An Untargeted Metabolomics Approach to Investigate the Metabolic Effect of Beetroot Juice Supplementation in Fencers—A Preliminary Study
Abstract
:1. Introduction
2. Results
2.1. Anthropometric Parameters, Physical Activity Level and Cardiovascular Fitness
2.2. Untargeted Metabolomics Studies
3. Discussion
4. Limitations of the Study
5. Conclusions
6. Materials and Methods
6.1. Study Participants and Study Design
6.2. Preparation of the Freeze-Dried Beetroot Juice
6.3. Metabolomics Analysis
6.3.1. Chemicals Applied
6.3.2. Methods of Metabolomics Analysis
6.4. Statistical Analysis Methods
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Georgiev, V.G.; Weber, J.; Kneschke, E.-M.; Denev, P.N.; Bley, T.; Pavlov, A.I. Antioxidant Activity and Phenolic Content of Betalain Extracts from Intact Plants and Hairy Root Cultures of the Red Beetroot Beta Vulgaris Cv. Detroit Dark Red. Plant. Foods Hum. Nutr. 2010, 65, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.M. Influence of Dietary Nitrate on the Physiological Determinants of Exercise Performance: A Critical Review. Appl. Physiol. Nutr. Metab. 2014, 39, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, N.; O’Driscoll, F.; Dougall, H.; Duncan, C.; Smith, L.; Golden, M.; McKenzie, H. Stomach NO Synthesis. Nature 1994, 368, 502. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, J.O.; Weitzberg, E.; Lundberg, J.M.; Alving, K. Intragastric Nitric Oxide Production in Humans: Measurements in Expelled Air. Gut 1994, 35, 1543–1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khatri, J.; Mills, C.E.; Maskell, P.; Odongerel, C.; Webb, A.J. It is Rocket Science-Why Dietary Nitrate is Hard to ‘Beet’! Part. I: Twists and Turns in the Realization of the Nitrate-Nitrite-NO Pathway: Rocket Science-Why Dietary Nitrate Is Hard to ‘Beet’! Br. J. Clin. Pharmacol. 2017, 83, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Lundberg, J.O.; Govoni, M. Inorganic Nitrate Is a Possible Source for Systemic Generation of Nitric Oxide. Free Radic. Biol. Med. 2004, 37, 395–400. [Google Scholar] [CrossRef]
- Domínguez, R.; Cuenca, E.; Maté-Muñoz, J.; García-Fernández, P.; Serra-Paya, N.; Estevan, M.; Herreros, P.; Garnacho-Castaño, M. Effects of Beetroot Juice Supplementation on Cardiorespiratory Endurance in Athletes. A Systematic Review. Nutrients 2017, 9, 43. [Google Scholar] [CrossRef] [Green Version]
- Brown, G.C.; Cooper, C.E. Nanomolar Concentrations of Nitric Oxide Reversibly Inhibit Synaptosomal Respiration by Competing with Oxygen at Cytochrome Oxidase. FEBS Lett. 1994, 356, 295–298. [Google Scholar] [CrossRef] [Green Version]
- Clerc, P.; Rigoulet, M.; Leverve, X.; Fontaine, E. Nitric Oxide Increases Oxidative Phosphorylation Efficiency. J. Bioenerg. Biomembr. 2007, 39, 158–166. [Google Scholar] [CrossRef]
