Passiflora By-Products: Chemical Profile and Potential Use as Cosmetic Ingredients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plants from the Passiflora Genus Grown in Colombia and Northern South America
2.2. Cosmetic Function and Chemical Composition of Plants from Passiflora Genus
Species | Part of Plant | Name | CosIng Function |
---|---|---|---|
Passiflora edulis | Flower | P. edulis flower extract | Skin conditioning |
Fruit | Botrytis Cinerea/P. edulis Fruit Extract/Piceatannol Ferment Lysate Filtrate | Hair conditioning | |
Fruit | Hydrolyzed P. edulis fruit juice extract | Humectant Skin conditioning | |
Fruit | P. edulis fruit | Skin conditioning | |
Fruit | P. edulis fruit extract | Skin conditioning | |
Fruit | P. edulis fruit juice | Skin conditioning | |
Fruit | P. edulis fruit water | - | |
Peel | P. edulis peel extract | Humectant | |
Pulp | Leuconostoc/P. edulis Pulp/Soy Protein Ferment Lysate Filtrate | Skin conditioning | |
Seed | Hydrogenated P. edulis Seed Oil | Skin conditioning Skin conditioning–emollient | |
Seed | P. edulis seed acid (fatty acids) | Bleaching Surfactant–emulsifying | |
Seed | P. edulis seed extract | Skin conditioning | |
Seed | P. edulis seed oil | Skin conditioning– emollient | |
Seed | P. edulis seed oils PEG-8 Esters | Hair conditioning–Skin conditioning | |
Seed | P. edulis seed Powder | Abrasive | |
Seed | P. edulis seed oil/Palm Oil Aminopropanediol Esters | Skin conditioning | |
Seed | Sodium P. edulis seedate | Cleansing Surfactant–cleansing | |
Seed | PEG-60 P. edulis seed glycerides | Skin conditioning–emollient Surfactant–emulsifying | |
Whole plant | P. edulis Meristem Cell Extract | Humectant | |
Passiflora quadrangularis | Flower | P. quadrangularis flower extract | Refreshing Skin protecting –Soothing |
Fruit | P. quadrangularis fruit | Astringent | |
Fruit | P. quadrangularis fruit extract | Skin protecting Soothing | |
Fruit | P. quadrangularis fruit juice | Astringent | |
Hull/Shell | P. quadrangularis hull extract | Skin conditioning | |
Passiflora alata | Fruit | Hydrolyzed P. alata fruit | Astringent Skin protecting |
Callus | P. alata callus extract | Antioxidant Humectant Skin conditioning Skin protecting | |
Fruit | P. alata fruit extract | Hair conditioning | |
Leaf | P. alata leaf extract | Skin conditioning | |
Passiflora caerulea | Flower | P. caerulea flower extract | Skin conditioning |
Passiflora cincinnata | Seed | P. cincinnata seed oil | Skin conditioning |
Passiflora coccinea | Callus | P. coccinea callus extract | Antioxidant Skin conditioning–Skin protecting |
Passiflora garckei | Meristem cell | P. garckei meristem cell culture | Skin protecting |
Passiflora incarnata | Flower | P. incarnata flower extract | Skin conditioning Skin protecting |
Fruit | P. incarnata fruit extract | Skin conditioning Skin protecting | |
Seed | P. incarnata seed oil | Skin protecting | |
Seed | P. incarnata seed powder | Abrasive Skin conditioning | |
Seed | PEG-60 P. incarnata seed glycerides | Skin conditioning–emollient Surfactant–emulsifying | |
Whole plant | P. incarnata extract | Astringent | |
Whole plant | P. incarnata water | Fragrance Skin conditioning | |
Passiflora laurifolia | Flower | P. laurifolia flower extract | Skin conditioning |
Fruit | P. laurifolia fruit extract | Skin conditioning |
Specie (Common Name) | Part of Plant | Chemical Group | Reference |
---|---|---|---|
Passiflora edulis f. edulis Sims (gulupa) | Fruit pulp | Phenylpropanoid derivatives acids | [13,14] |
Flavanol | [14] | ||
Cyanogenic glucoside | [15,16] | ||
Volatile compounds | [17,18,19] | ||
Carotenoid | [13] | ||
Vitamin E | [13] | ||
Anthocyanidin | [14] | ||
Bound terpenoids, Norterpenoids (C13 skeleton) | [20] | ||
Stem and leaves | Flavone and flavone glycosides | [21,22,23,24,25,26,27] | |
Saponins | [28] | ||
Shell/peel | Flavonol and flavonol glycosides | [29,30] | |
Flavone glycosides | [29,31] | ||
Neolignan glycoside | [31] | ||
Cyanogenic glycoside | [15,31,32,33] | ||
Quinone | [31,34] | ||
Ionol glycoside | [31,35] | ||
Phenyl propanoid glycosides | [31,36] | ||
Stilbene glycoside | [31,37] | ||
Aromatics glycoside | [31,38] | ||
Lignan glycosides | [31,39,40] | ||
Phytoprostanes | [29] | ||
Anthocyanin | [41,42,43,44] | ||
Flavanol | [45] | ||
Dihydrochalcone | [45] | ||
Acid derivatives | [45] | ||
Seeds | Fatty acids | [46] | |
Stilbenoids | [47] | ||
Acid derivatives | [48,49] | ||
Flavonol and flavone | [48] | ||
Passiflora ligularis Juss (granadilla) | Shell/Peel | Flavanol | [30,50] |
Flavone | [30] | ||
Flavonol | [30] | ||
Phenolic acid/Phenolic glycosides | [30,50] | ||
Satured fatty acid | [50] | ||
Monounsaturated fatty acid | [50] | ||
Polyunsaturated fatty acid | [50] | ||
Cyanogenic glycoside | [15] | ||
Shell (essential oil) | Volatile compounds | [51] | |
Seed (essential oil) | Volatile compounds | [51] | |
Seed | Flavanol | [52] | |
Phenolic acid | [52] | ||
Flavone | [52] | ||
Pentacyclic triterpenoid | [52] | ||
Satured fatty acid | [50] | ||
Monounsaturated fatty acid | [50] | ||
Polyunsaturated fatty acid | [50] | ||
Pulp (essential oil from pulp) | Volatile compounds | [51] | |
Fruit pulp | Xanthine alkaloid | [14] | |
Flavonol, flavone, flavanol | [14,53] | ||
Phenolic acids | [14,50,53] | ||
Pentacyclic triterpenoid | [14] | ||
Anthocyanin | [14] | ||
Stilbenoid glucoside | [50] | ||
Volatile compounds | [19,54] | ||
Others | [14,19,50] | ||
Pulp + seeds | Phenylpropanoid derivatives acids | [55] | |
Satured fatty acid | [50] | ||
Monounsaturated fatty acid | [50] | ||
Polyunsaturated fatty acid | [50] | ||
