Position Matters: Effect of Nitro Group in Chalcones on Biological Activities and Correlation via Molecular Docking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
2.1.1. General Procedure for the Synthesis of Chalcone 1
2.1.2. General Procedure for the Synthesis of Nitrochalcones 2–4
2.1.3. General Procedure for the Synthesis of Nitrochalcones 5–7
2.1.4. General Procedure for the Synthesis of Nitrochalcones 8–10
2.2. Characterization of Compounds 1–10 [34,35,36]
2.3. Animals
2.4. Anti-Inflammatory Activity
2.5. Vasorelaxant Activity
2.6. Molecular Docking Calculations
2.7. Statistical Analysis
3. Results
3.1. Anti-Inflammatory Evaluation
3.2. Vasorelaxant Activity Evaluation
3.3. Molecular Docking
3.3.1. Cyclooxygenase-1
3.3.2. Cyclooxygenase-2
3.3.3. Endothelial Nitric Oxide Synthase
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bennett, J.M.; Reeves, G.; Billman, G.E.; Sturmberg, J.P. Inflammation–Nature’s Way to Efficiently Respond to All Types of Challenges: Implications for Understanding and Managing “the Epidemic” of Chronic Diseases. Front. Med. 2018, 5, 316. [Google Scholar] [CrossRef] [PubMed]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W. Chronic Inflammation in the Etiology of Disease across the Life Span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yue, Y.; Zheng, X.; Zhang, K.; Chen, S.; Du, Z. Curcumin, Inflammation, and Chronic Diseases: How Are They Linked? Molecules 2015, 20, 9183–9213. [Google Scholar] [CrossRef]
- Ho, K.Y.; Gwee, K.A.; Cheng, Y.K.; Yoon, K.H.; Hee, H.T.; Omar, A.R. Nonsteroidal Anti-Inflammatory Drugs in Chronic Pain: Implications of New Data for Clinical Practice. J. Pain Res. 2018, 11, 1937–1948. [Google Scholar] [CrossRef]
- Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) and Organ Damage: A Current Perspective. Biochem. Pharmacol. 2020, 180, 114147. [Google Scholar] [CrossRef] [PubMed]
- Sales, T.A.; Marcussi, S.; Ramalho, T.C. Current Anti-Inflammatory Therapies and the Potential of Secretory Phospholipase A2 Inhibitors in the Design of New Anti-Inflammatory Drugs: A Review of 2012–2018. Curr. Med. Chem. 2020, 27, 477–497. [Google Scholar] [CrossRef]
- Alsina-Sánchez, Á.M.; Montalvo-Vázquez, S.; Grafals-Ruiz, N.; Acosta, C.; Ormé, E.M.; Rodríguez, I.; Delgado-Rivera, S.M.; Tinoco, A.D.; Dharmawardhane, S.; Montes-González, I.C. Synthesis of Novel Heterocyclic Ferrocenyl Chalcones and Their Biological Evaluation. ACS Omega 2023, 8, 34377–34387. [Google Scholar] [CrossRef]
- Pérez-González, A.; Castañeda-Arriaga, R.; Guzmán-López, E.G.; Hernández-Ayala, L.F.; Galano, A. Chalcone Derivatives with a High Potential as Multifunctional Antioxidant Neuroprotectors. ACS Omega 2022, 7, 38254–38268. [Google Scholar] [CrossRef]
- Elkanzi, N.A.A.; Hrichi, H.; Alolayan, R.A.; Derafa, W.; Zahou, F.M.; Bakr, R.B. Synthesis of Chalcones Derivatives and Their Biological Activities: A Review. ACS Omega 2022, 7, 27769–27786. [Google Scholar] [CrossRef]
