Dyslipidemia: A Trigger for Coronary Heart Disease in Romanian Patients with Diabetes
Abstract
:1. Introduction
2. Results
- ➢
- A total of 58 patients (58/217, 26.72%) only had dyslipidemia: 30 women (30/58, 51.73%) and 28 men (28/58, 48.27%). Although we observed a tendency for women to have dyslipidemia, there was no statistical significance for this finding (p = 1.00). In terms of age, 32 patients had <65 years (32/58, 55.17%) and 26 were aged ≥65 years old (26/58, 44.83%) (mean age = 56.60 ± 7.26 vs. 74.14 ± 6.94 years, p < 0.0001).
- ➢
- A total of 59 patients (59/217, 27.18%) only had CHD: 30 women (30/59, 50.85%) and 29 men (29/59, 49.15%). Although we observed a tendency for women to have CHD, there was no statistical significance for this finding (p = 1.00). In terms of age, 16 patients had <65 years (16/59, 27.11%) and 43 were aged ≥65 years old (43/59, 72.89%) (mean age = 54.43 ± 8.66 vs. 76.44 ± 7.27 years, p < 0.0001).
- ➢
- A total of 47 patients (47/217, 21.65%) had both dyslipidemia and CHD: 24 women (24/47, 51.06%) and 23 men (23/47, 48.94%). Although we observed a tendency for women to have both CHD and dyslipidemia, there was no statistical significance for this finding (p = 1.00). In terms of age, 13 patients had <65 years (13/47, 27.65%) and 34 were aged ≥65 years old (34/47, 72.35%) (mean age = 59.45 ± 3.88 vs. 73.31 ± 6.54 years, p < 0.0001).
- ➢
- Other comorbidities reported in our study group were obesity in 73 patients (73/217; 33.64%), hypertension in 174 patients (174/217; 80.18%), chronic heart failure in 105 patients (105/217; 48.38%), chronic kidney disease in 84 patients (84/217; 38.70%), atrial Fibrillation in 94 patients (94/217; 43.33%), diabetic nephropathy in 25 patients (25/217; 11.52%), diabetic neuropathy in 22 patients (22/217; 10.13%) and peripheral arterial disease in 28 patients (28/217; 12.90%).
- ➢
- Oral antidiabetic agents in 107 cases (107/217, 49.31%);
- ➢
- Insulin in 29 cases (29/217, 13.36%);
- ➢
- Oral antidiabetic agents + insulin in 26 cases (26/2017, 11.98%);
- ➢
- Lifestyle recommendations only (diet, physical exercise) in 55 cases (55/217, 25.35%).
3. Discussion
The Dyslipidemia–Inflammation–Diabetes–Cardiovascular Disease Pathway
4. Materials and Methods
4.1. Study Design
4.2. Data Source and Data Extraction
4.3. Ethics Approval and Consent to Participate
4.4. Study Population
4.5. Statistics
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, Y.; Ding, Y.; Tanaka, Y.; Zhang, W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int. J. Med. Sci. 2014, 11, 1185–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.; Tian, M.; Zhou, Y. The relationship between insulin resistance, adiponectin and C-reactive protein and vascular endothelial injury in diabetic patients with coronary heart disease. Exp. Ther. Med. 2018, 16, 2022–2026. [Google Scholar] [CrossRef] [PubMed]
- Karalis, D. The role of lipid-lowering therapy in preventing coronary heart disease in patients with type 2 diabetes. Clin. Cardiol. 2008, 31, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Chehade, J.; Gladysz, M.; Mooradian, A. Dyslipidemia in type 2 diabetes: Prevalence, pathophysiology, and management. Drugs 2013, 73, 327–339. [Google Scholar] [CrossRef]
- Mooradian, A.D. Dyslipidemia in type 2 diabetes mellitus. Nat. Clin. Pract. Endocrinol. Metab. 2009, 5, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Cert, M.E. Cardiac glucolipotoxicity and cardiovascular outcomes. Medicina 2018, 54, 70. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Liu, Q.; Xiao, X. Effectiveness and safety of combinational therapy compared with intensified statin monotherapy in patients with coronary heart disease. Exp. Ther. Med. 2018, 15, 4683–4688. [Google Scholar] [CrossRef]
