The Application of Metabolomics for the Study of Cereal Corn (Zea mays L.)
Abstract
:1. Introduction
2. The Diversity of Corn Germplasm and the Importance of Native Landraces
3. The Application of Metabolomics for the Characterization of Health-Relevant Metabolites in Corn Genetic Diversity
3.1. Metabolomic Analysis of Phenolic Compounds in Corn Genetic Diversity
3.2. Metabolomic Analysis of Carotenoid Compounds in Corn Genetic Diversity
3.3. Use of Non-Targeted Metabolomic Platforms for the Research of Corn Kernel Metabolome
4. Role of Metabolomics in Corn Molecular Breeding Strategies Targeting Health-Relevant Phenolic Metabolites
4.1. Common Methods Used for the Study of Corn Genetic Diversity
4.2. Metabolomic-Assisted Molecular Breeding Strategies for the Increase of Phenolic Antioxidants in Corn Kernels
5. Future Perspectives
Funding
Acknowledgments
Conflicts of Interest
References
- Luo, Y.; Wang, Q. Bioactive compounds in corn. In Cereals and Pulses: Nutraceutical Properties and Health Benefits; Yu, L., Tsao, R., Shahidi, F., Eds.; John Wiley & Sons, Inc.: Oxford, UK, 2012; pp. 85–103. [Google Scholar]
- FAOSTAT. Available online: http://www.fao.org/faostat/es/#data/QC (accessed on 12 June 2020).
- Matsuoka, Y.; Vigouroux, Y.; Goodman, M.M.; Sanchez, J.; Buckler, E.; Doebley, J. A single domestication for maize shown by multilocus microsatellite genotyping. Proc. Natl. Acad. Sci. USA 2002, 99, 6080–6084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doebley, J. The genetics of maize evolution. Annu. Rev. Genet. 2004, 38, 37–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flint-Garcia, S.A. Genetics and consequences of crop domestication. J. Agric. Food Chem. 2013, 61, 8267–8276. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.; Cutler, H.C. Races of Zea mays: I. Their recognition and classification. Ann. Mo. Bot. Gard. 1942, 29, 69–88. [Google Scholar] [CrossRef]
- Salazar-Suazo, E.R.; León-Lobos, P.; Rosas-Cerda, M.; Schick, C.M. Estado De La Conservación Ex Situ De Los Recursos Fitogenéticos Cultivados Y Silvestres En Chile, 1st ed.; Instituto de Investigaciones Agropecuarias-INIA: Santiago, Chile, 2006; pp. 17–18. [Google Scholar]
- Prasanna, B.M. Diversity in global maize germplasm: Characterization and utilization. J. Biosci. 2012, 37, 843–855. [Google Scholar] [CrossRef]
- Villa, T.C.C.; Maxted, N.; Scholten, M.; Ford-Lloyd, B. Defining and identifying crop landraces. Plant Gen. Res. 2005, 3, 373–384. [Google Scholar] [CrossRef] [Green Version]
- Rebourg, C.; Chastanet, M.; Gouesnard, B.; Welcker, C.; Dubreuil, P.; Charcosset, A. Maize introduction into Europe: The history reviewed in the light of molecular data. Theor. Appl. Gen. 2003, 106, 895–903. [Google Scholar] [CrossRef]
- Dubreuil, P.; Warburton, M.L.; Chastanet, M.; Hoisington, D.; Charcosset, A. More on the introduction of temperate maize into Europe: Large-scale bulk SSR genotyping and new historical elements. Maydica 2006, 51, 281–291. [Google Scholar]
- Hickey, L.T.; Hafeez, A.N.; Robinson, H.; Jackson, S.A.; Leal-Bertioli, S.C.; Tester, M.; Wulff, B.B. Breeding crops to feed 10 billion. Nat. Biotech. 2019, 37, 744–754. [Google Scholar] [CrossRef] [Green Version]
- Hayden, M.R. Type 2 Diabetes mellitus increases the risk of late-onset Alzheimer’s disease: Ultrastructural remodeling of the neurovascular unit and diabetic gliopathy. Brain Sci. 2019, 9, 262. [Google Scholar] [CrossRef] [Green Version]
- López-Suárez, A. Burden of cancer attributable to obesity, type 2 diabetes and associated risk factors. Metabolism 2019, 92, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.Y.; Fang, J.C.; Gao, Z.H.; Zhang, C.; Xie, S.Y. Higher intake of fruits, vegetables or their fiber reduces the risk of type 2 diabetes: A meta-analysis. J. Diabetes Invest. 2016, 7, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Kyrø, C.; Tjønneland, A.; Overvad, K.; Olsen, A.; Landberg, R. Higher whole-grain intake is associated with lower risk of type 2 diabetes among middle-aged men and women: The Danish diet, cancer, and health cohort. J. Nutr. 2018, 148, 1434–1444. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Liu, J.; Tsao, R.; Wang, Z.; Sun, B.; Wang, J. Whole Grain Consumption for the Prevention and Treatment of Breast Cancer. Nutrients 2019, 11, 1769. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Sang, S. Phytochemicals in whole grain wheat and their health-promoting effects. Mol. Nutr. Food Res. 2017, 61, 1600852. [Google Scholar] [CrossRef]
