Safety of Oral Administration of 5-Aminolevulinic Acid Phosphate Combined with Ferrous Iron in Healthy Subjects: An Open-Label Trial
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Study Population
4.3. Study Design
4.4. Clinical Examination
4.5. Safety Assessment
4.6. Sample Size and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heinemann, I.U.; Jahn, M.; Jahn, D. The biochemistry of heme biosynthesis. Arch. Biochem. Biophys. 2008, 474, 238–251. [Google Scholar] [CrossRef] [PubMed]
- Dalton, J.T.; Yates, C.R.; Yin, D.; Straughn, A.; Marcus, S.L.; Golub, A.L.; Meyer, M.C. Clinical pharmacokinetics of 5-aminolevulinic acid in healthy volunteers and patients at high risk for recurrent bladder cancer. J. Pharmacol. Exp. Ther. 2002, 301, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Berlin, N.I.; Neuberger, A.; Scott, J.J. The metabolism of delta-aminolaevulic acid. 1. Normal pathways, studied with the aid of 15N. Biochem. J. 1956, 64, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Berlin, N.I.; Neuberger, A.; Scott, J.J. The metabolism of delta-aminolaevulic acid. 2. Normal pathways, studied with the aid of 14C. Biochem. J. 1956, 64, 90–100. [Google Scholar] [CrossRef]
- Al-Saber, F.; Aldosari, W.; Alselaiti, M.; Khalfan, H.; Kaladari, A.; Khan, G.; Harb, G.; Rehani, R.; Kudo, S.; Koda, A.; et al. The Safety and Tolerability of 5-Aminolevulinic Acid Phosphate with Sodium Ferrous Citrate in Patients with Type 2 Diabetes Mellitus in Bahrain. J. Diabetes Res. 2016, 2016, 8294805. [Google Scholar] [CrossRef]
- Higashikawa, F.; Noda, M.; Awaya, T.; Tanaka, T.; Sugiyama, M. 5-aminolevulinic acid, a precursor of heme, reduces both fasting and postprandial glucose levels in mildly hyperglycemic subjects. Nutrition 2013, 29, 1030–1036. [Google Scholar] [CrossRef]
- Rodriguez, B.L.; Curb, J.D.; Davis, J.; Shintani, T.; Perez, M.H.; Apau-Ludlum, N.; Johnson, C.; Harrigan, R.C. Use of the dietary supplement 5-aminiolevulinic acid (5-ALA) and its relationship with glucose levels and hemoglobin A1C among individuals with prediabetes. Clin. Transl. Sci. 2012, 5, 314–320. [Google Scholar] [CrossRef]
- Tanaka, T.; Tashiro, M.; Ota, K.; Fujita, A.; Sawai, T.; Kadota, J.; Fukuda, Y.; Sumiyoshi, M.; Ide, S.; Tachikawa, N.; et al. Safety and efficacy of 5-aminolevulinic acid phosphate/iron in mild-to-moderate coronavirus disease 2019: A randomized exploratory phase II trial. Medicine 2023, 102, e34858. [Google Scholar] [CrossRef]
- Tamura, Y.; Kaga, H.; Abe, Y.; Yoshii, H.; Seino, H.; Hiyoshi, T.; Kuribayashi, N.; Inoue, I.; Watada, H. Efficacy and Safety of 5-Aminolevulinic Acid Combined with Iron on Skeletal Muscle Mass Index and Physical Performance of Patients with Sarcopenia: A Multicenter, Double-Blinded, Randomized-Controlled Trial (ALADDIN Study). Nutrients 2023, 15, 2866. [Google Scholar] [CrossRef]
- Koyasu, H.; Horie, S.; Matsushita, K.; Ashizawa, T.; Muto, S.; Isotani, S.; Tanaka, T.; Nakajima, M.; Tsujimura, A. Efficacy and Safety of 5-Aminolevulinic Acid for Patients with Symptoms of Late-Onset Hypogonadism: A Preliminary Study. World J. Men’s Health 2022, 40, 456–464. [Google Scholar] [CrossRef]
- Adhikari, A.; Penatti, C.A.; Resende, R.R.; Ulrich, H.; Britto, L.R.; Bechara, E.J. 5-Aminolevulinate and 4, 5-dioxovalerate ions decrease GABA(A) receptor density in neuronal cells, synaptosomes and rat brain. Brain Res. 2006, 1093, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Demasi, M.; Penatti, C.A.; DeLucia, R.; Bechara, E.J. The prooxidant effect of 5-aminolevulinic acid in the brain tissue of rats: Implications in neuropsychiatric manifestations in porphyrias. Free Radic. Biol. Med. 1996, 20, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Felitsyn, N.; McLeod, C.; Shroads, A.L.; Stacpoole, P.W.; Notterpek, L. The heme precursor delta-aminolevulinate blocks peripheral myelin formation. J. Neurochem. 2008, 106, 2068–2079. [Google Scholar] [CrossRef] [PubMed]
- APPLICATION NUMBER:208630Orig1s000 NON-CLINICAL REVIEW(S) [Internet]: Food and Drug Administration of United States. 2016. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2017/208630Orig1s000PharmR.pdf (accessed on 8 January 2025).