- Pahan, K. Lipid-lowering drugs. Cell. Mol. Life Sci. 2006, 63, 1165–1178. [Google Scholar] [CrossRef]
- Regitz-Zagrosek, V.; Kararigas, G. Mechanistic Pathways of Sex Differences in Cardiovascular Disease. Physiol. Rev. 2017, 97, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Mauvais-Jarvis, F. Gender differences in glucose homeostasis and diabetes. Physiol. Behav. 2018, 187, 20–23. [Google Scholar] [CrossRef]
- Madonna, R.; Balistreri, C.R.; De Rosa, S.; Muscoli, S.; Selvaggio, S.; Selvaggio, G.; Ferdinandy, P.; De Caterina, R. Impact of Sex Differences and Diabetes on Coronary Atherosclerosis and Ischemic Heart Disease. J. Clin. Med. 2019, 8, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, S.; Woodward, M. Sex Differences in the Burden and Complications of Diabetes. Curr. Diab. Rep. 2018, 18, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Zakwani, I.; Al-Mahruqi, F.; Al-Rasadi, K.; Shehab, A.; Al Mahmeed, W.; Arafah, M.; Al-Hinai, A.T.; Al Tamimi, O.; Al Awadhi, M.; Santos, R.D. Sex disparity in the management and outcomes of dyslipidemia of diabetic patients in the Arabian Gulf: Findings from the CEPHEUS study. Lipids Health Dis. 2018, 17, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satyavani, K.; Archana, S.; Kumar, A.M.; Achanta, S.; Viswanathan, V. Sex Differences in Cardiovascular Risk Factors among People with Diabetes in South India. J. Assoc. Physicians India 2015, 63, 20–24. [Google Scholar]
- Billimek, J.; Malik, S.; Sorkin, D.H.; Schmalbach, P.; Ngo-Metzger, Q.; Greenfield, S.; Kaplan, S.H. Understanding disparities in lipid management among patients with type 2 diabetes: Gender differences in medication nonadherence after treatment intensification. Womens Health Issues 2015, 25, 6–12. [Google Scholar] [CrossRef] [Green Version]
- Anto, E.O.; Obirikorang, C.; Annani-Akollor, M.E.; Adua, E.; Donkor, S.; Acheampong, E.; Asamoah, E.A. Evaluation of Dyslipidaemia Using an Algorithm of Lipid Profile Measures among Newly Diagnosed Type II Diabetes Mellitus Patients: A Cross-Sectional Study at Dormaa Presbyterian Hospital, Ghana. Medicina 2019, 55, 392. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Gong, S.; Xu, C.; Zhou, J.Y.; Wang, K.S. Sleep duration and smoking are associated with coronary heart disease among US adults with type 2 diabetes: Gender differences. Diabetes Res. Clin. Pract. 2017, 124, 93–101. [Google Scholar] [CrossRef]
- Santalucia, P.; Franchi, C.; Djade, C.D.; Tettamanti, M.; Pasina, L.; Corrao, S.; Salerno, F.; Marengoni, A.; Marcucci, M.; Nobili, A.; et al. Gender difference in drug use in hospitalized elderly patients. Eur. J. Intern. Med. 2015, 26, 483–490. [Google Scholar] [CrossRef] [Green Version]
- Nanna, M.G.; Wang, T.Y.; Xiang, Q.; Goldberg, A.C.; Robinson, J.G.; Roger, V.L.; Virani, S.S.; Wilson, P.W.F.; Louie, M.J.; Koren, A.; et al. Sex Differences in the Use of Statins in Community Practice. Circ. Cardiovasc. Qual. Outcomes 2019, 12, e005562. [Google Scholar] [CrossRef]
- Seghieri, G.; Policardo, L.; Anichini, R.; Franconi, F.; Campesi, I.; Cherchi, S.; Tonolo, G. The Effect of Sex and Gender on Diabetic Complications. Curr. Diabetes Rev. 2017, 13, 148–160. [Google Scholar] [CrossRef]
