.91 × 10−7 | 0.08 | |
75 | 1.25 × 10−6 | 0.06 | ||
15 | 39 | 6.50 × 10−7 | 0.15 | |
78 | 1.30 × 10−6 | 0.08 | ||
109 | 1.82 × 10−6 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieira, A.R.; Oliveira, A.F.; Pessoa, F.V.L.S.; Miranda, B.N.M.d.; Baby, A.R. Advances in the Production of PBCA Microparticles Using a Micromixer with HH-Geometry in a Microfluidic System. Sci. Pharm. 2024, 92, 43. https://doi.org/10.3390/scipharm92030043
Vieira AR, Oliveira AF, Pessoa FVLS, Miranda BNMd, Baby AR. Advances in the Production of PBCA Microparticles Using a Micromixer with HH-Geometry in a Microfluidic System. Scientia Pharmaceutica. 2024; 92(3):43. https://doi.org/10.3390/scipharm92030043
Chicago/Turabian StyleVieira, Aline Rocha, Aline Furtado Oliveira, Fabiana Vieira Lima Solino Pessoa, Beatriz Nogueira Messias de Miranda, and André Rolim Baby. 2024. "Advances in the Production of PBCA Microparticles Using a Micromixer with HH-Geometry in a Microfluidic System" Scientia Pharmaceutica 92, no. 3: 43. https://doi.org/10.3390/scipharm92030043
APA StyleVieira, A. R., Oliveira, A. F., Pessoa, F. V. L. S., Miranda, B. N. M. d., & Baby, A. R. (2024). Advances in the Production of PBCA Microparticles Using a Micromixer with HH-Geometry in a Microfluidic System. Scientia Pharmaceutica, 92(3), 43. https://doi.org/10.3390/scipharm92030043