Leaves | Flavonoids and flavonoid glycosides, aminoacids, organic acid, saponin | [56,57] | |
Passiflora tarminiana (curuba india) | Fruit pulp | Flavanols, flavone and flavonol glycosides | [58] |
Leaves | Flavone glycosides, flavanol, procyanidin | [59] | |
Passiflora tripartita var. mollissima (curuba de Castilla) | Fruit pulp | Volatiles and aroma compounds, flavone glycosides | [60,61] |
Leaves | Phenylpropanoid derivatives acids, aminoacids, carbohydrates, poliol, flavonoids (luteolin, apigenin derivatives, procyanidins) | [59] | |
Shell | Flavone and flavonol glycosides | [61] | |
Passiflora maliformis (cholupa) | Seed | Unsatured fatty acids | [46] |
Satured fatty acids | [46] | ||
Flower | Terpenoids | [62] | |
Phenylpropanoids | [62] | ||
Satured fatty acids | [62] | ||
Unsatured fatty acids | [62] | ||
Ethyl ester | [62] | ||
Polyisoprenoid lipids | [62] | ||
Pulp | Volatile compounds | [63] | |
Passiflora quadrangularis (badea) | Leaves | Flavone | [23,28,64,65,66,67,68,69,70,71] |
Long-chain fatty acids | [64] | ||
Cyanogenic glycoside | [67] | ||
Triterpens and saponins | [28,67,68,72] | ||
Cyclopropane triterpene glycosides | [72] | ||
Pentacyclic triterpenoid | [72] | ||
Fruit pulp | Carboxylic acids | [73] | |
Volatile compounds | [74,75] | ||
Shell/pericarp | Flavone | [76] | |
Passiflora edulis unspecified form | Fruit pulp | Flavone | [77] |
Carboxylic acids | [77] | ||
Flavanone glycoside | [77] | ||
Flavonol glycoside | [77] | ||
Cyanogenic glycoside | [77] | ||
Leaves | Flavone glycoside | [63,78] | |
Acid derivatives | [63] | ||
Cyanogenic glycoside | [63] | ||
Flavonol glycoside | [79] | ||
Stem and leaves | Cycloartane tryterpenes | [80,81,82] | |
Saponins | [80,81,82,83,84] | ||
Seed | Stilbenoids | [85] |
3. Relevant Sections
3.1. Production in Colombia and North of South America of Plants from Passiflora Genus
3.2. Cosmetic Use of Some Extracts of Plants from Passiflora Genus
3.3. Chemical Composition of Plants from Passiflora Genus
3.3.1. Passiflora edulis f. Flavicarpa Degener (Passion Fruit or Yellow Passion Fruit)
3.3.2. Passiflora edulis f. Edulis Sims (Gulupa or Purple Passion Fruit)
3.3.3. Passiflora ligularis Juss (Granadilla)
3.3.4. Curubas (Passiflora tarminiana and Passiflora tripartita var. mollisima)
3.3.5. Passiflora maliformis L. (Cholupa)
3.3.6. Passiflora quadrangularis Linn (Badea)
3.4. Cosmetic Value of Compounds Present in Plant from Passiflora Genus Cultivated in Colombia and North of South America
3.4.1. Stilbenoids
3.4.2. Flavonoids
3.4.3. Derivatives of the Phenylpropanoid Route
4. Conclusions
5. Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mejía, C. Estudio Sobre Bioeconomía: Análisis de la Situación y Recomendacioones de Política de Bioeconomía. Anexo 4: Análisis Sector Cosmético y Aseo; Corporación Biointropic, Universidad Eafit, Bogotá, Colombia 2018. Available online: https://www.dnp.gov.co/LaEntidad_/misiones/mision-crecimiento-verde/Documents/ejes-tematicos/Bioeconomia/Informe%202/ANEXO%204_An%C3%A1lisis%20sector%20cosm%C3%A9tico.pdf (accessed on 1 February 2024).
- Asohofrucol. Balance del Sector Hortifruticultura en. 2018. Available online: https://www.scribd.com/document/446066134/BALANCE-DEL-SECTOR-HORTIFRUTICULTURA-2018# (accessed on 3 January 2024).
- Departamento Nacional de Planeación. Producción y Consumo Responsables—La Agenda 2030 en Colombia—Objetivos de Desarrollo Sostenible. Available online: https://agenda2030lac.org/es/ods/12-produccion-y-consumo-responsables (accessed on 9 February 2024).
- Pérez, J.O.; Coppens, G.; Restrepo, M.; Jarvis, A.; Salazar, M. Diversity of Colombian Passifloraceae: Biogeography and an updated list for conservation. Biota Colomb. 2007, 8, 1–45. [Google Scholar]
- Ocampo, J.; Wyckhuys, K. Tecnología Para el Cultivo de la Gulupa (Passiflora Edulis f. Edulis Sims) en Colombia. Centro de Bio-Sistemas de la Universidad Jorge Tadeo Lozano, Centro Internacional de Agricultura Tropical-CIAT y Ministerio de Agricultura y Desarrollo Rural, República de Colombia. Available online: https://www.utadeo.edu.co/sites/tadeo/files/node/wysiwyg/pub_52_tecnologia_para_el_cultivo_de_la_gulupa.pdf (accessed on 1 February 2024).
- Dhawan, K.; Dhawan, S.; Sharma, A. Passiflora: A review update. J. Ethnopharmacol. 2004, 94, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, R.C.; Peralta, R.M.; Haminiuk, C.W.; Maciel, G.M.; Bracht, A.; Ferreira, I.C. The past decade findings related with nutritional composition, bioactive molecules and biotechnological applications of Passiflora spp. (passion fruit). Trends Food Sci. Technol. 2016, 58, 79–95. [Google Scholar] [CrossRef]
- Ministerio de Agricultura y Desarrollo Rural. Evaluaciones Agropecuarias Municipales EVA|Datos Abiertos Colombia-Base de Datos Históricos. Available online: https://www.datos.gov.co/Agricultura-y-Desarrollo-Rural/Evaluaciones-Agropecuarias-Municipales-EVA/2pnw-mmge (accessed on 13 December 2023).
- Unidad de Planificación Rural Agropecuaria-UPRA. Evaluaciones Agropecuarias Municipales-EVA-Metodología. Available online: https://www.upra.gov.co/web/guest/metodologia (accessed on 13 December 2023).
- Royal Society of Chemistry. ChemSpider|Search and Share Chemistry. Available online: http://www.chemspider.com/ (accessed on 20 February 2024).
- National Center for Biotechnology Information. PubChem: Substance and Compound Databases. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 11 November 2023).
- European Commission (EC). CosIng—Cosmetic Ingredients Database-List of Functions. Available online: https://ec.europa.eu/growth/tools-databases/cosing/index.cfm?fuseaction=ref_data.functions (accessed on 11 November 2023).