- Constantinescu, T.; Mihis, A.G. Two Important Anticancer Mechanisms of Natural and Synthetic Chalcones. Int. J. Mol. Sci. 2022, 23, 11595. [Google Scholar] [CrossRef]
- Hernández-Rivera, J.L.; Espinoza-Hicks, J.C.; Chacon-Vargas, K.F.; Carrillo-Campos, J.; Sánchez-Torres, L.E.; Camacho-Davila, A.A. Synthesis, Characterization and Evaluation of Prenylated Chalcones Ethers as Promising Antileishmanial Compounds. Mol. Divers. 2023, 27, 2073–2092. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.; Chen, J.; Gao, X.; Jin, X.; Chen, G.; Ye, L. Design and Synthesis of Novel Chalcone Derivatives: Anti-Breast Cancer Activity Evaluation and Docking Study. Int. J. Mol. Sci. 2023, 24, 15549. [Google Scholar] [CrossRef] [PubMed]
- Goyal, K.; Kaur, R.; Goyal, A.; Awasthi, R. Chalcones: A Review on Synthesis and Pharmacological Activities. J. Appl. Pharm. Sci. 2021, 11, 1–14. [Google Scholar]
- Jasim, H.A.; Nahar, L.; Jasim, M.A.; Moore, S.A.; Ritchie, K.J.; Sarker, S.D. Chalcones: Synthetic Chemistry Follows Where Nature Leads. Biomolecules 2021, 11, 1203. [Google Scholar] [CrossRef]
- Higgs, J.; Wasowski, C.; Marcos, A.; Jukič, M.; Paván, C.H.; Gobec, S.; de Tezanos Pinto, F.; Colettis, N.; Marder, M. Chalcone Derivatives: Synthesis, in Vitro and in Vivo Evaluation of Their Anti-Anxiety, Anti-Depression and Analgesic Effects. Heliyon 2019, 5, e01376. [Google Scholar] [CrossRef]
- Burmaoglu, S.; Algul, O.; Gobek, A.; Aktas Anil, D.; Ulger, M.; Erturk, B.G.; Kaplan, E.; Dogen, A.; Aslan, G. Design of Potent Fluoro-Substituted Chalcones as Antimicrobial Agents. J. Enzym. Inhib. Med. Chem. 2017, 32, 490–495. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, Q.; Zhang, S. Computation of Structure Activity and Design of Chalcone Derivatives. Comput. Chem. 2019, 7, 51. [Google Scholar] [CrossRef]
- Nawaz, T.; Tajammal, A.; Qurashi, A.W. Chalcones As Broad-Spectrum Antimicrobial Agents: A Comprehensive Review And Analysis Of Their Antimicrobial Activities. ChemistrySelect 2023, 8, e202302798. [Google Scholar] [CrossRef]
- Rajendran, G.; Bhanu, D.; Aruchamy, B.; Ramani, P.; Pandurangan, N.; Bobba, K.N.; Oh, E.J.; Chung, H.Y.; Gangadaran, P.; Ahn, B.-C. Chalcone: A Promising Bioactive Scaffold in Medicinal Chemistry. Pharmaceuticals 2022, 15, 1250. [Google Scholar] [CrossRef]
- Dos Santos, A.T.L.; de Araújo-Neto, J.B.; da Silva, M.M.C.; da Silva, M.E.P.; Carneiro, J.N.P.; Fonseca, V.J.A.; Coutinho, H.D.M.; Bandeira, P.N.; Dos Santos, H.S.; da Silva Mendes, F.R. Synthesis of Chalcones and Their Antimicrobial and Drug Potentiating Activities. Microb. Pathog. 2023, 180, 106129. [Google Scholar] [CrossRef]
- Mahapatra, D.K.; Bharti, S.K.; Asati, V. Chalcone Derivatives: Anti-Inflammatory Potential and Molecular Targets Perspectives. Curr. Top. Med. Chem. 2017, 17, 3146–3169. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.; Wahlqvist, M.L.; He, G.; Yang, M.; Li, D. Natural Products and Anti-Inflammatory Activity. Asia Pac. J. Clin. Nutr. 2006, 15, 127–286. [Google Scholar]