- Hoppe, M.; Hulth, N.L. Validation of the clinical approach of using the induced serum iron increase after 1h as a measure of iron absorption. Clin. Nutr. 2006, 25, 163–165. [Google Scholar] [CrossRef]
- Kim, I.; Yetley, E.A.; Calvo, M.S. Variations in iron-status measures during the menstrual cycle. Am. J. Clin. Nutr. 1993, 58, 705–709. [Google Scholar] [CrossRef]
- DeLoughery, T.G. Safety of Oral and Intravenous Iron. Acta Haematol. 2019, 142, 8–12. [Google Scholar] [CrossRef]
- Frykman, E.; Bystrom, M.; Jansson, U.; Edberg, A.; Hansen, T. Side effects of iron supplements in blood donors: Superior tolerance of heme iron. J. Lab. Clin. Med. 1994, 123, 561–564. [Google Scholar]
- Micronutrients IoMUPo. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Laftah, A.H.; Raja, K.; Simpson, R.J.; Peters, T.J. Effect of Tin-mesoporphyrin, an inhibitor of haem catabolism, on intestinal iron absorption. Br. J. Haematol. 2003, 122, 298–304. [Google Scholar] [CrossRef]
- Laftah, A.H.; Raja, K.B.; Latunde-Dada, G.O.; Vergi, T.; McKie, A.T.; Simpson, R.J.; Peters, T.J. Effect of altered iron metabolism on markers of haem biosynthesis and intestinal iron absorption in mice. Ann. Hematol. 2005, 84, 177–182. [Google Scholar] [CrossRef]
- Jagielska, A.; Wilhite, K.D.; Van Vliet, K.J. Extracellular acidic pH inhibits oligodendrocyte precursor viability, migration, and differentiation. PLoS ONE 2013, 8, e76048. [Google Scholar] [CrossRef]
- GLIOLAN® PRODUCT INFORMATION [Internet]: Department of Health, Australian Government. 2014. Available online: https://www.tga.gov.au/sites/default/files/auspar-aminolevulinic-acid-140303-pi.pdf (accessed on 8 January 2025).
- Dalton, J.T.; Meyer, M.C.; Golub, A.L. Pharmacokinetics of aminolevulinic acid after oral and intravenous administration in dogs. Drug Metab. Dispos. 1999, 27, 432–435. [Google Scholar] [CrossRef]
- Guidance for Industry Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers: Food and Drug Administration of United States. 2005. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/estimating-maximum-safe-starting-dose-initial-clinical-trials-therapeutics-adult-healthy-volunteers (accessed on 8 January 2025).