- Samyor, D.; Deka, S.C.; Das, A.B. Physicochemical and phytochemical properties of foam mat dried passion fruit (Passiflora edulis Sims) powder and comparison with fruit pulp. J. Food Sci. Technol. 2020, 58, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Hernandez, J.C.; Taborda-Ocampo, G.; Valdez, J.C.; Bolling, B.W.; González-Correa, C.H. Polyphenol extracts from three Colombian passifloras (passion fruits) prevent inflammation-induced barrier dysfunction of Caco-2 cells. Molecules 2019, 24, 4614. [Google Scholar] [CrossRef]
- Chassagne, D.; Crouzet, J.C.; Bayonove, C.L.; Baumes, R.L. Identification and Quantification of Passion Fruit Cyanogenic Glycosides. J. Agric. Food Chem. 1996, 44, 3817–3820. [Google Scholar] [CrossRef]
- Chassagne, D.; Crouzet, J. A cyanogenic glycoside from Passiflora edulis fruits. Phytochemistry 1998, 49, 757–759. [Google Scholar] [CrossRef]
- Conde-Martínez, N.; Jiménez, A.; Steinhaus, M.; Schieberle, P.; Sinuco, D.; Osorio, C. Key aroma volatile compounds of gulupa (Passiflora edulis Sims fo edulis) fruit. Eur. Food Res. Technol. 2013, 236, 1085–1091. [Google Scholar] [CrossRef]
- Muller, C.J.; Kepner, R.E.; Webb, A.D. Some Volatile Constituents of Passion Fruit Wine. J. Food Sci. 1964, 29, 569–575. [Google Scholar] [CrossRef]
- Chassagne, D.; Boulanger, R.; Crouzet, J. Enzymatic hydrolysis of edible Passiflora fruit glycosides. Food Chem. 1999, 66, 281–288. [Google Scholar] [CrossRef]
- Winterhalter, P. Bound Terpenoids in the Juice of the Purple Passion Fruit (Passiflora edulis Sims). J. Agric. Food Chem 1982, 1952, 452–455. [Google Scholar] [CrossRef]
- Ayres, A.S.; de Araújo, L.L.; Soares, T.C.; Costa, G.M.; Reginatto, F.H.; Ramos, F.A.; Castellanos, L.; Schenkel, E.P.; Soares-Rachetti, V.P.; Zucolotto, S.M.; et al. Comparative central effects of the aqueous leaf extract of two populations of Passiflora edulis. Rev. Bras. Farmacogn. 2015, 25, 499–505. [Google Scholar] [CrossRef]
- Xu, F.; Wang, C.; Yang, L.; Luo, H.; Fan, W.; Zi, C.; Dong, F.; Hu, J.; Zhou, J. C-dideoxyhexosyl flavones from the stems and leaves of Passiflora edulis Sims. Food Chem. 2013, 136, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Gomes, S.V.F.; Portugal, L.A.; dos Anjos, J.P.; de Jesus, O.N.; Oliveira, E.; David, J.P.; David, J.M. Accelerated solvent extraction of phenolic compounds exploiting a Box-Behnken design and quantification of five flavonoids by HPLC-DAD in Passiflora species. Microchem. J. 2017, 132, 28–35. [Google Scholar] [CrossRef]
- Sepúlveda, P.; Costa, G.M.; Aragón, D.M.; Ramos, F.; Castellanos, L. Analysis of vitexin in aqueous extracts and commercial products of Andean Passiflora species by UHPLC-DAD. J. Appl. Pharm. Sci. 2018, 8, 081–086. [Google Scholar]
- Yamaguchi, R.; Nakazono, Y. Deprotonation induced 13 C NMR shifts in phenols and flavonoids. Tetrahedron Lett. 1983, 24, 1801–1804. [Google Scholar] [CrossRef]
- Wu, B.-L.; Wu, Z.-W.; Yang, F.; Shen, X.-F.; Wang, L.; Chen, B.; Li, F.; Wang, M.-K. Flavonoids from the seeds of Oroxylum indicum and their anti-inflammatory and cytotoxic activities. Phytochem. Lett. 2019, 32, 66–69. [Google Scholar] [CrossRef]
- Montoro, P.; Carbone, V.; De Simone, F.; Pizza, C.; De Tommasi, N. Studies on the constituents of Cyclanthera pedata fruits: Isolation and structure elucidation of new flavonoid glycosides and their antioxidant activity. J. Agric. Food Chem. 2001, 49, 5156–5160. [Google Scholar] [CrossRef]
- Fabian, N.; Morales, U. Contribución al Estudio Fitoquímico y a la Evaluación de la Actividad Antiinflamatoria de las Hojas de Badea (Passiflora quadrangularis Linn.) y Gulupa (Passiflora edulis var. edulis). Ph.D. Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2017. [Google Scholar]
- Medina, S.; Collado-González, J.; Ferreres, F.; Londoño-Londoño, J.; Jiménez-Cartagena, C.; Guy, A.; Durand, T.; Galano, J.M.; Gil-Izquierdo, A. Quantification of phytoprostanes—Bioactive oxylipins—And phenolic compounds of Passiflora edulis Sims shell using UHPLC-QqQ-MS/MS and LC-IT-DAD-MS/MS. Food Chem. 2017, 229, 1–8. [Google Scholar] [CrossRef]
- Domínguez-Rodríguez, G.; García, M.C.; Plaza, M.; Marina, M.L. Revalorization of Passiflora species peels as a sustainable source of antioxidant phenolic compounds. Sci. Total Environ. 2019, 696, 134030. [Google Scholar] [CrossRef]
- Hu, Y.; Jiao, L.; Jiang, M.H.; Yin, S.; Dong, P.; Zhao, Z.M.; Yang, D.P.; Ho, P.T.; Wang, D.M. A new C-glycosyl flavone and a new neolignan glycoside from Passiflora edulis Sims peel. Nat. Prod. Res. 2018, 32, 2312–2318. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.E.; Tuck, K.L. Reports on the distribution of aromatic cyanogenic glycosides in Australian tropical rainforest tree species of the Lauraceae and Sapindaceae. Phytochemistry 2013, 92, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Seigler, D.S.; Pauli, G.F.; Nahrstedt, A.; Leen, R. Cyanogenic allosides and glucosides from Passiflora edulis and Carica papaya. Phytochemistry 2002, 60, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Jutiviboonsuk, A.; Zhang, H.J.; Kondratyuk, T.P.; Herunsalee, A.; Chaukul, W.; Pezzuto, J.M.; Fong, H.H.; Bunyapraphatsara, N. Isolation and characterization of cancer chemopreventive compounds from Barringtonia maunwongyathiae. Pharm. Biol. 2007, 45, 185–194. [Google Scholar] [CrossRef]
- De Marino, S.; Borbone, N.; Zollo, F.; Ianaro, A.; Di Meglio, P.; Iorizzi, M. Megastigmane and phenolic components from Laurus nobilis L. leaves and their inhibitory effects on nitric oxide production. J. Agric. Food Chem. 2004, 52, 7525–7531. [Google Scholar] [CrossRef]
- Della Greca, M.; Ferrara, M.; Fiorentino, A.; Monaco, P.; Previtera, L. Antialgal compounds from Zantedeschia aethiopica. Phytochemistry 1998, 49, 1299–1304. [Google Scholar] [CrossRef]
- Iorizzi, M.; Lanzotti, V.; De Marino, S.; Zollo, F.; Blanco-Molina, M.; Macho, A.; Munoz, E. New glycosides from Capsicum annuum L. var. acuminatum. Isolation, structure determination, and biological activity. J. Agric. Food Chem. 2001, 49, 2022–2029. [Google Scholar] [CrossRef]
- Morikawa, T.; Matsuda, H.; Nishida, N.; Ohgushi, T.; Yoshikawa, M. Structures of new aromatics glycosides from a Japanese folk medicine, the roots of Angelica furcijuga. Chem. Pharm. Bull. 2004, 52, 1387–1390. [Google Scholar] [CrossRef]