- Solano, M.P.; Goldberg, R.B. Management of dyslipidemia in diabetes. Cardiol. Rev. 2006, 14, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, J.; Cobbe, S.M.; Ford, I.; Isles, C.G.; Lorimer, A.R.; MacFarlane, P.W.; McKillop, J.H.; Packard, C.J. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N. Engl. J. Med. 1995, 333, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
- Downs, J.R.; Clearfield, M.; Weis, S.; Whitney, E.; Shapiro, D.R.; Beere, P.A.; Langendorfer, A.; Stein, E.A.; Kruyer, W.; Gotto, A.M.; et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: Results of AFCAPS/TexCAPS. JAMA 1998, 279, 1615–1622. [Google Scholar] [CrossRef] [PubMed]
- The ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. Major outcomes in moderately hypercholesterolemic, hypertensive patients randomized to pravastatin vs usual care: The Antihypertensive and Lipid-Lowering Treatment to prevent Heart Attack Trial (ALLHAT-LLT). JAMA 2002, 288, 2998–3007. [Google Scholar] [CrossRef]
- American Diabetes Association. Standards of medical care in diabetes—2019 abridged for primary care providers. Clin. Diabetes 2019, 37, 11–34. [Google Scholar] [CrossRef] [Green Version]
- Enriquez, D.; Oyola, K.; Ruiz, J. Cardiovascular risk factors and diabetes in medical students: Observational study, experience in Colombia. Int. J. Med. Stud. 2018, 6, 61–65. [Google Scholar] [CrossRef]
- Castro, E.D.; Velásquez, G.A.; Santos, E.L.; Oliva, G.A.; Chang, C.E.; Soto, H.F. Risk to develop type 2 diabetes mellitus according to FINDRISC tool in Guatemalan physicians aged 40–60 years. Int. J. Med. Stud. 2017, 5, 20–25. [Google Scholar] [CrossRef]
- Vincek, E.; White, D.; Feinn, R. Assessment of healthful lifestyle behaviors between graduate programs. Int. J. Med. Stud. 2018, 6, 98–101. [Google Scholar] [CrossRef]
- Jialal, I.; Singh, G. Management of diabetic dyslipidemia: An update. World J. Diabetes 2019, 10, 280–290. [Google Scholar] [CrossRef]
- Mota, M.; Popa, S.G.; Mota, E.; Mitrea, A.; Catrinoiu, D.; Cheta, D.M.; Guja, C.; Hancu, N.; Ionescu-Tirgoviste, C.; Lichiardopol, R.; et al. Prevalence of diabetes mellitus and prediabetes in the adult Romanian population: PREDATORR study. J. Diabetes 2016, 8, 336–344. [Google Scholar] [CrossRef]
- Nelson, A.J.; Rochelau, S.K.; Nicholls, S.J. Managing Dyslipidemia in Type 2 Diabetes. Endocrinol. Metab. Clin. 2018, 47, 153–173. [Google Scholar] [CrossRef] [PubMed]
- Alwhaibi, M.; Altoaimi, M.; AlRuthia, Y.; Meraya, A.M.; Balkhi, B.; Aldemerdash, A.; Alkofide, H.; Alhawassi, T.M.; Alqasoumi, A.; Kamal, K.M. Adherence to Statin Therapy and Attainment of LDL Cholesterol Goal Among Patients with Type 2 Diabetes and Dyslipidemia. Patient Prefer. Adherence 2019, 13, 2111–2118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruneir, A.; Markle-Reid, M.; Fisher, K.; Reimer, H.; Ma, X.; Ploeg, J. Comorbidity Burden and Health Services Use in Community-Living Older Adults with Diabetes Mellitus: A Retrospective Cohort Study. Can. J. Diabetes 2016, 40, 35–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osman, W.; Hassoun, A.; Jelinek, H.F.; Almahmeed, W.; Afandi, B.; Tay, G.K.; Alsafar, H. Genetics of type 2 diabetes and coronary artery disease and their associations with twelve cardiometabolic traits in the United Arab Emirates population. Gene 2020, 30, 144722. [Google Scholar] [CrossRef]