- Dixon, R.A.; Gang, D.R.; Charlton, A.J.; Fiehn, O.; Kuiper, H.A.; Reynolds, T.L.; Tjeerdema, R.S.; Jeffery, E.H.; German, J.B.; Seiber, J.N. Applications of metabolomics in agriculture. J. Agric. Food Chem. 2006, 54, 8984–8994. [Google Scholar] [CrossRef]
- De Vos, R.C.; Moco, S.; Lommen, A.; Keurentjes, J.J.; Bino, R.J.; Hall, R.D. Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2007, 2, 778. [Google Scholar] [CrossRef]
- Dunn, W.B. Current trends and future requirements for the mass spectrometric investigation of microbial, mammalian and plant metabolomes. Phys. Biol. 2008, 5, 011001. [Google Scholar] [CrossRef] [PubMed]
- Fiehn, O. Metabolomics—The link between genotypes and phenotypes. In Functional Genomics; Springer: Dordrecht, The Netherlands, 2002; pp. 155–171. [Google Scholar]
- Guo, J.; Qi, J.; He, K.; Wu, J.; Bai, S.; Zhang, T.; Zhao, J.; Wang, Z. The Asian corn borer Ostrinia furnacalis feeding increases the direct and indirect defence of mid-whorl stage commercial maize in the field. Plant Biotechnol. J. 2019, 17, 88–102. [Google Scholar] [CrossRef] [Green Version]
- Mafu, S.; Ding, Y.; Murphy, K.M.; Yaacoobi, O.; Addison, J.B.; Wang, Q.; Shen, Z.; Briggs, S.P.; Bohlmann, J.; Castro-Falcon, G.; et al. Discovery, biosynthesis and stress-related accumulation of dolabradiene-derived defenses in maize. Plant Physiol. 2018, 176, 2677–2690. [Google Scholar] [CrossRef]
- Vasmatkar, P.; Kaur, K.; Pannu, P.P.S.; Kaur, G.; Kaur, H. Unraveling the metabolite signatures of maize genotypes showing differential response towards southern corn leaf blight by 1H-NMR and FTIR spectroscopy. Physiol. Mol. Plant Pathol. 2019, 108, 101441. [Google Scholar] [CrossRef]
- Bernardi, J.; Stagnati, L.; Lucini, L.; Rocchetti, G.; Lanubile, A.; Cortellini, C.; De Poli, G.; Busconi, M.; Marocco, A. Phenolic profile and susceptibility to Fusarium infection of pigmented maize cultivars. Front. Plant Sci. 2018, 9, 1189. [Google Scholar] [CrossRef] [PubMed]
- Falade, T.; Chrysanthopoulos, P.K.; Hodson, M.P.; Sultanbawa, Y.; Fletcher, M.; Darnell, R.; Korie, S.; Fox, G. Metabolites identified during varied doses of Aspergillus species in Zea mays grains, and their correlation with aflatoxin levels. Toxins 2018, 10, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamari, N.; Zhendre, V.; Urrutia, M.; Bernillon, S.; Maucourt, M.; Deborde, C.; Prodhomme, D.; Jacob, D.; Ballias, P.; Rolin, D.; et al. Metabotyping of 30 maize hybrids under early-sowing conditions reveals potential marker-metabolites for breeding. Metabolomics 2018, 14, 132. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Gao, X.; Chen, X.; Fu, J.; Zhang, Y. Metabolic and growth responses of maize to successive drought and re-watering cycles. Agric. Water Manag. 2016, 172, 62–73. [Google Scholar] [CrossRef]
- Richter, J.A.; Erban, A.; Kopka, J.; Zörb, C. Metabolic contribution to salt stress in two maize hybrids with contrasting resistance. Plant Sci. 2015, 233, 107–115. [Google Scholar] [CrossRef]
- Boehlein, S.K.; Liu, P.; Webster, A.; Ribeiro, C.; Suzuki, M.; Wu, S.; Guan, J.-C.; Stewart, J.D.; Tracy, W.F.; Settles, A.M.; et al. Effects of long-term exposure to elevated temperature on Zea mays endosperm development during grain fill. Plant J. 2019, 99, 23–40. [Google Scholar] [CrossRef]
- McLoughlin, F.; Augustine, R.C.; Marshall, R.S.; Li, F.; Kirkpatrick, L.D.; Otegui, M.S.; Vierstra, R.D. Maize multi-omics reveal roles for autophagic recycling in proteome remodelling and lipid turnover. Nat. Plants 2018, 4, 1056–1070. [Google Scholar] [CrossRef]
- Harrigan, G.G.; Venkatesh, T.V.; Leibman, M.; Blankenship, J.; Perez, T.; Halls, S.; Goodacre, R. Evaluation of metabolomics profiles of grain from maize hybrids derived from near-isogenic GM positive and negative segregant inbreds demonstrates that observed differences cannot be attributed unequivocally to the GM trait. Metabolomics 2016, 12, 82. [Google Scholar] [CrossRef] [Green Version]
- Röhlig, R.M.; Eder, J.; Engel, K.H. Metabolite profiling of maize grain: Differentiation due to genetics and environment. Metabolomics 2009, 5, 459–477. [Google Scholar] [CrossRef]