Total (n = 22) | Males (n = 11) | Females (n = 11) | |
---|---|---|---|
Age (y) | 43.5 ± 12.1 (21–59) | 40.8 ± 15.4 (21–59) | 46.2 ± 7.5 (29–58) |
Height (cm) | 164.1 ± 7.2 | 168.9 ± 4.6 | 159.2 ± 6.0 |
Body weight (kg) | 60.1 ± 9.2 | 64.7 ± 9.8 | 55.6 ± 6.1 |
BMI (kg/m2) | 22.3 ± 2.7 | 22.6 ± 2.8 | 22.0 ± 2.6 |
Body fat percentage (%) | 23.3 ± 8.5 | 17.1 ± 6.2 | 29.4 ± 5.3 |
Systolic blood pressure (mmHg) | 113 ± 13 | 119 ± 8 | 106 ± 14 |
Diastolic blood pressure (mmHg) | 70.1 ± 10.4 | 75.7 ± 9.0 | 64.5 ± 8.8 |
Pulse rate (beats per min) | 67.8 ± 10.9 | 65.2 ± 11.7 | 70.5 ± 9.8 |
Body temperature (°C) | 36.5 ± 0.3 | 36.5 ± 0.3 | 36.6 ± 0.2 |
White blood cell count (×103/μL) | 5.10 ± 1.46 | 5.18 ± 1.69 | 5.00 ± 1.26 |
Red blood cell count (×106/μL) | 4.73 ± 0.45 | 5.07 ± 0.32 | 4.39 ± 0.25 |
Hemoglobin (g/dL) | 14.3 ± 1.5 | 15.4 ± 1.0 | 13.2 ± 0.9 |
Hematocrit (%) | 44.5 ± 4.2 | 47.6 ± 3.0 | 41.4 ± 2.8 |
MCV (fL) | 94.2 ± 3.5 | 94.0 ± 3.3 | 94.5 ± 3.9 |
MCH (pg) | 30.3 ± 1.2 | 30.5 ± 1.0 | 30.1 ± 1.4 |
MCHC (g/dL) | 32.2 ± 0.9 | 32.4 ± 0.9 | 31.9 ± 0.8 |
Platelet count (×104/μL) | 24.6 ± 6.4 | 23.0 ± 4.8 | 26.3 ± 7.5 |
AST (IU/L) | 21.4 ± 5.6 | 25.1 ± 5.0 | 17.6 ± 3.1 |
ALT (IU/L) | 19.0 ± 9.9 | 23.8 ± 11.6 | 14.1 ± 4.5 |
γ-GTP (IU/L) | 27.4 ± 20.1 | 38.6 ± 22.7 | 16.1 ± 7.6 |
LDH(IU/L) | 173 ±28 | 180 ± 32 | 167 ± 22 |
Cholinesterase (IU/L) | 316 ± 57 | 332 ± 59 | 300 ± 53 |
Alkaline phosphatase (IU/L) | 167 ± 36 | 180 ± 37 | 155 ± 31 |
Amylase (IU/L) | 78.1 ± 19.7 | 78.6 ± 25.2 | 77.7 ± 13.5 |
Na (mEq/L) | 141 ± 2 | 141 ± 2 | 141 ± 2 |
K (mEq/L) | 4.2 ± 0.4 | 4.3 ± 0.4 | 4.2 ± 0.4 |
Cl (mEq/L) | 106 ± 2 | 105 ± 2 | 106 ± 2 |
Total protein (g/dL) | 7.4 ± 0.3 | 7.4 ± 0.4 | 7.4 ± 0.3 |
Total bilirubin (mg/dL) | 0.84 ± 0.36 | 0.80 ± 0.30 | 0.89 ± 0.42 |
Albumin (g/dL) | 4.6 ± 0.3 | 4.7 ± 0.3 | 4.5 ± 0.2 |
Uric acid (mg/dL) | 5.2 ± 1.5 | 6.2 ± 1.4 | 4.2 ± 0.7 |
Urea nitrogen (mg/dL) | 12.0± 2.8 | 11.7 ± 2.9 | 12.2 ± 2.8 |
Creatinine (mg/dL) | 0.69 ± 0.12 | 0.78 ± 0.10 | 0.61 ± 0.06 |
eGFR (ml/min/1.73m2) | 103.4 ± 17.3 | 92.5 ± 15.0 | 114.3 ± 12.1 |
Total cholesterol (mg/dL) | 211 ± 36 | 215 ± 42 | 208 ± 30 |
LDL cholesterol (mg/dL) | 129 ± 30 | 131 ± 35 | 127 ± 25 |
HDL cholesterol (mg/dL) | 67 ± 13 | 64 ± 16 | 71 ± 9 |
LDL/HDL ratio | 2.02 ± 0.71 | 2.22 ± 0.89 | 1.83 ± 0.42 |
Triglycerides (mg/dL) | 95 ± 65 | 115 ± 84 | 75 ± 29 |
Fasting blood glucose (mg/dL) | 95 ± 7 | 96 ± 8 | 94 ± 7 |
HbA1c (%) | 5.3 ± 0.3 | 5.4 ± 0.3 | 5.3 ± 0.3 |