- Basu, S.; Azarova, N.A.; Font, M.D.; King, S.B.; Hogg, N.; Gladwin, M.T.; Shiva, S.; Kim-Shapiro, D.B. Nitrite Reductase Activity of Cytochrome c. J. Biol. Chem. 2008, 283, 32590–32597. [Google Scholar] [CrossRef] [Green Version]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC Consensus Statement: Dietary Supplements and the High-Performance Athlete. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 104–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alderton, W.K.; Cooper, C.E.; Knowles, R.G. Nitric Oxide Synthases: Structure, Function and Inhibition. Biochem. J. 2001, 357, 593. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, J.R. A Tutorial on the Diffusibility and Reactivity of Free Nitric Oxide. Nitric. Oxide 1997, 1, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Schuman, E.; Madison, D. A Requirement for the Intercellular Messenger Nitric Oxide in Long-Term Potentiation. Science 1991, 254, 1503–1506. [Google Scholar] [CrossRef]
- Lonart, G.; Wang, J.; Johnson, K.M. Nitric Oxide Induces Neurotransmitter Release from Hippocampal Slices. Eur. J. Pharmacol. 1992, 220, 271–272. [Google Scholar] [CrossRef]
- Satoh, S.; Kimura, T.; Toda, M.; Miyazaki, H.; Ono, S.; Narita, H.; Murayama, T.; Nomura, Y. NO Donors Stimulate Noradrenaline Release from Rat Hippocampus in a Calmodulin-Dependent Manner in the Presence of L-Cysteine. J. Cell. Physiol. 1996, 169, 87–96. [Google Scholar] [CrossRef]
- Jones, N.M.; Loiacono, R.E.; Beart, P.M. Roles for Nitric Oxide as an Intra- and Interneuronal Messenger at NMDA Release-Regulating Receptors: Evidence from Studies of the NMDA-Evoked Release of [3H]Noradrenaline and d-[3H]Aspartate from Rat Hippocampal Slices. J. Neurochem. 1995, 64, 2057–2063. [Google Scholar] [CrossRef]
- Lorrain, D.S.; Hull, E.M. Nitric Oxide Increases Dopamine and Serotonin Release in the Medial Preoptic Area. NeuroReport 1993, 5, 87–89. [Google Scholar] [CrossRef] [Green Version]
- Guevara-Guzman, R.; Emson, P.C.; Kendrick, K.M. Modulation of In Vivo Striatal Transmitter Release by Nitric Oxide and Cyclic GMP. J. Neurochem. 1994, 62, 807–810. [Google Scholar] [CrossRef]
- Singewald, N.; Kaehler, S.T.; Hemeida, R.; Philippu, A. Influence of Excitatory Amino Acids on Basal and Sensory Stimuli-Induced Release of 5-HT in the Locus Coeruleus. Br. J. Pharmacol. 1998, 123, 746–752. [Google Scholar] [CrossRef]
- Molinoff, P.B.; Axelrod, J. Biochemistry of Catecholamines. Annu. Rev. Biochem. 1971, 40, 465–500. [Google Scholar] [CrossRef] [PubMed]
- Fernstrom, J.D.; Fernstrom, M.H. Tyrosine, Phenylalanine, and Catecholamine Synthesis and Function in the Brain. J. Nutr. 2007, 137, 1539S–1547S. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.D.; Kaufman, S. Products of the Tyrosine-Dependent Oxidation of Tetrahydrobiopterin by Rat Liver Phenylalanine Hydroxylase. Arch. Biochem. Biophys. 1993, 304, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Le Floc’h, N.; Otten, W.; Merlot, E. Tryptophan Metabolism, from Nutrition to Potential Therapeutic Applications. Amino Acids 2011, 41, 1195–1205. [Google Scholar] [CrossRef]
- Hügel, H.M.; Jones, O.A.H. Natural Product Chemistry in Action: The Synthesis of Melatonin Metabolites K₁ and K₂. Methods Mol. Biol. 2013, 1055, 163–170. [Google Scholar] [CrossRef]
- Bertaccini, G. Tissue 5-Hydroxytryptamine and Urinary 5-Hydroxyindoleacetic Acid after Partial or Total Removal of the Gastro-Intestinal Tract in the Rat. J. Physiol. 1960, 153, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Gershon, M.D. 5-Hydroxytryptamine (Serotonin) in the Gastrointestinal Tract. Curr. Opin. Endocrinol. Diabetes Obes. 2013, 20, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Morville, T.; Sahl, R.E.; Trammell, S.A.J.; Svenningsen, J.S.; Gillum, M.P.; Helge, J.W.; Clemmensen, C. Divergent Effects of Resistance and Endurance Exercise on Plasma Bile Acids, FGF19, and FGF21 in Humans. JCI Insight 2018, 3, e122737. [Google Scholar] [CrossRef]