- Wang, L.Q.; Zhao, Y.X.; Zhou, L.; Zhou, J. Lignans from Gnetum montanum Markgr. f. megalocarpua. Chem. Nat. Compd. 2009, 45, 424–426. [Google Scholar] [CrossRef]
- Yuan, C.S.; Sun, X.B.; Zhao, P.H.; Cao, M.A. Antibacterial constituents from Pedicularis armata. J. Asian Nat. Prod. Res. 2007, 9, 673–677. [Google Scholar] [CrossRef]
- Jiménez, A.M.; Sierra, C.A.; Rodríguez-Pulido, F.J.; González-Miret, M.L.; Heredia, F.J.; Osorio, C. Physicochemical characterisation of gulupa (Passiflora edulis Sims. fo edulis) fruit from Colombia during the ripening. Food Res. Int. 2011, 44, 1912–1918. [Google Scholar] [CrossRef]
- Ghada, B.; Pereira, E.; Pinela, J.; Prieto, M.A.; Pereira, C.; Calhelha, R.C.; Stojković, D.; Sokóvić, M.; Zaghdoudi, K.; Barros, L.; et al. Recovery of anthocyanins from passion fruit epicarp for food colorants: Extraction process optimization and evaluation of bioactive properties. Molecules 2020, 25, 1299–1304. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Du, J.; Du, L.; Luo, Q.; Xiong, J. Anti-fatigue activity of purified anthocyanins prepared from purple passion fruit (P. edulis Sim) epicarp in mice. J. Funct. Foods 2020, 65, 103725. [Google Scholar] [CrossRef]
- Díaz, L.S.; Padilla, C.; Sepúlveda, C. Identificación del Principal Pigmento Presente en la Cáscara del Maracuyá Púrpura (Passiflora edulis). Inf. Tecnol. 2006, 17, 75–84. [Google Scholar] [CrossRef]
- Zibadi, S.; Farid, R.; Moriguchi, S.; Lu, Y.; Foo, L.Y.; Tehrani, P.M.; Ulreich, J.B.; Watson, R.R. Oral administration of purple passion fruit peel extract attenuates blood pressure in female spontaneously hypertensive rats and humans. Nutr. Res. 2007, 27, 408–416. [Google Scholar] [CrossRef]
- Nyanzi, S.A.; Carstensen, B.; Schwack, W. A comparative study of fatty acid profiles of Passiflora seed oils from Uganda. JAOCS J. Am. Oil Chem. Soc. 2005, 82, 41–44. [Google Scholar] [CrossRef]
- Krambeck, K.; Oliveira, A.; Santos, D.; Pintado, M.M.; Silva, J.B.; Lobo, J.M.S.; Amaral, M.H. Identification and quantification of stilbenes (Piceatannol and resveratrol) in passiflora edulis by-products. Pharmaceuticals 2020, 13, 73. [Google Scholar] [CrossRef]
- Lourith, N.; Kanlayavattanakul, M. Antioxidant activities and phenolics of Passiflora edulis seed recovered from juice production residue. J. Oleo Sci. 2013, 62, 235–240. [Google Scholar] [CrossRef]
- Yepes, A.; Ochoa-Bautista, D.; Murillo-Arango, W.; Quintero-Saumeth, J.; Bravo, K.; Osorio, E. Purple passion fruit seeds (Passiflora edulis f. edulis Sims) as a promising source of skin anti-aging agents: Enzymatic, antioxidant and multi-level computational studies. Arab. J. Chem. 2020, 14, 102905. [Google Scholar] [CrossRef]
- Loizzo, M.R.; Lucci, P.; Núñez, O.; Tundis, R.; Balzano, M.; Frega, N.G.; Conte, L.; Moret, S.; Filatova, D.; Moyano, E.; et al. Native Colombian fruits and their by-products: Phenolic profile, antioxidant activity and hypoglycaemic potential. Foods 2019, 8, 89. [Google Scholar] [CrossRef]
- Guaranda, I.A.C.; Hurtado, D.A.H.; Martínez, M.M.; Santana, P.I.M. Chemical composition of essential oils of shells, juice and seeds of Passiflora ligularis Juss from Ecuador. Emirates J. Food Agric. 2015, 27, 650–653. [Google Scholar]
- Santos, T.R.J.; Feitosa, P.R.B.; Gualberto, N.C.; Narain, N.; Santana, L.C. Improvement of bioactive compounds content in granadilla (Passiflora ligularis) seeds after solid-state fermentation. Food Sci. Technol. Int. 2020, 27, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, S.; Parimelazhagan, T. In vitro antioxidant, antimicrobial and anti-diabetic properties of polyphenols of Passiflora ligularis Juss. fruit pulp. Food Sci. Hum. Wellness 2014, 3, 56–64. [Google Scholar] [CrossRef]
- Agudelo, J.; Suárez, M.; Duque, C. Free and glycosidically bound volatiles in granadilla (Passiflora vitifolia HBK.). J. Essent. Oil Res. 1996, 8, 255–258. [Google Scholar] [CrossRef]
- Espinosa, D.S.; Melgarejo, L.M.; Hernández, M.S.; Melo, S.E.; Fernández-Trujillo, J.P. Physiological and biochemical characterization of sweet granadilla (Passiflora ligularis JUSS) at different locations. Acta Hortic. 2018, 1194, 1459–1464. [Google Scholar] [CrossRef]
- Marroquín, M.N.; Cruz, S.M.; Cáceres, A. Antioxidant activity and phenolic compounds in three species of Passifloraceae (Passiflora edulis, P. incarnata, P. ligularis) from Guatemala. Acta Hortic. 2012, 964, 93–98. [Google Scholar] [CrossRef]
- Monzon Daza, G.; Meneses Macias, C.; Forero, A.M.; Rodríguez, J.; Aragón, M.; Jiménez, C.; Ramos, F.A.; Castellanos, L. Identification of α-Amylase and α-Glucosidase Inhibitors and Ligularoside A, a New Triterpenoid Saponin from Passiflora ligularis Juss (Sweet Granadilla) Leaves, by a Nuclear Magnetic Resonance-Based Metabolomic Study. J. Agric. Food Chem. 2021, 69, 2919–2931. [Google Scholar] [CrossRef] [PubMed]
- Bravo, K.; Duque, L.; Ferreres, F.; Moreno, D.A.; Osorio, E. Passiflora tarminiana fruits reduce UVB-induced photoaging in human skin fibroblasts. J. Photochem. Photobiol. B Biol. 2017, 168, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Castellanos, L.; Naranjo-Gaybor, S.J.; Forero, A.M.; Morales, G.; Wilson, E.G.; Ramos, F.A.; Choi, Y.H. Metabolic fingerprinting of banana passion fruits and its correlation with quorum quenching activity. Phytochemistry 2020, 172, 112272. [Google Scholar] [CrossRef]
- Conde-Martínez, N.; Sinuco, D.C.; Osorio, C. Chemical studies on curuba (Passiflora mollissima (Kunth) L. H. Bailey) fruit flavour. Food Chem. 2014, 157, 356–363. [Google Scholar] [CrossRef]
- Simirgiotis, M.J.; Schmeda-Hirschmann, G.; Bórquez, J.; Kennelly, E.J. The Passiflora tripartita (banana passion) fruit: A source of bioactive flavonoid C-glycosides isolated by HSCCC and characterized by HPLC-DAD-ESI/MS/MS. Molecules 2013, 18, 1672–1692. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; De Faveri, S.G.; Cheesman, J.; Hanssen, B.L.; Cameron, D.N.; Jamie, I.M.; Taylor, P.W. Zingerone in the flower of passiflora maliformis attracts an australian fruit fly, bactrocera jarvisi (Tryon). Molecules 2020, 25, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; Otify, A.; Porzel, A.; Michel, C.G.; Elsayed, A.; Wessjohann, L.A. Comparative metabolite profiling and fingerprinting of genus Passiflora leaves using a multiplex approach of UPLC-MS and NMR analyzed by chemometric tools. Anal. Bioanal. Chem. 2016, 408, 3125–3143. [Google Scholar] [CrossRef] [PubMed]