- Krishnamoorthy, S.; Honn, K. V Inflammation and Disease Progression. Cancer Metastasis Rev. 2006, 25, 481–491. [Google Scholar] [CrossRef] [PubMed]
- Selçuk, K.T. Epidemiology of Inflammation-Related Diseases. In Role of Nutrition in Providing Pro-/Anti-Inflammatory Balance: Emerging Research and Opportunities; IGI Global: Hershey, PA, USA, 2020; pp. 24–44. [Google Scholar]
- Legeay, S.; Trân, K.; Abatuci, Y.; Faure, S.; Helesbeux, J.-J. Novel Insights into the Mode of Action of Vasorelaxant Synthetic Polyoxygenated Chalcones. Int. J. Mol. Sci. 2020, 21, 1609. [Google Scholar] [CrossRef]
- da Silva, G.M.; da Silva, M.C.; Nascimento, D.V.G.; Lima Silva, E.M.; Gouvêa, F.F.F.; de França Lopes, L.G.; Araújo, A.V.; Ferraz Pereira, K.N.; de Queiroz, T.M. Nitric Oxide as a Central Molecule in Hypertension: Focus on the Vasorelaxant Activity of New Nitric Oxide Donors. Biology 2021, 10, 1041. [Google Scholar] [CrossRef]
- Sherikar, A.S.; Bhatia, M.S.; Dhavale, R.P. Identification and Investigation of Chalcone Derivatives as Calcium Channel Blockers: Pharmacophore Modeling, Docking Studies, In Vitro Screening, and 3D-QSAR Analysis. Curr. Comput.-Aided Drug Des. 2021, 17, 676–686. [Google Scholar] [CrossRef]
- Li, J.; Li, D.; Xu, Y.; Guo, Z.; Liu, X.; Yang, H.; Wu, L.; Wang, L. Design, Synthesis, Biological Evaluation, and Molecular Docking of Chalcone Derivatives as Anti-Inflammatory Agents. Bioorg. Med. Chem. Lett. 2017, 27, 602–606. [Google Scholar] [CrossRef]
- Bastrakov, M.; Starosotnikov, A. Recent Progress in the Synthesis of Drugs and Bioactive Molecules Incorporating Nitro (Het) Arene Core. Pharmaceuticals 2022, 15, 705. [Google Scholar] [CrossRef] [PubMed]
- Lochmann, C.; Luxford, T.F.M.; Makurat, S.; Pysanenko, A.; Kočišek, J.; Rak, J.; Denifl, S. Low-Energy Electron Induced Reactions in Metronidazole at Different Solvation Conditions. Pharmaceuticals 2022, 15, 701. [Google Scholar] [CrossRef] [PubMed]
- Erlanson, D.A.; Fesik, S.W.; Hubbard, R.E.; Jahnke, W.; Jhoti, H. Twenty Years on: The Impact of Fragments on Drug Discovery. Nat. Rev. Drug Discov. 2016, 15, 605–619. [Google Scholar] [CrossRef]
- Noriega, S.; Cardoso-Ortiz, J.; López-Luna, A.; Cuevas-Flores, M.D.R.; Flores De La Torre, J.A. The Diverse Biological Activity of Recently Synthesized Nitro Compounds. Pharmaceuticals 2022, 15, 717. [Google Scholar] [CrossRef] [PubMed]
- Torres-Sauret, Q.; Sánchez, C.A.; de la Fuente, L.F.R.; Montero, P.P.; Dorante, M.T.F.; del Carmen Méndez-Moreno, J.; Reyes, M.Á.V.; Mendoza-Lorenzo, P. Síntesis de (E)-1, 3-Difenil-Prop-2-En-1-Ona y Su Evaluación Sobre El Crecimiento de Una Cepa de S. Aureus Fármacorresistente. Rev. Mex. De Cienc. Farm. 2017, 48, 67–74. [Google Scholar]
- Gómez-Rivera, A.; Aguilar-Mariscal, H.; Romero-Ceronio, N.; Roa-de la Fuente, L.F.; Lobato-García, C.E. Synthesis and Anti-Inflammatory Activity of Three Nitro Chalcones. Bioorg. Med. Chem. Lett. 2013, 23, 5519–5522. [Google Scholar] [CrossRef] [PubMed]
- Matus, E.A. Síntesis y Exploración de La Adición Tipo Michael En Enonas y Determinación de La Actividad Antiinflamatorias de Nitrochalconas; Universidad Juárez Autónoma de Tabasco: Villahermosa, Mexico, 2014. [Google Scholar]