- Fiorucci, S.; Mencarelli, A.; Palladino, G.; Cipriani, S. Bile-Acid-Activated Receptors: Targeting TGR5 and Farnesoid-X-Receptor in Lipid and Glucose Disorders. Trends Pharmacol. Sci. 2009, 30, 570–580. [Google Scholar] [CrossRef]
- Hofmann, A.F. Bile Acids: Trying to Understand Their Chemistry and Biology with the Hope of Helping Patients. Hepatology 2009, 49, 1403–1418. [Google Scholar] [CrossRef]
- Lefebvre, P.; Cariou, B.; Lien, F.; Kuipers, F.; Staels, B. Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation. Physiol. Rev. 2009, 89, 147–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, M.; Houten, S.M.; Mataki, C.; Christoffolete, M.A.; Kim, B.W.; Sato, H.; Messaddeq, N.; Harney, J.W.; Ezaki, O.; Kodama, T.; et al. Bile Acids Induce Energy Expenditure by Promoting Intracellular Thyroid Hormone Activation. Nature 2006, 439, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Teodoro, J.S.; Zouhar, P.; Flachs, P.; Bardova, K.; Janovska, P.; Gomes, A.P.; Duarte, F.V.; Varela, A.T.; Rolo, A.P.; Palmeira, C.M.; et al. Enhancement of Brown Fat Thermogenesis Using Chenodeoxycholic Acid in Mice. Int. J. Obes. 2014, 38, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Ockenga, J.; Valentini, L.; Schuetz, T.; Wohlgemuth, F.; Glaeser, S.; Omar, A.; Kasim, E.; duPlessis, D.; Featherstone, K.; Davis, J.R.; et al. Plasma Bile Acids Are Associated with Energy Expenditure and Thyroid Function in Humans. J. Clin. Endocrinol. Metab. 2012, 97, 535–542. [Google Scholar] [CrossRef] [Green Version]
- Broeders, E.P.M.; Nascimento, E.B.M.; Havekes, B.; Brans, B.; Roumans, K.H.M.; Tailleux, A.; Schaart, G.; Kouach, M.; Charton, J.; Deprez, B.; et al. The Bile Acid Chenodeoxycholic Acid Increases Human Brown Adipose Tissue Activity. Cell Metab. 2015, 22, 418–426. [Google Scholar] [CrossRef] [Green Version]
- Tabor, C.W.; Tabor, H. Polyamines in Microorganisms. Microbiol. Rev. 1985, 49, 81–99. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, T.; Hirshman, M.F.; Kurth, E.J.; Winder, W.W.; Goodyear, L.J. Evidence for 5′AMP-Activated Protein Kinase Mediation of the Effect of Muscle Contraction on Glucose Transport. Diabetes 1998, 47, 1369–1373. [Google Scholar] [CrossRef] [Green Version]
- Kurth-Kraczek, E.J.; Hirshman, M.F.; Goodyear, L.J.; Winder, W.W. 5′ AMP-Activated Protein Kinase Activation Causes GLUT4 Translocation in Skeletal Muscle. Diabetes 1999, 48, 1667–1671. [Google Scholar] [CrossRef]
- Li, J.; Hu, X.; Selvakumar, P.; Russell, R.R.; Cushman, S.W.; Holman, G.D.; Young, L.H. Role of the Nitric Oxide Pathway in AMPK-Mediated Glucose Uptake and GLUT4 Translocation in Heart Muscle. Am. J. Physiol. Endocrinol. Metab. 2004, 287, E834–E841. [Google Scholar] [CrossRef]