- Skogerson, K.; Harrigan, G.G.; Reynolds, T.L.; Halls, S.C.; Ruebelt, M.; Iandolino, A.; Pandravada, A.; Glenn, K.C.; Fiehn, O. Impact of genetics and environment on the metabolite composition of maize grain. J. Agric. Food Chem. 2010, 58, 3600–3610. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Rao, R.S.P.; Zhang, Y.; Zhong, C.; Thelen, J.J. Metabolite variation in hybrid corn grain from a large-scale multisite study. Crop J. 2016, 4, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Hazebroek, J.; Zhong, C.; Harp, T.; Vlahakis, C.; Baumhover, B.; Asiago, V. Effect of genetics, environment, and phenotype on the metabolome of maize hybrids using GC/MS and LC/MS. J. Agric. Food Chem. 2017, 65, 5215–5225. [Google Scholar] [CrossRef] [PubMed]
- Ford-Lloyd, B.V.; Schmidt, M.; Armstrong, S.J.; Barazani, O.; Engels, J.; Hadas, R.; Li, Y. Crop wild relatives—Undervalued, underutilized and under threat? Bioscience 2011, 61, 559–565. [Google Scholar] [CrossRef] [Green Version]
- Newton, A.C.; Akar, T.; Baresel, J.P.; Bebeli, P.J.; Bettencourt, E.; Bladenopoulos, K.V.; Koutsika-Sotiriou, M. Cereal landraces for sustainable agriculture. A review. Agron. Sust. Dev. 2010, 30, 237–269. [Google Scholar] [CrossRef] [Green Version]
- Latin American Maize Project (LAMP). Available online: https://www.ars.usda.gov/ARSUserFiles/50301000/Reference_Documents/LAMP-Final-Report-1997.pdf (accessed on 15 June 2020).
- Goodman, M.M.; Brown, W.L. Races of Corn. In Corn and Corn Improvement-Agronomy Monograph; Sprague, G.F., Dudley, J.W., Eds.; Agronomy Society of America: Wisconsin, WI, USA, 1988; Volume 18, pp. 33–79. [Google Scholar]
- Prasanna, B.M. Phenotypic and molecular diversity of maize landraces: Characterization and utilization. Indian J. Genet. 2010, 70, 315–327. [Google Scholar]
- Peruvian Ministry of Environment. Available online: http://bioseguridad.minam.gob.pe/wp-content/uploads/2019/01/Linea-de-base-ma%C3%ADz-LowRes.pdf (accessed on 15 June 2020).
- Catálogo de Germoplasma de Maíz de Argentina. Available online: https://www.ars.usda.gov/ARSUserFiles/50301000/Races_of_Maize/Catalogo_Argentina_0_Book.pdf (accessed on 15 June 2020).
- Realini, M.F.; Poggio, L.; Cámara Hernández, J.; González, G.E. Exploring karyotype diversity of Argentinian guaraní maize landraces: Relationship among South American maize. PLoS ONE 2018, 13, e0198398. [Google Scholar] [CrossRef]
- CIMMYT (International Maize and Wheat Improvement Center). Latin American Maize Germplasm: Core Subset Development and Regeneration—Proceedings of a Workshop Held at CIMMYT June 1–5, 1998; CIMMYT: Mexico City, Mexico, 1999; pp. 1–67. [Google Scholar]
- Catálogos de Recursos Genéticos de Maíces Bolivianos. Available online: https://www.ars.usda.gov/ARSUserFiles/50301000/Races_of_Maize/Catalogo_Bolivianos_0_Book.pdf (accessed on 15 June 2020).
- Races of Maize in Brazil and Adjacent Areas. Available online: https://www.ars.usda.gov/ARSUserFiles/50301000/Races_of_Maize/Raza_Brazil_0_Book.pdf (accessed on 15 June 2020).
- Catálogo de Recursos Genéticos de Maíz de Chile. Available online: https://www.ars.usda.gov/ARSUserFiles/50301000/Races_of_Maize/Catalogo_Chile_0_Book.pdf (accessed on 15 June 2020).
- Races of Maize in Central America. Available online: https://www.ars.usda.gov/ARSUserFiles/50301000/Races_of_Maize/Races_Central-America_0_Book.pdf (accessed on 15 June 2020).
- Races of Maize in Ecuador. Available online: https://www.ars.usda.gov/ARSUserFiles/50301000/Races_of_Maize/RoM_Ecuador_0_Book.pdf (accessed on 15 June 2020).
- Races of Maize in Peru. Available online: https://www.ars.usda.gov/ARSUserFiles/50301000/Races_of_Maize/RoM_Peru_0_Book.pdf (accessed on 15 June 2020).
- Diversidad y Descripción de las Razas de Maíz del Perú. Available online: https://www.ars.usda.gov/ARSUserFiles/50301000/Races_of_Maize/Diversidad%20y%20razas%20de%20maiz%20en%20Peru.pdf (accessed on 15 June 2020).
- Races of Maize in Paraguay. Available online: https://www.ars.usda.gov/ARSUserFiles/50301000/Races_of_Maize/RoM_Paraguay_0_Book.pdf (accessed on 15 June 2020).
- Races of Corn. Available online: https://www.ars.usda.gov/ARSUserFiles/50301000/Races_of_Maize/Corn_Improvement_0_Book.pdf (accessed on 15 June 2020).