Glycoalbumin (%) | 13.5 ± 1.0 | 13.2 ± 0.7 | 13.8 ± 1.1 |
Fe (μg/dL) | 113 ± 37 | 119 ± 36 | 106 ± 39 |
Ferritin (ng/mL) | 52.0 ± 52.5 | 77.0 ± 63.3 | 27.1 ± 20.4 |
Adverse Event | Number of Cases | Incidence Rates (%) | Incidence Rates (per 100 Person-Weeks) | Severity | Causal Relationship |
---|---|---|---|---|---|
Decrease in hemoglobin | 1 | 4.5 | 1.1 | Mild | Not related (but the possibility of a causal relationship could not be denied) |
Increase in ALT | 1 | 4.5 | 1.1 | Mild | Not related (but the possibility of a causal relationship could not be denied) |
Increase in γ-GTP | 2 | 9.1 | 2.3 | Mild | Not related (but the possibility of a causal relationship could not be denied) |
Increase in total bilirubin | 2 | 9.1 | 2.3 | Mild | Not related (but the possibility of a causal relationship could not be denied) |
Decrease in eGFR | 3 | 13.6 | 3.4 | Mild–Moderate | Not related (but the possibility of a causal relationship could not be denied) |
Increase in triglycerides | 2 | 9.1 | 2.3 | Mild–Moderate | Not related (but the possibility of a causal relationship could not be denied) |
Increase in serum Fe | 6 | 27.3 | 6.8 | Mild | Related |
Abdominal pain/diarrhea | 1 | 4.5 | 1.1 | Mild | Not related (but the possibility of a causal relationship could not be denied) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Österreichische Pharmazeutische Gesellschaft. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Higashikawa, F.; Ito, H.; Tanaka, T. Safety of Oral Administration of 5-Aminolevulinic Acid Phosphate Combined with Ferrous Iron in Healthy Subjects: An Open-Label Trial. Sci. Pharm. 2025, 93, 5. https://doi.org/10.3390/scipharm93010005
Higashikawa F, Ito H, Tanaka T. Safety of Oral Administration of 5-Aminolevulinic Acid Phosphate Combined with Ferrous Iron in Healthy Subjects: An Open-Label Trial. Scientia Pharmaceutica. 2025; 93(1):5. https://doi.org/10.3390/scipharm93010005
Chicago/Turabian StyleHigashikawa, Fumiko, Hidenori Ito, and Tohru Tanaka. 2025. "Safety of Oral Administration of 5-Aminolevulinic Acid Phosphate Combined with Ferrous Iron in Healthy Subjects: An Open-Label Trial" Scientia Pharmaceutica 93, no. 1: 5. https://doi.org/10.3390/scipharm93010005
APA StyleHigashikawa, F., Ito, H., & Tanaka, T. (2025). Safety of Oral Administration of 5-Aminolevulinic Acid Phosphate Combined with Ferrous Iron in Healthy Subjects: An Open-Label Trial. Scientia Pharmaceutica, 93(1), 5. https://doi.org/10.3390/scipharm93010005