- Koistinen, H.A.; Galuska, D.; Chibalin, A.V.; Yang, J.; Zierath, J.R.; Holman, G.D.; Wallberg-Henriksson, H. 5-Amino-Imidazole Carboxamide Riboside Increases Glucose Transport and Cell-Surface GLUT4 Content in Skeletal Muscle From Subjects With Type 2 Diabetes. Diabetes 2003, 52, 1066–1072. [Google Scholar] [CrossRef] [Green Version]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Sharma, R.; Sharma, A.; Awasthi, S.; Awasthi, Y.C. Lipid Peroxidation and Cell Cycle Signaling: 4-Hydroxynonenal, a Key Molecule in Stress Mediated Signaling. Acta Biochim. Pol. 2003, 50, 319–336. [Google Scholar] [CrossRef] [PubMed]
- Mattson, M.P. Roles of the Lipid Peroxidation Product 4-Hydroxynonenal in Obesity, the Metabolic Syndrome, and Associated Vascular and Neurodegenerative Disorders. Exp. Gerontol. 2009, 44, 625–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrera, G.; Pizzimenti, S.; Ciamporcero, E.S.; Daga, M.; Ullio, C.; Arcaro, A.; Cetrangolo, G.P.; Ferretti, C.; Dianzani, C.; Lepore, A.; et al. Role of 4-Hydroxynonenal-Protein Adducts in Human Diseases. Antioxid. Redox Signal. 2015, 22, 1681–1702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.-H.; Niki, E. 4-Hydroxynonenal (4-HNE) Has Been Widely Accepted as an Inducer of Oxidative Stress. Is This the Whole Truth about It or Can 4-HNE Also Exert Protective Effects? IUBMB Life 2006, 58, 372–373. [Google Scholar] [CrossRef]
- Dalleau, S.; Baradat, M.; Guéraud, F.; Huc, L. Cell Death and Diseases Related to Oxidative Stress: 4-Hydroxynonenal (HNE) in the Balance. Cell Death Differ. 2013, 20, 1615–1630. [Google Scholar] [CrossRef] [Green Version]
- Audhya, T.; Adams, J.B.; Johansen, L. Correlation of Serotonin Levels in CSF, Platelets, Plasma, and Urine. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2012, 1820, 1496–1501. [Google Scholar] [CrossRef]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A Second Update of Codes and MET Values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [Green Version]
- Potgieter, S. Sport Nutrition: A Review of the Latest Guidelines for Exercise and Sport Nutrition from the American College of Sport Nutrition, the International Olympic Committee and the International Society for Sports Nutrition. S. Afr. J. Clinical Nutr. 2013, 26, 6–16. [Google Scholar] [CrossRef]
- Jarosz, M.; Rychlik, E.; Stoś, K.; Wierzejska, R.; Wojtasik, A.; Charzewska, J.; Mojska, H.; Szponar, L.; Sajór, I.; Kłosiewicz-Latoszek, L.; et al. Normy Żywienia dla Populacji Polski; Jarosz, M., Ed.; Instytut Żywności i Żywienia: Warszawa, Poland, 2017. [Google Scholar]
- Kyle, U. Bioelectrical Impedance Analysis? Part I: Review of Principles and Methods. Clin. Nutr. 2004, 23, 1226–1243. [Google Scholar] [CrossRef]
- Laursen, P.B.; Shing, C.M.; Peake, J.M.; Coombes, J.S.; Jenkins, D.G. Interval Training Program Optimization in Highly Trained Endurance Cyclists. Med. Sci. Sports Exerc. 2002, 34, 1801–1807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kale, R.G.; Sawate, A.R.; Kshirsagar, R.B.; Patil, B.M.; Mane, R.P. Studies on evaluation of physical and chemical composition of beetroot (Beta vulgaris L.). Int. J. Chem. Stud. 2018, 6, 2977–2979. [Google Scholar]
- FOODB. Available online: http://foodb.ca/foods/FOOD00264 (accessed on 24 February 2020).
- U.S. Department of Agriculture. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/601856/nutrients (accessed on 24 February 2020).