- Zucolotto, S.M.; Fagundes, C.; Reginatto, F.H.; Ramos, F.A.; Castellanos, L.; Duque, C.; Schenkel, E.P. Analysis of C-glycosyl flavonoids from South American Passiflora species by HPLC-DAD and HPLC-MS. Phytochem. Anal. 2012, 23, 232–239. [Google Scholar] [CrossRef]
- Costa, G.M.; Gazola, A.C.; Zucolotto, S.M.; Castellanos, L.; Ramos, F.A.; Reginatto, F.H.; Schenkel, E.P. Chemical profiles of traditional preparations of four South American Passiflora species by chromatographic and capillary electrophoretic techniques. Rev. Bras. Farmacogn. 2016, 26, 451–458. [Google Scholar] [CrossRef]
- Costa, G.M. Vitexin derivatives as chemical markers in the differentiation of the closely related species passiflora quadrangularis linn. J. Liq. Chromatogr. 2013, 37–41. [Google Scholar] [CrossRef]
- Guevara, M.; Tejera, E.; Granda-Albuja, M.G.; Iturralde, G.; Chisaguano-Tonato, M.; Granda-Albuja, S.; Jaramillo-Vivanco, T.; Giampieri, F.; Battino, M.; Alvarez-Suarez, J.M. Chemical composition and antioxidant activity of the main fruits consumed in the western coastal region of Ecuador as a source of health-promoting compounds. Antioxidants 2019, 8, 387. [Google Scholar] [CrossRef]
- Costa, G. Estudo Químico de Espécies Brasileiras e Colombianas do Gênero Passiflora. Ph.D. Thesis, Universidade Federal de Santa Catarina, Centro de Ciências da Saúde, Programa de Pós-Graduação em Farmácia, Florianópolis, Brazil, 2013. [Google Scholar]
- Sakalem, M.E.; Negri, G.; Tabach, R. Chemical composition of hydroethanolic extracts from five species of the Passiflora genus. Brazilian J. Pharmacogn. 2012, 22, 1219–1232. [Google Scholar] [CrossRef]
- Gazola, A.C.; Costa, G.M.; Zucolotto, S.M.; Castellanos, L.; Ramos, F.A.; de Lima, T.C.M.; Schenkel, E.P. The sedative activity of flavonoids from Passiflora quadrangularis is mediated through the GABAergic pathway. Biomed. Pharmacother. 2018, 100, 388–393. [Google Scholar] [CrossRef]
- Gazola, A.C.; Costa, G.M.; Castellanos, L.; Ramos, F.A.; Reginatto, F.H.; de Lima, T.C.; Schenkel, E.P. Involvement of GABAergic pathway in the sedative activity of apigenin, the main flavonoid from passiflora quadrangularis pericarp. Rev. Bras. Farmacogn. 2015, 25, 158–163. [Google Scholar] [CrossRef]
- Orsini, F.; Pellizzoni, F.; Ricca, G.; Verotta, L. Triterpene glycosides related to quadranguloside from Passiflora quadrangularis. Phytochemistry 1987, 26, 1101–1105. [Google Scholar] [CrossRef]
- Echeverry, S.M.; Medina, H.I.; Costa, G.M.; Aragón, D.M. Optimization of flavonoid extraction from Passiflora quadrangularis leaves with sedative activity and evaluation of its stability under stress conditions. Rev. Bras. Farmacogn. 2018, 28, 610–617. [Google Scholar] [CrossRef]
- Osorio, C.; Duque, C.; Suárez, M.; Salamanca, L.E.; Urueña, F. Free, glycosidically bound, and phosphate bound flavor constituents of badea (Passiflora quadrangularis) fruit pulp. J. Sep. Sci. 2002, 25, 147–154. [Google Scholar] [CrossRef]
- Orsini, F.; Pelizzoni, F.; Verotta, L. Quadranguloside, a cycloartane triterpene glycoside from Passiflora quadrangularis. Phytochemistry 1985, 25, 191–193. [Google Scholar] [CrossRef]
- Osorio, C.; Duque, C.; Fujimoto, Y. Oxygenated monoterpenoids from badea (Passiflora quadrangularis) fruit pulp. Phytochemistry 2000, 53, 97–101. [Google Scholar] [CrossRef]
- Spínola, V.; Pinto, J.; Castilho, P.C. Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD-ESI-MSn and screening for their antioxidant activity. Food Chem. 2015, 173, 14–30. [Google Scholar] [CrossRef]
- De-Paris, F.; Reginatto, F. Pharmacochemical study of aqueous extracts of Passiflora alata Dryander and Passiflora edulis Sims. Acta Farm. Bonaer 2002, 21, 5–8. [Google Scholar]
- Ferreira, J.N.; Quintino, C.; Vilegas, W. Passiflora edulis leaf extract: Evidence of antidiabetic and antiplatelet effects in rats. Biol. Pharm. Bull. 2019, 43, 169–174. [Google Scholar]
- Xu, F.Q.; Wang, N.; Fan, W.W.; Zi, C.T.; Zhao, H.S.; Hu, J.M.; Zhou, J. Protective effects of cycloartane triterpenoides from Passiflora edulis Sims against glutamate-induced neurotoxicity in PC12 cell. Fitoterapia 2016, 115, 122. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Katsuta, S.; Mizumori, J.; Arihara, S. Four Cycloartane Triterpenoids and Six Related Saponins from Passiflora edulis. J. Nat. Prod. 2000, 63, 1229–1234. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Katsuta, S.; Mizumori, J.; Arihara, S. New cycloartane triterpenoids from Passiflora edulis. J. Nat. Prod. 2000, 63, 1377–1380. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xu, F.-Q.; Shang, J.-H.; Xiao, H.; Fan, W.-W.; Dong, F.-W.; Hu, J.-M.; Zhou, J. Cycloartane triterpenoid saponins from water soluble of Passiflora edulis Sims and their antidepressant-like effects. J. Ethnopharmacol. 2013, 148, 812–817. [Google Scholar] [CrossRef] [PubMed]
- Bombardelli, E.; Bonati, A.; Gabetta, B.; Martinelli, E.M.; Mustich, G.; Danieli, B. Passiflorine, a new glycoside from Passiflora edulis. Phytochemistry 1975, 14, 2661–2665. [Google Scholar] [CrossRef]
- Matsui, Y.; Sugiyama, K.; Kamei, M.; Takahashi, T.; Suzuki, T.; Katagata, Y.; Ito, T. Extract of passion fruit (Passiflora edulis) seed containing high amounts of piceatannol inhibits melanogenesis and promotes collagen synthesis. J. Agric. Food Chem. 2010, 58, 11112–11118. [Google Scholar] [CrossRef] [PubMed]
- Docherty, J.J.; McEwen, H.A.; Sweet, T.J.; Bailey, E.; Booth, T.D. Resveratrol inhibition of Propionibacterium acnes. J. Antimicrob. Chemother. 2007, 59, 1182–1184. [Google Scholar] [CrossRef]
- Jusuf, N.K.; Putra, I.B.; Dewi, N.K. Antibacterial activity of passion fruit purple variant (Passiflora edulis sims var. edulis) seeds extract against propionibacterium acnes. Clin. Cosmet. Investig. Dermatol. 2020, 13, 99–104. [Google Scholar] [CrossRef]
- Maruki-Uchida, H.; Morita, M.; Yonei, Y.; Sai, M. Effect of passion fruit seed extract rich in piceatannol on the skin of women: A randomized, placebo-controlled, double-blind trial. J. Nutr. Sci. Vitaminol. 2018, 64, 75–80. [Google Scholar] [CrossRef]
- Yokozawa, T.; Kim, Y.J. Piceatannol inhibits melanogenesis by its antioxidative actions. Biol. Pharm. Bull. 2007, 30, 2007–2011. [Google Scholar] [CrossRef]