- Races of Maize in Venezuela. Available online: https://www.ars.usda.gov/ARSUserFiles/50301000/Races_of_Maize/RoM_Venezuela_0_Book.pdf (accessed on 15 June 2020).
- Brandolini, A.; Brandolini, A. Maize introduction, evolution and diffusion in Italy. Maydica 2009, 54, 233. [Google Scholar]
- Races of Maize in Portugal. Available online: https://www.ars.usda.gov/ARSUserFiles/50301000/Races_of_Maize/RoM_Portugal_0_Book.pdf (accessed on 15 June 2020).
- Global Strategy for the Ex Situ Conservation and Utilization of Maize Germplasm. Available online: https://www.croptrust.org/wp/wp-content/uploads/2014/12/Maize-Strategy-FINAL-18Sept07.pdf (accessed on 15 June 2020).
- Races of Maize in India. Available online: https://www.ars.usda.gov/ARSUserFiles/50301000/Races_of_Maize/RoM_India_0_Book.pdf (accessed on 15 June 2020).
- Ortiz, R.; Taba, S.; Tovar, V.H.C.; Mezzalama, M.; Xu, Y.; Yan, J.; Crouch, J.H. Conserving and enhancing maize genetic resources as global public goods—A perspective from CIMMYT. Crop Sci. 2010, 50, 13–28. [Google Scholar] [CrossRef] [Green Version]
- Kurtz, B.; Gardner, C.A.; Millard, M.J.; Nickson, T.; Smith, J.S.C. Global access to maize germplasm provided by the US National Plant Germplasm System and by US plant breeders. Crop Sci. 2016, 56, 931–941. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Wen, K.S.; Ruan, X.; Zhao, Y.X.; Wei, F.; Wang, Q. Response of plant secondary metabolites to environmental factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okarter, N.; Liu, R.H. Health benefits of whole grain phytochemicals. Crit. Rev. Food Sci. Nutr. 2010, 50, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Ranilla, L.G. Bioactive ingredients from corn and lactic acid bacterial biotransformation. In Functional Foods and Biotechnology, 1st ed.; Sarkar, D., Shetty, K., Eds.; CRC Press: Boca Raton, FL, USA, 2019; Volume 3, pp. 19–45. [Google Scholar]
- Siyuan, S.; Tong, L.; Liu, R. Corn phytochemicals and their health benefits. Food Sci. Hum. Wellness 2018, 7, 185–195. [Google Scholar] [CrossRef]
- Gutiérrez-Grijalva, E.P.; Ambriz-Pérez, D.L.; Leyva-López, N.; Castillo-López, R.I.; Heredia, J.B. Dietary phenolic compounds, health benefits and bioaccessibility. Archiv. Lat. Nutr. 2016, 66, 2. [Google Scholar]
- Eggersdorfer, M.; Wyss, A. Carotenoids in human nutrition and health. Arch. Biochem. Biophys. 2018, 652, 18–26. [Google Scholar] [CrossRef]
- Terán, J.C.; Orona, C.A.L.; Gómez, S.R.; Campos, A.M. Caracterización física, contenido de fenoles y capacidad antioxidante de maíces nativos (Zea mays L.) del Estado de México. ITEA Inf. Tec. Econ. Agr. 2017, 113, 5–19. [Google Scholar]
- Urias-Lugo, D.A.; Heredia, J.B.; Serna-Saldivar, S.O.; Muy-Rangel, M.D.; Valdez-Torres, J.B. Total phenolics, total anthocyanins and antioxidant capacity of native and elite blue maize hybrids (Zea mays L.). CyTA J. Food 2015, 13, 336–339. [Google Scholar] [CrossRef]
- Mendoza-Mendoza, C.G.; del Carmen Mendoza-Castillo, M.; Delgado-Alvarado, A.; Castillo-González, F.; Kato-Yamakake, T.Á.; Cruz-Izquierdo, S. Antocianinas totales y parámetros de color en líneas de maíz morado. Rev. Fit. Mex. 2017, 40, 471–479. [Google Scholar] [CrossRef]
- Martínez-Martínez, R.; Vera-Guzmán, A.M.; Chávez-Servia, J.L.; Nora, E.; Aquino-Bolaños, J.C.C.R.; Pérez-Herrera, A. Bioactive compounds and antioxidant activities in pigmentes maize landraces. Interciencia 2019, 44, 549–556. [Google Scholar]
- Farhoosh, R.; Johnny, S.; Asnaashari, M.; Molaahmadibahraseman, N.; Sharif, A. Structure—Antioxidant activity relationships of o-hydroxyl, o-methoxy, and alkyl ester derivatives of p-hydroxybenzoic acid. Food Chem. 2016, 194, 128–134. [Google Scholar] [CrossRef]
- Shahidi, F.; Yeo, J. Insoluble-bound phenolics in food. Molecules 2016, 21, 1216. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Estrada, B.A.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Bound phenolics in foods, a review. Food Chem. 2014, 152, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.T.; Netzel, M.E.; O’Hare, T.J. Anthocyanin composition and changes during kernel development in purple-pericarp supersweet sweetcorn. Food Chem. 2020, 315, 126284. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.T.; Netzel, M.E.; O’Hare, T.J. Optimisation of extraction procedure and development of LC–DAD–MS methodology for anthocyanin analysis in anthocyanin-pigmented corn kernels. Food Chem. 2020, 126515. [Google Scholar] [CrossRef]