- Hidalgo, A.Y.; Velasco, M.; Sánchez-Lara, E.; Gómez-Rivera, A.; Vilchis-Reyes, M.A.; Alvarado, C.; Herrera-Ruiz, M.; López-Rodríguez, R.; Romero-Ceronio, N.; Lobato-García, C.E. Synthesis, Crystal Structures, and Molecular Properties of Three Nitro-Substituted Chalcones. Crystals 2021, 11, 1589. [Google Scholar] [CrossRef]
- de la Federación, D.O. Norma Oficial Mexicana NOM-062-ZOO-1999, Especificaciones Técnicas Para La Producción, Cuidado y Uso de Los Animales de Laboratorio. D. Of. La Fed. 2001, 477. [Google Scholar]
- Zimmermann, M. Ethical Guidelines for Investigations of Experimental Pain in Conscious Animals. Pain 1983, 16, 109–110. [Google Scholar] [CrossRef]
- Payá, M.; Ferrándiz, M.L.; Sanz, M.J.; Bustos, G.; Blasco, R.; Rios, J.L.; Alcaraz, M.J. Study of the Antioedema Activity of Some Seaweed and Sponge Extracts from the Mediterranean Coast in Mice. Phytother. Res. 1993, 7, 159–162. [Google Scholar] [CrossRef]
- Rodríguez-Morales, S.; Ocampo-Medina, B.; Romero-Ceronio, N.; Alvarado-Sánchez, C.; Vilchis-Reyes, M.Á.; Roa de la Fuente, L.F.; Ortiz-Andrade, R.; Hernández-Abreu, O. Metabolic Profiling of Vasorelaxant Extract from Malvaviscus arboreus by LC/QTOF-MS. Chem. Biodivers. 2021, 18, e2000820. [Google Scholar] [CrossRef]
- Hernández-Abreu, O.; Castillo-España, P.; León-Rivera, I.; Ibarra-Barajas, M.; Villalobos-Molina, R.; González-Christen, J.; Vergara-Galicia, J.; Estrada-Soto, S. Antihypertensive and Vasorelaxant Effects of Tilianin Isolated from Agastache Mexicana Are Mediated by NO/CGMP Pathway and Potassium Channel Opening. Biochem. Pharmacol. 2009, 78, 54–61. [Google Scholar] [CrossRef]
- Rimon, G.; Sidhu, R.S.; Lauver, D.A.; Lee, J.Y.; Sharma, N.P.; Yuan, C.; Frieler, R.A.; Trievel, R.C.; Lucchesi, B.R.; Smith, W.L. Coxibs Interfere with the Action of Aspirin by Binding Tightly to One Monomer of Cyclooxygenase-1. Proc. Natl. Acad. Sci. USA 2010, 107, 28–33. [Google Scholar] [CrossRef]
- Wang, J.L.; Limburg, D.; Graneto, M.J.; Springer, J.; Hamper, J.R.B.; Liao, S.; Pawlitz, J.L.; Kurumbail, R.G.; Maziasz, T.; Talley, J.J. The Novel Benzopyran Class of Selective Cyclooxygenase-2 Inhibitors. Part 2: The Second Clinical Candidate Having a Shorter and Favorable Human Half-Life. Bioorganic Med. Chem. Lett. 2010, 20, 7159–7163. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Jamal, J.; Plaza, C.; Pineda, S.H.; Chreifi, G.; Jing, Q.; Cinelli, M.A.; Silverman, R.B.; Poulos, T.L. Structures of Human Constitutive Nitric Oxide Synthases. Acta Crystallogr. Sect. D Biol. Crystallogr. 2014, 70, 2667–2674. [Google Scholar] [CrossRef] [PubMed]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminformatics 2012, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- BIOVIA Discovery Studio. Discovery Studio Modeling Environment; Dassault Systemes, Release; BIOVIA Discovery Studio: San Diego, CA, USA, 2015; Volume 4, p. 2016. [Google Scholar]