- Kim, S.; Kim, Y.; Lee, Y.; Chung, J.H. Ceramide accelerates ultraviolet-induced MMP-1 expression through JAK1/STAT-1 pathway in cultured human dermal fibroblasts. J. Lipid Res. 2008, 49, 2571–2581. [Google Scholar] [CrossRef]
- Maruki-Uchida, H.; Kurita, I.; Sugiyama, K.; Sai, M.; Maeda, K.; Ito, T. The protective effects of piceatannol from passion fruit (Passiflora edulis) seeds in UVB-irradiated keratinocytes. Biol. Pharm. Bull. 2013, 36, 845–849. [Google Scholar] [CrossRef]
- Aziz, M.; Afaq, F.; Ahmad, N. Prevention of Ultraviolet-B Radiation Damage by Resveratrol in Mouse Skin Is Mediated via Modulation in Survivin. Photochem. Photobiol. 2004, 81, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Afaq, F.; Adhami, V.M.; Ahmad, N. Prevention of short-term ultraviolet B radiation-mediated damages by resveratrol in SKH-1 hairless mice. Toxicol. Appl. Pharmacol. 2003, 186, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Park, J.H.; Suh, H.J.; Lee, I.C.; Koh, J.; Boo, Y.C. Effects of resveratrol, oxyresveratrol, and their acetylated derivatives on cellular melanogenesis. Arch. Dermatol. Res. 2014, 306, 475–487. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.H.; Seok, J.K.; An, S.M.; Baek, J.H.; Koh, J.S.; Boo, Y.C. A study of the human skin-whitening effects of resveratryl triacetate. Arch. Dermatol. Res. 2015, 307, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.E.; Choi-Kwon, S.; Park, K.A.; Lee, H.J.; Park, M.S.; Lee, J.H.; Kwon, S.B.; Park, K.C. Dietary supplementation of (+)-catechin protects against UVB-induced skin damage by modulating antioxidant enzyme activities. Photodermatol. Photoimmunol. Photomed. 2003, 19, 235–241. [Google Scholar] [CrossRef]
- Tanigawa, T.; Kanazawa, S.; Ichibori, R.; Fujiwara, T.; Magome, T.; Shingaki, K.; Miyata, S.; Hata, Y.; Tomita, K.; Matsuda, K.; et al. (+)-Catechin protects dermal fibroblasts against oxidative stress-induced apoptosis. BMC Complement. Altern. Med. 2014, 14, 1–7. [Google Scholar] [CrossRef]
- Kim, E.; Hwang, K.; Lee, J.; Han, S.Y.; Kim, E.M.; Park, J.; Cho, J.Y. Skin protective effect of epigallocatechin gallate. Int. J. Mol. Sci. 2018, 19, 1–14. [Google Scholar] [CrossRef]
- An, S.; Kim, H.; Kim, J.-E.; Boo, Y.C. Flavonoids, taxifolin and luteolin attenuate cellular melanogenesis despite increasing tyrosinase protein levels. Phytother. Res. 2008, 22, 1200–1207. [Google Scholar] [CrossRef]
- Choi, M.Y.; Song, H.S.; Hur, H.S.; Sim, S.S. Whitening activity of luteolin related to the inhibition of cAMP pathway in α-MSH-stimulated B16 melanoma cells. Arch. Pharm. Res. 2008, 31, 1166–1171. [Google Scholar] [CrossRef]
- Erden Inal, M.; Kahraman, A. The protective effect of flavonol quercetin against ultraviolet a induced oxidative stress in rats. Toxicology 2000, 154, 21–29. [Google Scholar] [CrossRef]
- Chaiprasongsuk, A.; Onkoksoong, T.; Pluemsamran, T.; Limsaengurai, S.; Panich, U. Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses. Redox Biol. 2016, 8, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Si, Y.-X.; Wang, Z.-J.; Park, D.; Chung, H.Y.; Wang, S.-F.; Yan, L.; Yang, J.-M.; Qian, G.-Y.; Yin, S.-J.; Park, Y.-D. Effect of hesperetin on tyrosinase: Inhibition kinetics integrated computational simulation study. Int. J. Biol. Macromol. 2012, 50, 257–262. [Google Scholar] [CrossRef] [PubMed]
- An, S.M.; Lee, S.I.; Choi, S.W.; Moon, S.W.; Boo, Y.C. p-Coumaric acid, a constituent of Sasa quelpaertensis Nakai, inhibits cellular melanogenesis stimulated by α-melanocyte stimulating hormone. Br. J. Dermatol. 2008, 159, 292–299. [Google Scholar] [CrossRef] [PubMed]
- An, S.M.; Koh, J.S.; Boo, Y.C. p-coumaric acid not only inhibits human tyrosinase activity in vitro but also melanogenesis in cells exposed to UVB. Phyther. Res. 2010, 24, 1175–1180. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.K.; Kim, S.J.; Boo, Y.C.; Baek, J.H.; Lee, S.H.; Koh, J.S. Effects of p-coumaric acid on erythema and pigmentation of human skin exposed to ultraviolet radiation. Clin. Exp. Dermatol. 2011, 36, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Tan, J.; Zou, B.; Liu, X.; Yu, Y. Exploring the potential effect and mechanisms of protocatechuic acid on human hair follicle melanocytes. Acta Pharm. 2020, 70, 539–549. [Google Scholar] [CrossRef]
- Roa Delgado, V.; García, L.; Avendaño, B. Riqueza de Especies de Passifloras (Passifloraceace). Distribución Geográfica en Zonas Altas de los Estados Andinos, Geoenseñanza, Universidad de Los Andes, Venezuela 2008, 13, 51–58. Available online: https://www.redalyc.org/articulo.oa?id=36014579005 (accessed on 2 February 2024).
- FAO. Pérdidas y Desperdicio de Alimentos en el Mundo—Alcance, Causas y Prevención; FAO: Rome, Italy, 2012. [Google Scholar] [CrossRef]
- Neiva, J.N.M.; Nunes, F.C.S.; Cândido, M.J.D.; Rodriguez, N.M.; Lôbo, R.N.B. Valor nutritivo de silagens de capim-elefante enriquecidas com subproduto do processamento do maracujá. Rev. Bras. Zootec. 2006, 35, 1845–1851. [Google Scholar] [CrossRef]
- Durán-Aranguren, D.; Bernal-álvarez, L.; Morantes, G.; Sierra, R. Potential of gulupa (Purple passion fruit) waste for biorefineries. In Proceedings of the 27th European Biomass Conference and Exhibition, Lisbon, Portugal, 27–30 May 2019; pp. 1303–1309. [Google Scholar] [CrossRef]
- Djilas, S.; Čanadanović-Brunet, J.; Ćetković, G. By-products of fruits processing as a source of phytochemicals. Chem. Ind. Chem. Eng. Q. 2009, 15, 191–202. [Google Scholar] [CrossRef]
- He, X.; Luan, F.; Yang, Y.; Wang, Z.; Zhao, Z.; Fang, J.; Wang, M.; Zuo, M.; Li, Y. Passiflora edulis: An Insight Into Current Researches on Phytochemistry and Pharmacology. Front. Pharmacol. 2020, 11, 1–16. [Google Scholar] [CrossRef]
- Freitas, M.S.M.; Monnerat, P.H.; Vieira, I.J.C.; Carvalho, A.J.C.D. Flavonóides e composição mineral de folhas de maracujazeiro amarelo em função da posição da folha no ramo. Cienc. Rural 2007, 37, 1634–1639. [Google Scholar] [CrossRef]
- Mareck, U.; Herrmann, K.; Galensa, R.; Wray, V. The 6-C-chinovoside and 6-C-fucoside of luteolin from Passiflora edulis. Phytochemistry 1991, 30, 3486–3487. [Google Scholar] [CrossRef]
- Zucolotto, S.M.; Goulart, S.; Montanher, A.B.; Reginatto, F.H.; Schenkel, E.P.; Fröde, T.S. Bioassay-guided isolation of anti-inflammatory C-glucosylflavones from passiflora edulis. Planta Med. 2009, 75, 1221–1226. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.J.; Li, H.W.; Tan, F.; Deng, J. Studies on the chemical constituents of Passiflora edulis f. flavicarpa. Zhongyaocai 2009, 32, 1686–1688. [Google Scholar] [PubMed]