- Paulsmeyer, M.; Chatham, L.; Becker, T.; West, M.; West, L.; Juvik, J. Survey of anthocyanin composition and concentration in diverse maize germplasms. J. Agric. Food Chem. 2017, 65, 4341–4350. [Google Scholar] [CrossRef]
- Peniche-Pavía, H.A.; Tiessen, A. Anthocyanin profiling of maize grains using DIESI-MSQD reveals that cyanidin-based derivatives predominate in purple corn, whereas pelargonidin-based molecules occur in red-pink varieties from Mexico. J. Agric. Food Chem. 2020, 68, 5980–5994. [Google Scholar] [CrossRef]
- Meng, Q.; Murray, S.C.; Mahan, A.; Collison, A.; Yang, L.; Awika, J. Rapid estimation of phenolic content in colored Maize by near-infrared reflectance spectroscopy and its use in breeding. Crop Sci. 2015, 55, 2234–2243. [Google Scholar] [CrossRef]
- Khakimov, B.; Bak, S.; Engelsen, S.B. High-throughput cereal metabolomics: Current analytical technologies, challenges and perspectives. J. Cereal Sci. 2014, 59, 393–418. [Google Scholar] [CrossRef]
- Cuevas Montilla, E.; Hillebrand, S.; Antezana, A.; Winterhalter, P. Soluble and bound phenolic compounds in different Bolivian purple corn (Zea mays L.) cultivars. J. Agric. Food Chem. 2011, 59, 7068–7074. [Google Scholar] [CrossRef]
- Velásquez-Ladino, Y.; Quiñones, R.; Coy-Barrera, E. Chemical profiling combined with multivariate analysis of unfractionated kernel-derived extracts of maize (Zea mays L.) landraces from central Colombia. Emir. J. Food Agric. 2016, 28, 713–724. [Google Scholar] [CrossRef] [Green Version]
- Nankar, A.N.; Dungan, B.; Paz, N.; Sudasinghe, N.; Schaub, T.; Holguin, F.O.; Pratt, R.C. Quantitative and qualitative evaluation of kernel anthocyanins from southwestern United States blue corn. J. Sci. Food Agric. 2016, 96, 4542–4552. [Google Scholar] [CrossRef] [PubMed]
- Nankar, A.; Holguin, F.O.; Scott, M.P.; Pratt, R.C. Grain and nutritional quality traits of southwestern US blue maize landraces. Cereal Chem. 2017, 94, 950–955. [Google Scholar]
- Harakotr, B.; Suriharn, B.; Tangwongchai, R.; Scott, M.P.; Lertrat, K. Anthocyanins and antioxidant activity in coloured waxy corn at different maturation stages. J. Funct. Foods 2014, 9, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liang, Z.; Yin, L.; Li, Q.X.; Wu, Z. Distribution of four bioactive flavonoids in maize tissues of five varieties and correlation with expression of the biosynthetic genes. J. Agric. Food Chem. 2018, 66, 10431–10437. [Google Scholar] [CrossRef] [PubMed]
- Das, A.K.; Singh, V. Antioxidative free and bound phenolic constituents in botanical fractions of Indian specialty maize (Zea mays L.) genotypes. Food Chem. 2016, 201, 298–306. [Google Scholar] [CrossRef]
- Méndez-Lagunas, L.L.; Cruz-Gracida, M.; Barriada-Bernal, L.G.; Rodrıguez-Méndez, L.I. Profile of phenolic acids, antioxidant activity and total phenolic compounds during blue corn tortilla processing and its bioaccessibility. J. Food Sci. Tech. Mys. 2020. [Google Scholar] [CrossRef]
- Zavala-López, M.; López-Tavera, E.; de Dios Figueroa-Cárdenas, J.; Serna-Saldívar, S.O.; García-Lara, S. Screening of major phenolics and antioxidant activities in teosinte populations and modern maize types. J. Cereal Sci. 2018, 79, 276–285. [Google Scholar] [CrossRef]
- Gaxiola-Cuevas, N.; Mora-Rochín, S.; Cuevas-Rodriguez, E.O.; León-López, L.; Reyes-Moreno, C.; Montoya-Rodríguez, A.; Milán-Carrillo, J. Phenolic acids profiles and cellular antioxidant activity in tortillas produced from Mexican maize landrace processed by nixtamalization and lime extrusion cooking. Plant Foods Hum. Nutr. 2017, 72, 314–320. [Google Scholar] [CrossRef]
- Urias-Peraldí, M.; Gutiérrez-Uribe, J.A.; Preciado-Ortiz, R.E.; Cruz-Morales, A.S.; Serna-Saldívar, S.O.; García-Lara, S. Nutraceutical profiles of improved blue maize (Zea mays) hybrids for subtropical regions. Field Crops Res. 2013, 141, 69–76. [Google Scholar] [CrossRef]
- Lopez-Martinez, L.X.; Oliart-Ros, R.M.; Valerio-Alfaro, G.; Lee, C.H.; Parkin, K.L.; Garcia, H.S. Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. LWT Food Sci. Tech. 2009, 42, 1187–1192. [Google Scholar] [CrossRef]