- Szatylowicz, H.; Jezuita, A.; Ejsmont, K.; Krygowski, T.M. Classical and Reverse Substituent Effects in Meta-and Para-Substituted Nitrobenzene Derivatives. Struct. Chem. 2017, 28, 1125–1132. [Google Scholar] [CrossRef]
- Bano, S.; Javed, K.; Ahmad, S.; Rathish, I.G.; Singh, S.; Chaitanya, M.; Arunasree, K.M.; Alam, M.S. Synthesis of Some Novel Chalcones, Flavanones and Flavones and Evaluation of Their Anti-Inflammatory Activity. Eur. J. Med. Chem. 2013, 65, 51–59. [Google Scholar] [CrossRef]
- Bukhari, S.N.A.; Ahmad, W.; Butt, A.M.; Ahmad, N.; Amjad, M.W.B.; Hussain, M.A.; Shah, V.H.; Trivedi, A.R. Synthesis and Evaluation of Chalcone Analogues and Pyrimidines as Cyclooxygenase (COX) Inhibitors. Afr. J. Pharm. Pharmacol. 2012, 6, 1064–1068. [Google Scholar]
- Hsieh, H.; Tsao, L.; Wang, J.; Lin, C. Synthesis and Anti-inflammatory Effect of Chalcones. J. Pharm. Pharmacol. 2000, 52, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Sharma, V.; Singh, G. Anti-Inflammatory Potential of Chalcone Related Compounds: An Updated Review. ChemistrySelect 2024, 9, e202401321. [Google Scholar] [CrossRef]
- Jantan, I.; Bukhari, S.N.A.; Adekoya, O.A.; Sylte, I. Studies of Synthetic Chalcone Derivatives as Potential Inhibitors of Secretory Phospholipase A2, Cyclooxygenases, Lipoxygenase and pro-Inflammatory Cytokines. Drug Des. Dev. Ther. 2014, 8, 1405–1418. [Google Scholar] [CrossRef] [PubMed]
- Araico, A.; Terencio, M.C.; Alcaraz, M.J.; Dominguez, J.N.; Leon, C.; Ferrandiz, M.L. Phenylsulphonyl Urenyl Chalcone Derivatives as Dual Inhibitors of Cyclo-Oxygenase-2 and 5-Lipoxygenase. Life Sci. 2006, 78, 2911–2918. [Google Scholar] [CrossRef]
- ur Rashid, H.; Xu, Y.; Ahmad, N.; Muhammad, Y.; Wang, L. Promising Anti-Inflammatory Effects of Chalcones via Inhibition of Cyclooxygenase, Prostaglandin E2, Inducible NO Synthase and Nuclear Factor Κb Activities. Bioorg. Chem. 2019, 87, 335–365. [Google Scholar] [CrossRef] [PubMed]
- Siddiqa, A.; Tajammal, A.; Irfan, A.; Azam, M.; Munawar, M.A.; Hardy, R.S.; Basra, M.A.R. Synthesis, Molecular Docking, Bio-Evaluation and Quantitative Structure Activity Relationship of New Chalcone Derivatives as Antioxidants. J. Mol. Struct. 2023, 1277, 134814. [Google Scholar] [CrossRef]
- Sherikar, A.; Dhavale, R.; Bhatia, M. Investigation of Anti-inflammatory, Nitric Oxide Donating, Vasorelaxation and Ulcerogenic Activities of 1, 3-diphenylprop-2-en-1-one Derivatives in Animal Models. Clin. Exp. Pharmacol. Physiol. 2019, 46, 483–495. [Google Scholar] [CrossRef]
- Whittle, B.J.R. Temporal Relationship between Cyclooxygenase Inhibition, as Measured by Prostacyclin Biosynthesis, and the Gastrointestinal Damage Induced by Indomethacin in the Rat. Gastroenterology 1981, 80, 94–98. [Google Scholar] [CrossRef]
- Choi, Y.D.; Chung, W.S.; Choi, H.K. The Action Mechanism of Relaxation Effect of Atropine on the Isolated Rabbit Corpus Cavernosum. J. Urol. 1999, 161, 1976–1979. [Google Scholar] [CrossRef]
With Endothelium (E+) | Without Endothelium (E−) | |||
---|---|---|---|---|