- Cazarin, C.B.B.; Silva, J.K.D.; Colomeu, T.C.; Zollner, R.D.L.; Maróstica Junior, M.R. Capacidade antioxidante e composição química da casca de maracujá (Passiflora edulis). Cienc. Rural 2014, 44, 1699–1704. [Google Scholar] [CrossRef]
- Silva, D.C.; Freitas, A.L.P.; Barros, F.C.N.; Lins, K.O.; Alves, A.P.N.; Alencar, N.M.; de Figueiredo, I.S.; Pessoa, C.; de Moraes, M.O.; Costa-Lotufo, L.V.; et al. Polysaccharide isolated from Passiflora edulis: Characterization and antitumor properties. Carbohydr. Polym. 2012, 87, 139–145. [Google Scholar] [CrossRef]
- de Souza, C.G.; Rodrigues, T.H.; e Silva, L.M.; Ribeiro, P.R.; de Brito, E.S. Sequential extraction of flavonoids and pectin from yellow passion fruit rind using pressurized solvent or ultrasound. J. Sci. Food Agric. 2018, 98, 1362–1368. [Google Scholar] [CrossRef]
- Lutomski, V.J.; Maleka, B.; Rybacka, L. Pharmacochemical Investigation of the Raw Materials. Planta Med. 1975, 27, 112–121. [Google Scholar] [CrossRef]
- Rotta, E.M.; Rodrigues, C.A.; Jardim, I.C.S.F.; Maldaner, L.; Visentainer, J.V. Determination of phenolic compounds and antioxidant activity in passion fruit pulp (Passiflora spp.) using a modified QuEChERS method and UHPLC-MS/MS. Lwt 2019, 100, 397–403. [Google Scholar] [CrossRef]
- Zeraik, M.L.; Yariwake, J.H. Quantification of isoorientin and total flavonoids in Passiflora edulis fruit pulp by HPLC-UV/DAD. Microchem. J. 2010, 96, 86–91. [Google Scholar] [CrossRef]
- Mercadante, A.Z.; Britton, G.; Rodriguez-Amaya, D.B. Carotenoids from Yellow Passion Fruit (Passiflora edulis). J. Agric. Food Chem. 1998, 46, 4102–4106. [Google Scholar] [CrossRef]
- Bernreuther, A.; Christoph, N.; Schreier, P. Determination of the enantiomeric composition of y-lactones in complex natural matrices using multidimensional capillary gas chromatography. J. Chromatogr. 1989, 481, 363–367. [Google Scholar] [CrossRef]
- Winter, M.; Furrer, A.; Willhalm, B.; Thommen, W. Identification and Synthesis of two New Organic Sulfur Compounds from the Yellow Passion Fruit (Passiflora edulis f. Flavicarpa). Helv. Chim. Acta 1976, 59, 1613–1620. [Google Scholar] [CrossRef]
- Engel, K.H.; Tressl, R. Identification of New Sulfur-Containing Volatiles in Yellow Passion Fruits (Passiflora edulis f. flavicarpa). J. Agric. Food Chem. 1991, 39, 2249–2252. [Google Scholar] [CrossRef]
- Narain, N.; Almeida, J.D.N.; Galvão, M.D.S.; Madruga, M.S.; Brito, E.S.D. Compostos voláteis dos frutos de maracujá (Passiflora edulis forma Flavicarpa) e de cajá (Spondias mombin L.) obtidos pela técnica de headspace dinâmico. Ciência Tecnol. Aliment. 2004, 24, 212–216. [Google Scholar] [CrossRef]
- Janzantti, N.S.; Macoris, M.S.; Garruti, D.S.; Monteiro, M. Influence of the cultivation system in the aroma of the volatile compounds and total antioxidant activity of passion fruit. LWT—Food Sci. Technol. 2012, 46, 511–518. [Google Scholar] [CrossRef]
- Braga, G.C.; Prado, A.; Pinto, J.S.d.S.; de Alencar, S.M. Volatile profile of yellow passion fruit juice by static headspace and solid phase microextraction techniques. Ciência Rural 2015, 45, 356–363. [Google Scholar] [CrossRef]
- de Oliveira, L.C.; dos Santos, J.A.B.; Narain, N.; dos Santos Fontes, A.; Campos, R.S.S.; de Souza, T.L. Characterization and extraction of volatile compounds from passion fruit (Passiflora edulis Sims f. flavicarpa Degener) processing waste. Ciência Rural 2012, 42, 2280–2287. [Google Scholar]
- Zucolotto, S.M.; Palermo, J.A.; Schenkel, E.P. Estudo fitoquímico das raízes de Passiflora edulis forma flavicarpa Degener. Acta Farm. Bonaer. 2006, 25, 5–9. [Google Scholar]
- de Santana, F.C.; de Oliveira Torres, L.R.; Shinagawa, F.B.; de Oliveira e Silva, A.M.; Yoshime, L.T.; de Melo, I.L.P.; Marcellini, P.S.; Mancini-Filho, J. Optimization of the antioxidant polyphenolic compounds extraction of yellow passion fruit seeds (Passiflora edulis Sims) by response surface methodology. J. Food Sci. Technol. 2017, 54, 3552–3561. [Google Scholar] [CrossRef]
- Pereira, M.G.; Maciel, G.M.; Haminiuk, C.W.I.; Bach, F.; Hamerski, F.; Scheer, A.d.P.; Corazza, M.L. Effect of Extraction Process on Composition, Antioxidant and Antibacterial Activity of Oil from Yellow Passion Fruit (Passiflora edulis Var. Flavicarpa) Seeds. Waste Biomass Valorization 2019, 10, 2611–2625. [Google Scholar] [CrossRef]
- Flórez, L.M. Caracterización Fisiológica y Bioquímica del Fruto de Gulupa (Passiflora edulis Sims) Bajo Tres Ambientes Contrastantes. Master’s Thesis, Universidad Nacional de Colombia Facultad de Agronomía, Bogotá, Colombia, 2012. [Google Scholar]
- Carlosama, A.R.; Faleiro, F.G.; Morera, M.P.; Costa, A.M. Passifloras: Especies Cultivadas en el Mundo, 1st ed.; Brasilia, D.F., Ed.; ProImpress: Cepas, Brazil, 2020. [Google Scholar]
- Andasuryani, A.; Zainal, P.W.; Ifmalinda, I. Chemical characteristic of sweet passion fruit (Passiflora lingularis Juss) seeds from Indonesia based on maturity levels. J. Phys. Conf. Ser. 2020, 1469, 012001. [Google Scholar] [CrossRef]
- Primot, S.; d’Eeckenbrugge, G.C.; Rioux, V.; Pérez, J.A.O.; Garcin, F. Variación morfológica de tres especies de curubas (Passiflora tripartita var. mollissima, P. tarminiana y P. mixta) y sus híbridos en el Valle del Cauca (Colombia). Rev. Bras. Frutic. 2005, 27, 467–471. [Google Scholar] [CrossRef]
- Ramaiya, S.D.; Bujang, J.S.; Zakaria, M.H.; King, W.S.; Sahrir, M.A. Sugars, ascorbic acid, total phenolic content and total antioxidant activity in passion fruit (Passiflora) cultivars. J. Sci. Food Agric. 2013, 93, 1198–1205. [Google Scholar] [CrossRef] [PubMed]
- Sabogal-Palma, A.C.; Chávez-Marín, J.; Oliveros-Gómez, D.F.; Murillo-Perea, E.; Méndez-Arteaga, J.J. Funcionalidades biológicas de passiflora maliformis del sur macizo colombiano. Bioagro 2016, 28, 3–12. [Google Scholar]
- Ramaiya, S.D.; Bujang, J.S.; Zakaria, M.H. Assessment of total phenolic, antioxidant, and antibacterial activities of passiflora species. Sci. World J. 2014, 2014, 167309. [Google Scholar] [CrossRef] [PubMed]
- Geerligs, M. Skin Layer Mechanics. Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2010. [Google Scholar]