- Ranilla, L.G.; Huamán-Alvino, C.; Flores-Báez, O.; Aquino-Méndez, E.M.; Chirinos, R.; Campos, D.; Sevilla, R.; Fuentealba, C.; Pedreschi, R.; Sarkar, D.; et al. Evaluation of phenolic antioxidant-linked in vitro bioactivity of Peruvian corn (Zea mays L.) diversity targeting for potential management of hyperglycemia and obesity. J. Food Sci. Technol. 2019, 56, 2909–2924. [Google Scholar] [CrossRef] [PubMed]
- González-Muñoz, A.; Quesille-Villalobos, A.M.; Fuentealba, C.; Shetty, K.; Ranilla, L.G. Potential of Chilean native corn (Zea mays L.) accessions as natural sources of phenolic antioxidants and in vitro bioactivity for hyperglycemia and hypertension management. J. Agric. Food Chem. 2013, 61, 10995–11007. [Google Scholar] [CrossRef] [PubMed]
- Lago, C.; Landoni, M.; Cassani, E.; Cantaluppi, E.; Doria, E.; Nielsen, E.; Pilu, R. Study and characterization of an ancient European flint white maize rich in anthocyanins: Millo Corvo from Galicia. PLoS ONE 2015, 10, e0126521. [Google Scholar] [CrossRef] [Green Version]
- Krinsky, N.I.; Landrum, J.T.; Bone, R.A. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Ann. Rev. Nutr. 2003, 23, 171–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, J.; Li, D.; He, M.; Chen, J.; Liu, C. Comparison of carotenoid composition in immature and mature grains of corn (Zea mays L.) varieties. Int. J. Food Prop. 2016, 19, 351–358. [Google Scholar] [CrossRef]
- Bouis, H.E.; Saltzman, A. Improving nutrition through biofortification: A review of evidence from HarvestPlus, 2003 through 2016. Glob. Food Secur. 2017, 12, 49–58. [Google Scholar] [CrossRef]
- Prasanna, B.M.; Palacios-Rojas, N.; Hossain, F.; Muthusamy, V.; Menkir, A.; Dhliwayo, T.; Zhang, X. Molecular breeding for nutritionally enriched maize: Status and prospects. Front. Genet. 2019, 10, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Bouis, H.E.; Welch, R.M. Biofortification—A sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci. 2010, 50, S-20. [Google Scholar] [CrossRef] [Green Version]
- Uarrota, V.G.; Severino, R.B.; Malinowsky, C.; De Oliveira, S.K.; Kuhnen, S.; Yunes, R.A.; Maraschin, M. Biochemical profile of leaf, silk and grain samples of eight maize landraces (Zea mays L.) cultivated in two low-input agricultural systems. J. Food Biochem. 2014, 38, 551–562. [Google Scholar] [CrossRef]
- Kuhnen, S.; Menel Lemos, P.M.; Campestrini, L.H.; Ogliari, J.B.; Dias, P.F.; Maraschin, M. Carotenoid and anthocyanin contents of grains of Brazilian maize landraces. J. Sci. Food Agric. 2011, 91, 1548–1553. [Google Scholar] [CrossRef]
- Da Silva Messias, R.; Galli, V.; Dos Anjos e Silva, S.D.; Rombaldi, C.V. Carotenoid biosynthetic and catabolic pathways: Gene expression and carotenoid content in grains of maize landraces. Nutrients 2014, 6, 546–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corrales-Bañuelos, A.B.; Cuevas-Rodríguez, E.O.; Gutiérrez-Uribe, J.A.; Milán-Noris, E.M.; Reyes-Moreno, C.; Milán-Carrillo, J.; Mora-Rochín, S. Carotenoid composition and antioxidant activity of tortillas elaborated from pigmented maize landrace by traditional nixtamalization or lime cooking extrusion process. J. Cereal Sci. 2016, 69, 64–70. [Google Scholar] [CrossRef]
- Hwang, T.; Ndolo, V.U.; Katundu, M.; Nyirenda, B.; Bezner-Kerr, R.; Arntfield, S.; Beta, T. Provitamin A potential of landrace orange maize variety (Zea mays L.) grown in different geographical locations of central Malawi. Food Chem. 2016, 196, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Menkir, A.; Liu, W.; White, W.S.; Maziya-Dixon, B.; Rocheford, T. Carotenoid diversity in tropical-adapted yellow maize inbred lines. Food Chem. 2008, 109, 521–529. [Google Scholar] [CrossRef]
- Song, J.; Li, D.; Liu, N.; Liu, C.; He, M.; Zhang, Y. Carotenoid composition and changes in sweet and field corn (Zea mays) during kernel development. Cereal Chem. 2016, 93, 409–413. [Google Scholar] [CrossRef]
- Capocchi, A.; Bottega, S.; Spanò, C.; Fontanini, D. Phytochemicals and antioxidant capacity in four Italian traditional maize (Zea mays L.) varieties. Int. J. Food Sci. Nutr. 2017, 68, 515–524. [Google Scholar] [CrossRef]
- Berardo, N.; Mazzinelli, G.; Valoti, P.; Lagana, P.; Redaelli, R. Characterization of maize germplasm for the chemical composition of the grain. J. Agric. Food Chem. 2009, 57, 2378–2384. [Google Scholar] [CrossRef]