- Want, E.J.; Wilson, I.D.; Gika, H.; Theodoridis, G.; Plumb, R.S.; Shockcor, J.; Holmes, E.; Nicholson, J.K. Global Metabolic Profiling Procedures for Urine Using UPLC–MS. Nat. Protoc. 2010, 5, 1005–1018. [Google Scholar] [CrossRef] [PubMed]
- Forsberg, E.M.; Huan, T.; Rinehart, D.; Benton, H.P.; Warth, B.; Hilmers, B.; Siuzdak, G. Data Processing, Multi-Omic Pathway Mapping, and Metabolite Activity Analysis Using XCMS Online. Nat. Protoc. 2018, 13, 633–651. [Google Scholar] [CrossRef] [PubMed]
- Kozłowska, L.; Janasik, B.; Nowicka, K.; Wąsowicz, W. A Urinary Metabolomics Study of a Polish Subpopulation Environmentally Exposed to Arsenic. J. Trace Elem. Med. Biol. 2019, 54, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Storey, J.D. A Direct Approach to False Discovery Rates. J. R. Stat. Soc. Ser. B 2002, 64, 479–498. [Google Scholar] [CrossRef] [Green Version]
Studied Group/Variable | Stages of the Study | p Value | |||
---|---|---|---|---|---|
B | after D | after D&J | pa | pb | |
Women | |||||
Weight (kg) | 63.6 ± 8.03 | 63.5 ± 8.3 | 63.6 ± 8.6 | 0.7434 | 0.8011 |
FM (kg) | 16.9 ± 4.0 | 16.5 ± 5.1 | 16.1 ± 4.8 | 0.3390 | 0.2140 |
FFM (kg) | 46.7 ± 5.8 | 47.0 ± 4.9 | 47.5 ± 5.3 | 0.5625 | 0.1455 |
PA - FT | 1.87 ± 0.24 | 1.88 ± 0.14 | 1.88 ± 0.18 | 0.8737 | 0.9540 |
PA - GT | 1.59 ± 0.20 | 1.71 ± 0.19 | 1.76 ± 0.22 | 0.1701 | 0.5044 |
PA - FD | 1.36 ± 0.11 | 1.41 ± 0.14 | 1.49 ± 0.16 | 0.3550 | 0.2125 |
VO2max(mL/kg/min) | 39.3 ± 4.8 | 39.4 ± 4.8 | 42.8 ± 4.7 | 0.6681 | 0.0106 |
Men | |||||
Weight (kg) | 82.5 ± 11.6 | 82.5 ± 11.9 | 82.7 ± 11.4 | 0.8206 | 0.5631 |
FM (kg) | 15.0 ± 4.8 | 14.3 ± 4.5 | 14.0 ± 4.3 | 0.0676 | 0.5053 |
FFM (kg) | 67.6 ± 8.2 | 68.2 ± 8.5 | 68.7 ± 8.4 | 0.1197 | 0.2104 |
PA - FT | 2.10 ± 0.33 | 1.96 ± 0.28 | 1.98 ± 0.29 | 0.0275 | 0.7611 |
PA - GT | 1.80 ± 0.30 | 1.83 ± 0.23 | 1.88 ± 0.31 | 0.7113 | 0.6274 |
PA - FD | 1.53 ± 0.18 | 1.43 ± 0.16 | 1.42 ± 0.16 | 0.1154 | 0.8876 |
VO2max(mL/kg/min) | 46.0 ± 7.8 | 45.3 ± 9.3 | 48.5 ± 10.3 | 0.7276 | 0.0234 |
Variable | Women | Men | ||||
---|---|---|---|---|---|---|
during D | during D&J | pa | during D | during D&J | pb | |
Energy (kcal) | 2152 ± 248 | 2136 ± 219 | 0.6862 | 2498 ± 378 | 2591 ± 401 | 0.0262 |
Protein (g) | 96.6 ± 10.8 | 93.2 ± 8.3 | 0.5906 | 109.9 ± 42.8 | 98.0 ± 24.3 | 0.0713 |
Fat (g) | 87.3 ± 11.2 | 82.6 ± 14.0 | 0.1508 | 94.9 ± 10.0 | 102.2 ± 12.9 | 0.0278 |
Total carbohydrates (g) | 266.5 ± 37.9 | 275.5 ± 25.4 | 0.1436 | 302.4 ± 56.2 | 307.2 ± 69.1 | 0.4240 |