- Kumar, S. Exploratory analysis of global cosmetic industry: Major players, technology and market trends. Technovation 2005, 25, 1263–1272. [Google Scholar] [CrossRef]
- Marín, D.; Pozo, A. Pigmentación de la piel (I). Melaninas: Conceptos generales e implicaciones cosméticas. Offarm Farm. Soc. 2005, 24, 116–118. [Google Scholar]
- Rittié, L.; Fisher, G.J. UV-light-induced signal cascades and skin aging. Ageing Res. Rev. 2002, 1, 705–720. [Google Scholar] [CrossRef]
- Ota, M.; Yokoyama, M. Chemistry of cosmetics. Compr. Nat. Prod. II Chem. Biol. 2010, 3, 317–349. [Google Scholar]
- Trueba, G.P. Los flavonoides: Antioxidantes o prooxidantes. Rev. Cuba. Investig. Biomed. 2003, 22, 48–57. [Google Scholar]
- Casañola-Martín, G.M.; Marrero-Ponce, Y.; Le-Thi-Thu, H.; Khan, M.T.H.; Torrens, F.; Rescigno, A.; Abad, C. La enzima tirosinasa: 2. Inhibidores de origen natural y sintético. Afinidad 2013, 70, 270–276. [Google Scholar]
- Luo, D.; Min, W.; Lin, X.-F.; Wu, D.; Xu, Y.; Miao, X. Effect of Epigallocatechingallate on Ultraviolet B-Induced Photo-Damage in Keratinocyte Cell Line. Am. J. Chin. Med. 2006, 34, 911–922. [Google Scholar] [CrossRef] [PubMed]
- Hosnuter, M.; Melikoglu, C.; Aslan, C.; Saglam, G.; Sutcu, R. The protective effects of epigallocatechin gallate against distant organ damage after severe skin burns—Experimental study using a rat model of thermal trauma. Adv. Clin. Exp. Med. 2015, 24, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Lourith, N.; Kanlayavattanakul, M.; Chingunpitak, J. Development of sunscreen products containing passion fruit seed extract. Brazilian J. Pharm. Sci. 2017, 53, 1–8. [Google Scholar] [CrossRef]
- Vera, K.; Raif, A.; Ikhtiari, R. Antioxidant and Anti-elastase Activity of Seed and Peel Extract of P. edulis. Am. Sci. Res. J. Eng. Technol. Sci. 2019, 53, 43–48. [Google Scholar]
- Bravo, K.; Quintero, C.; Agudelo, C.; García, S.; Bríñez, A.; Osorio, E. CosIng database analysis and experimental studies to promote Latin American plant biodiversity for cosmetic use. Ind. Crops Prod. 2020, 144, 112007. [Google Scholar] [CrossRef]
Compound Name | Cosmetic Function | Suspected Target/Mechanism | Experimental Model | IC50 | Reference |
---|---|---|---|---|---|
Piceatannol (3,4,3′,5′ -tetrahydroxytrans-stilbene) | Antimicrobial | - | in vitro: Propionibacterium acnes | 123 mg/L | [86,87] |
Skin conditioning-miscellaneous | Improve skin moisture | Clinical trial (women with dry skin) | - | [88] | |
Bleaching | Inhibition of TYR a and MPPs b | B16 melanoma cells | 1.53 µM | [85,89,90] | |
Skin protecting (photoprotection) | Decrease in ROS c | Human keratinocites | - | [91] | |
Resveratrol | Antimicrobial | - | In vitro: Propionibacterium acnes | 73 mg/L | [86] |
Skin protecting (photoprotection) | Decrease oxidative stress and inflamatory response | In vivo: SKH-1 hairless mice | - | [92,93] | |
Bleaching | Inhibition of TYR and MPPs | Human dermal fibroblast and embryonic kidney cells. Human subjects. | 1.8 µM | [85,94,95] | |
(+)-catechin | Skin protecting (photoprotection) | Modulating antioxidant enzyme activities (superoxide dismutase and catalase) | BALB/c mice | - | [96] |
Skin protecting (antiaging prevention) | Inhibition of p38 d and JNK e phosphorylation | NIH 3T3 fibroblasts cells | - | [97] | |
Epigallocatechin Gallate | Skin protecting | Reduce extracelular melanin secretion, upregulated expression of skin hydration genes | HaCaT f, HEK293 g, and B16F10 h cell lines | - | [98] |
Reduced UVB-induced erythema and lipid peroxidation | Guinea pigs, hairless mice and human dermal fibroblast cultures. | - | [59] | ||
Luteolin | Bleaching | Inhibition of TYR | Murine melanoma B16/F10 cells | - | [99] |
Bleaching | Inhibition of TYR, melanin production and adenyl cyclase | B16 melanoma cells | 4.16 μL | [100] | |
Quercetin | Skin protecting (photoprotection) | Reduced MDA (malondialdehyde) levels and increased enzymatic antioxidant levels | Spraque–Dawley rats (liver cells exposed to UVA) | - | [101] |
Bleaching | Inhibition of TYR activity and melanin content | B16F10 cells | 10.1 ± 3.1 μM (IC30, InhTyr i) | [102] | |
inhibition of TYR, antioxidant | Analyitical method: dopachrome method | - | [48] | ||
Rutina | Bleaching | Inhibition of TYR activity and melanin content | B16F10 cells | 18.56 ± 4.2 μM (IC30 InhTyr) | [102] |
Hesperetin | Bleaching | Inhibition of TYR activity | Analyitical method: spectrophotometric assay | - | [103] |
Caffeic acid | Bleaching | Inhibition of TYR and melanin activity | B16F10 cells | 24.1 ± 6.2 μM (IC30 InhTyr) | [102] |
Ferulic acid | Bleaching | Inhibition of TYR and melanin activity | B16F10 cells | >30 μM (IC30 InhTyr) | [102] |
p-coumaric acid | Bleaching | Inhibition of TYR expression (competition with L-tyrosine for the regulatory sie on the MSH receptors (hypothesis)) | Murine melanoma B16/F10 cells | - | [104] |
Inhibition of human TYR and 3,4-dihydroxyphenylalanine (DOPA) | Human epidermal melanocytes and murine melanoma B16/F10 cells exposed to UVB | - | [105] | ||
Reduce UV-induced erythema and pigmentation, reduce melanin index | Human subjects, double-blind study | - | [106] | ||
Protocatechuic acid | Bleaching | Inhibition of TYR and melanin activity | Human hair follicle melanocytes (HFM) | 8.9 μmol/L InhTyr | [107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Published by MDPI on behalf of the Österreichische Pharmazeutische Gesellschaft. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pardo Solórzano, M.V.; Costa, G.M.; Castellanos, L. Passiflora By-Products: Chemical Profile and Potential Use as Cosmetic Ingredients. Sci. Pharm. 2024, 92, 57. https://doi.org/10.3390/scipharm92040057
Pardo Solórzano MV, Costa GM, Castellanos L. Passiflora By-Products: Chemical Profile and Potential Use as Cosmetic Ingredients. Scientia Pharmaceutica. 2024; 92(4):57. https://doi.org/10.3390/scipharm92040057
Chicago/Turabian StylePardo Solórzano, Manuela Victoria, Geison Modesti Costa, and Leonardo Castellanos. 2024. "Passiflora By-Products: Chemical Profile and Potential Use as Cosmetic Ingredients" Scientia Pharmaceutica 92, no. 4: 57. https://doi.org/10.3390/scipharm92040057
APA StylePardo Solórzano, M. V., Costa, G. M., & Castellanos, L. (2024). Passiflora By-Products: Chemical Profile and Potential Use as Cosmetic Ingredients. Scientia Pharmaceutica, 92(4), 57. https://doi.org/10.3390/scipharm92040057