- Žilić, S.; Serpen, A.; Akıllıoğlu, G.; Gökmen, V.; Vančetović, J. Phenolic compounds, carotenoids, anthocyanins, and antioxidant capacity of colored maize (Zea mays L.) kernels. J. Agric. Food Chem. 2012, 60, 1224–1231. [Google Scholar]
- Rao, J.; Cheng, F.; Hu, C.; Quan, S.; Lin, H.; Wang, J.; Chen, G.; Zhao, X.; Alexander, D.; Guo, L.; et al. Metabolic map of mature maize kernels. Metabolomics 2014, 10, 775–787. [Google Scholar] [CrossRef]
- Hu, C.; Li, Q.; Shen, X.; Quan, S.; Lin, H.; Duan, L.; Wang, Y.; Luo, Q.; Qu, G.; Han, Q.; et al. Characterization of factors underlying the metabolic shifts in developing kernels of colored maize. Sci. Rep. 2016, 6, 35479. [Google Scholar] [CrossRef] [Green Version]
- Morisasa, M.; Sato, T.; Kimura, K.; Mori, T.; Goto-Inoue, N. Application of matrix-assisted laser desorption/ionization mass spectrometry imaging for food analysis. Foods 2019, 8, 633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchberger, A.R.; DeLaney, K.; Johnson, J.; Li, L. Mass spectrometry imaging: A review of emerging advancements and future insights. Anal. Chem. 2018, 90, 240–265. [Google Scholar] [CrossRef] [PubMed]
- Burrell, M.M.; Earnshaw, C.J.; Clench, M.R. Imaging matrix assisted laser desorption ionization mass spectrometry: A technique to map plant metabolites within tissues at high spatial resolution. J. Exp. Bot. 2007, 58, 757–763. [Google Scholar] [CrossRef]
- Miyamoto, S.; Hsu, C.C.; Hamm, G.; Darshi, M.; Diamond-Stanic, M.; Declèves, A.E.; Sharma, K. Mass spectrometry imaging reveals elevated glomerular ATP/AMP in diabetes/obesity and identifies sphingomyelin as a possible mediator. EBioMedicine 2016, 7, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Enomoto, H.; Sato, K.; Miyamoto, K.; Ohtsuka, A.; Yamane, H. Distribution analysis of anthocyanins, sugars, and organic acids in strawberry fruits using matrix-assisted laser desorption/ionization-imaging mass spectrometry. J. Agric. Food Chem. 2018, 66, 4958–4965. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Kim, J.; Lee, Y.J.; Lee, T.G.; Yoon, S. Sample preparation of corn seed tissue to prevent analyte relocations for mass spectrometry imaging. J. Am. Soc. Mass Spectrom. 2017, 28, 1729–1732. [Google Scholar] [CrossRef] [PubMed]
- Gayral, M.; Fanuel, M.; Rogniaux, H.; Dalgalarrondo, M.; Elmorjani, K.; Bakan, B.; Marion, D. The spatiotemporal deposition of lysophosphatidylcholine within starch granules of maize endosperm and its relationships to the expression of genes involved in endoplasmic reticulum—Amyloplast lipid trafficking and galactolipid synthesis. Plant Cell Physiol. 2019, 60, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, B.; Durand, S.; Fanuel, M.; Guillon, F.; Méchin, V.; Rogniaux, H. Imaging Study by Mass Spectrometry of the Spatial Variation of Cellulose and Hemicellulose Structures in Corn Stalks. J. Agric. Food Chem. 2020, 68, 4042–4050. [Google Scholar] [CrossRef]
- Fu, Y.B. Understanding crop genetic diversity under modern plant breeding. Theor. Appl. Genet. 2015, 128, 2131–2142. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, R.; Crossa, J.; Franco, J.; Sevilla, R.; Burgueño, J. Classification of Peruvian highland maize races using plant traits. Genet. Resour. Crop Evol. 2008, 55, 151–162. [Google Scholar] [CrossRef]
- Ortiz, R.; Sevilla, R.; Alvarado, G.; Crossa, J. Numerical classification of related Peruvian highland maize races using internal ear traits. Genet. Resour. Crop Evol. 2008, 55, 1055–1064. [Google Scholar] [CrossRef]
- Salazar, E.; Correa, J.; Araya, M.J.; Méndez, M.A.; Carrasco, B. Phenotypic diversity and relationships among Chilean Choclero maize (Zea mays L. mays) landraces. Plant Genet. Resour. 2017, 15, 461–473. [Google Scholar] [CrossRef]
- Öner, F. Assessment of genetic variation in Turkish local maize genotypes using multivariate discriminate analysis. Appl. Ecol. Environ. Res. 2018, 16, 1369–1380. [Google Scholar] [CrossRef]
- Kulka, V.P.; Silva, T.A.D.; Contreras-Soto, R.I.; Maldonado, C.; Mora, F.; Scapim, C.A. Diallel analysis and genetic differentiation of tropical and temperate maize inbred lines. Crop Breed. Appl. Biotechnol. 2018, 18, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Lia, V.V.; Poggio, L.; Confalonieri, V.A. Microsatellite variation in maize landraces from Northwestern Argentina: Genetic diversity, population structure and racial affiliations. Theor. Appl. Genet. 2009, 119, 1053–1067. [Google Scholar] [CrossRef] [PubMed]