Potassium (mg) | 3854.7 ± 596.5 | 3881.8 ± 575.4 | 0.8776 | 4174.1 ± 1398.1 | 4013.7 ± 979.9 | 0.3680 |
Calcium (mg) | 975.3 ± 366.7 | 984.6 ± 333.3 | 0.8466 | 1003.4 ± 315.0 | 939.1 ± 235.4 | 0.1916 |
Magnesium (mg) | 391.8 ± 61.5 | 384.7 ± 40.8 | 0.7098 | 435.7 ± 141.2 | 442.5 ± 111.5 | 0.5629 |
Phosphorus (mg) | 1742.7 ± 231.1 | 1703.1 ± 213.6 | 0.5126 | 2064.2 ± 742.8 | 1981.4 ± 603.8 | 0.1791 |
Iron (mg) | 13.29 ± 1.50 | 12.99 ± 1.54 | 0.5637 | 14.98 ± 3.81 | 14.89 ± 2.72 | 0.8527 |
Zinc (mg) | 12.61 ± 1.88 | 12.54 ± 2.01 | 0.8669 | 14.73 ± 3.95 | 14.30 ± 3.19 | 0.2759 |
Vitamin A equ. (µg) | 1226.4 ± 279.5 | 1195.9 ± 287.1 | 0.7742 | 1523.5 ± 495.5 | 1400.4 ± 505.7 | 0.2479 |
Vitamin E equ. (mg) | 12.60 ± 2.36 | 12.64 ± 3.07 | 0.9669 | 13.98 ± 4.30 | 15.22 ± 3.44 | 0.1317 |
Vitamin C (mg) | 124.0 ± 57.1 | 124.4 ± 38.4 | 0.2125 | 138.1 ± 73.1 | 148.3 ± 57.4 | 0.4616 |
Folate equ. (µg) | 347.1 ± 62.4 | 350.1 ± 62.7 | 0.8371 | 380.9 ± 116.4 | 377.1 ± 83.9 | 0.7929 |
Vitamin B1 (mg) | 1.38 ± 0.21 | 1.45 ± 0.21 | 0.5262 | 1.68 ± 0.62 | 1.55 ± 0.36 | 0.2405 |
Vitamin B2 (mg) | 2.07 ± 0.23 | 2.04 ± 0.20 | 0.6358 | 2.23 ± 0.92 | 2.15 ± 0.73 | 0.2332 |
Vitamin B6 (mg) | 2.23 ± 0.30 | 2.19 ± 0.33 | 0.6962 | 2.91 ± 1.21 | 2.78 ±0.98 | 0.1912 |
Vitamin B12 (µg) | 4.52 ± 1.28 | 3.96 ± 0.80 | 0.2190 | 7.83 ± 4.17 | 6.64 ± 4.06 | 0.0159 |
Niacin equ. (mg) | 22.11 ± 5.17 | 20.65 ± 5.66 | 0.1914 | 29.19 ± 9.91 | 28.43 ± 9.23 | 0.4897 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozlowska, L.; Mizera, O.; Mroz, A. An Untargeted Metabolomics Approach to Investigate the Metabolic Effect of Beetroot Juice Supplementation in Fencers—A Preliminary Study. Metabolites 2020, 10, 100. https://doi.org/10.3390/metabo10030100
Kozlowska L, Mizera O, Mroz A. An Untargeted Metabolomics Approach to Investigate the Metabolic Effect of Beetroot Juice Supplementation in Fencers—A Preliminary Study. Metabolites. 2020; 10(3):100. https://doi.org/10.3390/metabo10030100
Chicago/Turabian StyleKozlowska, Lucyna, Olga Mizera, and Anna Mroz. 2020. "An Untargeted Metabolomics Approach to Investigate the Metabolic Effect of Beetroot Juice Supplementation in Fencers—A Preliminary Study" Metabolites 10, no. 3: 100. https://doi.org/10.3390/metabo10030100
APA StyleKozlowska, L., Mizera, O., & Mroz, A. (2020). An Untargeted Metabolomics Approach to Investigate the Metabolic Effect of Beetroot Juice Supplementation in Fencers—A Preliminary Study. Metabolites, 10(3), 100. https://doi.org/10.3390/metabo10030100