- Ahonen, L.; Jäntti, S.; Suvitaival, T.; Theilade, S.; Risz, C.; Kostiainen, R.; Rossing, P.; Orešič, M.; Hyötyläinen, T. Targeted Clinical Metabolite Profiling Platform for the Stratification of Diabetic Patients. Metabolites 2019, 9, 184. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Wang, Y.; Liang, X.; Zou, L.; Ong, C.N.; Yuan, J.-M.; Koh, W.-P.; Pan, A. Serum Amino Acids in Association with Prevalent and Incident Type 2 Diabetes in A Chinese Population. Metabolites 2019, 9, 14. [Google Scholar] [CrossRef] [Green Version]
- Guasch-Ferré, M.; Hruby, A.; Toledo, E.; Clish, C.B.; Martínez-González, M.A.; Salas-Salvadó, J.; Hu, F.B. Metabolomics in Prediabetes and Diabetes: A Systematic Review and Meta-analysis. Diabetes Care 2016, 39, 833–846. [Google Scholar] [CrossRef] [Green Version]
- Robson, R.; Kundur, A.R.; Singh, I. Oxidative stress biomarkers in type 2 diabetes mellitus for assessment of cardiovascular disease risk. Diabetes Metab. Syndr. 2018, 12, 455–462. [Google Scholar] [CrossRef] [Green Version]
- Katsiki, N.; Mikhailidis, D.P.; Banach, M. Leptin, cardiovascular diseases and type 2 diabetes mellitus. Acta Pharmacol. Sin. 2018, 39, 1176–1188. [Google Scholar] [CrossRef] [Green Version]
- Ryan, P.M.; Stanton, C.; Caplice, N.M. Bile acids at the cross-roads of gut microbiome-host cardiometabolic interactions. Diabetol. Metab. Syndr. 2017, 9, 102. [Google Scholar] [CrossRef] [Green Version]
- Patterson, E.; Ryan, P.M.; Cryan, J.F.; Dinan, T.G.; Ross, R.P.; Fitzgerald, G.F.; Stanton, C. Gut microbiota, obesity and diabetes. Postgrad. Med. J. 2016, 92, 286–300. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.S.; Imamura, F.; Sharp, S.J.; van der Schouw, Y.T.; Sluijs, I.; Gundersen, T.E.; Ardanaz, E.; Boeing, H.; Bonet, C.; Gómez, J.H.; et al. Association of Plasma Vitamin D Metabolites with Incident Type 2 Diabetes: EPIC-InterAct Case-Cohort Study. J. Clin. Endocrinol. Metab. 2019, 104, 1293–1303. [Google Scholar] [CrossRef] [PubMed]
- Karrthik, A.; Gad, M.; Bazarbashi, N.; Ahuja, K.; Sammour, Y.; Kaur, M.; Ahmed, H.; Kapadia, S. Aspirin use for prevention of cardiovascular events in patients with high lipoprotein (a): A population-based study. Eur. Heart J. 2019, 40, 3228. [Google Scholar] [CrossRef]
Variable | All | Women | Men |
---|---|---|---|
Age (years) | 69 ± 11 | 71 ± 11 | 67 ± 10 |
Number | 217 (100%) | 111 (51.2%) | 106 (48.8%) |
Dyslipidemia | 58 (26.72%) | 30 (51.73%) | 28 (48.27%) |
CHD | 59 (27.18%) | 30 (50.85%) | 29 (49.15%) |
Dyslipidemia + CHD | 47 (21.65%) | 24 (51.06%) | 23(48.94%) |
None | 53 (24.44%) | 27 (50.94%) | 26 (49.06%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Găman, M.-A.; Cozma, M.-A.; Dobrică, E.-C.; Bacalbașa, N.; Bratu, O.G.; Diaconu, C.C. Dyslipidemia: A Trigger for Coronary Heart Disease in Romanian Patients with Diabetes. Metabolites 2020, 10, 195. https://doi.org/10.3390/metabo10050195
Găman M-A, Cozma M-A, Dobrică E-C, Bacalbașa N, Bratu OG, Diaconu CC. Dyslipidemia: A Trigger for Coronary Heart Disease in Romanian Patients with Diabetes. Metabolites. 2020; 10(5):195. https://doi.org/10.3390/metabo10050195
Chicago/Turabian StyleGăman, Mihnea-Alexandru, Matei-Alexandru Cozma, Elena-Codruța Dobrică, Nicolae Bacalbașa, Ovidiu Gabriel Bratu, and Camelia Cristina Diaconu. 2020. "Dyslipidemia: A Trigger for Coronary Heart Disease in Romanian Patients with Diabetes" Metabolites 10, no. 5: 195. https://doi.org/10.3390/metabo10050195
APA StyleGăman, M. -A., Cozma, M. -A., Dobrică, E. -C., Bacalbașa, N., Bratu, O. G., & Diaconu, C. C. (2020). Dyslipidemia: A Trigger for Coronary Heart Disease in Romanian Patients with Diabetes. Metabolites, 10(5), 195. https://doi.org/10.3390/metabo10050195