Compound | Emax | EC50 (µM) | Emax | EC50 (µM) |
1 | 81.16 ± 7.55 | 159.01 | 45.64 ± 6.65 ** | ND |
2 | 57.04 ± 9.54 * | 144.32 | 26.45 ± 5.64 ** | ND |
3 | 66.23 ± 13.35 * | 364.17 | 12.65 ± 2.09 ** | ND |
4 | 43.25 ± 2.91 * | ND | 27.52 ± 6.50 ** | ND |
5 | 39.23 ± 5.10 * | ND | 23.64 ± 3.24 ** | ND |
6 | −7.94 ± 11.84 * | ND | 16.16 ± 3.56 ** | ND |
7 | 81.94 ± 2.50 | 381.64 | 8.84 ± 3.45 ** | ND |
8 | 47.24 ± 1.75 * | ND | 53.42 ± 20.45 ** | 197.60 |
9 | 45.00 ± 17.35 * | ND | 13.86 ± 1.85 ** | ND |
10 | 40.75 ± 7.27 * | ND | 28.92 ± 1.97 ** | ND |
Carbachol | 76.72 ± 7.88 | 358.64 | --- | --- |
Nitrendipine | --- | --- | 90.29 ± 2.15 | 354.28 |
COX-1 | COX-2 | ||||
---|---|---|---|---|---|
Affinity (Kcal/mol) | Ki * (E−7) # | Affinity (Kcal/mol) | Ki (E−7) # | SI ** | |
1 | −7.8 ± 0 | 19.1 ± 0 | −8.2 ± 0.10 | 9.8 ± 1.70 | 1.95 |
2 | −7.5 ± 0 | 31.8 ± 0 | −9.1 ± 0.03 | 2.17 ± 0.11 | 14.64 |
5 | −8.0 ± 0 | 13.6 ± 0 | −8.99 ± 0.15 | 2.6 ± 0.25 | 5.25 |
9 | −8.0 ± 0 | 13.6 ± 0 | −9.3 ± 0.05 | 1.5 ± 0 | 8.97 |
Indo | −5.0 ± 0.05 | 2078.6 ± 151.9 | −6.8 ± 0.413 | 142.4 ± 265.17 | 14.59 |
CEL | −6.1 ± 0.23 | 344.7 ± 227.6 | −8.45 ± 0.05 | 6.3 ± 0.55 | 54.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Österreichische Pharmazeutische Gesellschaft. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hidalgo, A.Y.; Romero-Ceronio, N.; Lobato-García, C.E.; Herrera-Ruiz, M.; Vázquez-Cancino, R.; Peña-Morán, O.A.; Vilchis-Reyes, M.Á.; Gallegos-García, A.J.; Medrano-Sánchez, E.J.; Hernández-Abreu, O.; et al. Position Matters: Effect of Nitro Group in Chalcones on Biological Activities and Correlation via Molecular Docking. Sci. Pharm. 2024, 92, 54. https://doi.org/10.3390/scipharm92040054
Hidalgo AY, Romero-Ceronio N, Lobato-García CE, Herrera-Ruiz M, Vázquez-Cancino R, Peña-Morán OA, Vilchis-Reyes MÁ, Gallegos-García AJ, Medrano-Sánchez EJ, Hernández-Abreu O, et al. Position Matters: Effect of Nitro Group in Chalcones on Biological Activities and Correlation via Molecular Docking. Scientia Pharmaceutica. 2024; 92(4):54. https://doi.org/10.3390/scipharm92040054
Chicago/Turabian StyleHidalgo, Alam Yair, Nancy Romero-Ceronio, Carlos Ernesto Lobato-García, Maribel Herrera-Ruiz, Romario Vázquez-Cancino, Omar Aristeo Peña-Morán, Miguel Ángel Vilchis-Reyes, Ammy Joana Gallegos-García, Eric Jaziel Medrano-Sánchez, Oswaldo Hernández-Abreu, and et al. 2024. "Position Matters: Effect of Nitro Group in Chalcones on Biological Activities and Correlation via Molecular Docking" Scientia Pharmaceutica 92, no. 4: 54. https://doi.org/10.3390/scipharm92040054
APA StyleHidalgo, A. Y., Romero-Ceronio, N., Lobato-García, C. E., Herrera-Ruiz, M., Vázquez-Cancino, R., Peña-Morán, O. A., Vilchis-Reyes, M. Á., Gallegos-García, A. J., Medrano-Sánchez, E. J., Hernández-Abreu, O., & Gómez-Rivera, A. (2024). Position Matters: Effect of Nitro Group in Chalcones on Biological Activities and Correlation via Molecular Docking. Scientia Pharmaceutica, 92(4), 54. https://doi.org/10.3390/scipharm92040054