- Porta, B.; Condón, F.; Franco, J.; Iriarte, W.; Bonnecarrère, V.; Guimaraens-Moreira, M.; Vidal, R.; Galván, G.A. Genetic structure, core collection, and regeneration quality in white dent corn landraces. Crop Sci. 2018, 58, 1644–1658. [Google Scholar] [CrossRef]
- Beckett, T.J.; Morales, A.J.; Koehler, K.L.; Rocheford, T.R. Genetic relatedness of previously plant-variety-protected commercial maize inbreds. PLoS ONE 2017, 12, e0189277. [Google Scholar] [CrossRef] [Green Version]
- Alvarado-Beltrán, G.; López-Sánchez, H.; Santacruz-Varela, A.; Muñoz-Orozco, A.; Valadez-Moctezuma, E.; Gutiérrez-Espinosa, M.A.; López, P.A.; Gil-Muñoz, A.; Guerrero-Rodríguez, J.D.; Taboada-Gaytán, O.R. Morphological variability of native maize (Zea mays L.) of the west highland of Puebla and east highland of Tlaxcala, Mexico. Rev. Fac. Cienc. Agrar. UNCUYO 2019, 51, 217–234. [Google Scholar]
- Riedelsheimer, C.; Lisec, J.; Czedik-Eysenberg, A.; Sulpice, R.; Flis, A.; Grieder, C.; Altman, T.; Stitt, M.; Willmitzer, L.; Melchinger, A.E. Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc. Natl. Acad. Sci. USA 2012, 109, 8872–8877. [Google Scholar] [CrossRef] [Green Version]
- Wen, W.; Li, D.; Li, X.; Gao, Y.; Li, W.; Li, H.; Liu, J.; Liu, H.; Chen, W.; Lou, J.; et al. Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights. Nat. Commun. 2014, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Wang, M.; Li, L.; Che, R.; Li, P.; Pei, L.; Li, H. Genome-wide trait-trait dynamics correlation study dissects the gene regulation pattern in maize kernels. BMC Plant Biol. 2017, 17, 163. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Wen, W.; Alseekh, S.; Yang, X.; Guo, H.; Li, W.; Wang, L.; Pan, Q.; Zhan, W.; Liu, J.; et al. Large-scale metabolite quantitative trait locus analysis provides new insights for high-quality maize improvement. Plant J. 2019, 99, 216–230. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Luo, J.; Wang, S. The diversity of nutritional metabolites: Origin, dissection, and application in crop breeding. Front. Plant Sci. 2019, 10, 1028. [Google Scholar] [CrossRef] [PubMed]
- Butelli, E.; Titta, L.; Giorgio, M.; Mock, H.P.; Matros, A.; Peterek, S.; Martin, C. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat. Biotechnol. 2008, 26, 1301–1308. [Google Scholar] [CrossRef]
- Zhu, Q.; Yu, S.; Zeng, D.; Liu, H.; Wang, H.; Yang, Z.; Zhao, X. Development of “purple endosperm rice” by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system. Mol. Plant 2017, 10, 918–929. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, D.H.; Hoffmann, L.J.; Rooney, W.L.; Ramu, P.; Morris, G.P.; Kresovich, S. Genome-wide association study of grain polyphenol concentrations in global sorghum [Sorghum bicolor (L.) Moench] germplasm. J. Agric. Food Chem. 2014, 62, 10916–10927. [Google Scholar] [CrossRef]
- Lago, C.; Cassani, E.; Zanzi, C.; Landoni, M.; Trovato, R.; Pilu, R. Development and study of a maize cultivar rich in anthocyanins: Coloured polenta, a new functional food. Plant Breed. 2014, 133, 210–217. [Google Scholar] [CrossRef]
- Lago, C.; Landoni, M.; Cassani, E.; Doria, E.; Nielsen, E.; Pilu, R. Study and characterization of a novel functional food: Purple popcorn. Mol. Breed. 2013, 31, 575–585. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, H.; Wu, L.; Warburton, M.; Yan, J. Genome-wide association studies in maize: Praise and stargaze. Mol. Plant 2017, 10, 359–374. [Google Scholar] [CrossRef] [Green Version]
Geographical Area | Country | Nº Landraces | Nº Accessions in Local Germplasm Bank |
---|---|---|---|
America | Argentina | 43 [44]/51 [45] | 1927 [44]/2035 [46] |
Bolivia | 45 [47] | >1000 [47]/1080 [46] | |
Brazil | 27 [48] | 1743 [46] | |
Chile | 23 [49] | 929/945 [46] | |
Central America | 20 [50] | 1231 [50] | |
Colombia | 23 [46] | 2050 [46] | |
Ecuador | 29 [51] | 532 [46] | |
Mexico | 59 [46] | 6738 [46] | |
Peru | 49 [52]/52 [53] | 3023 [46] | |
Paraguay | 10 [54] | 478 [46] | |
United States | 9 [55] | 900 [46] | |
Venezuela | 19 [56] | 724 [46] | |
Europe | Italy | 34 [57] | 562 [57] |
Portugal | 10 [58] | ||
Yugoslavia | 18 [59] | ˜2000 [59] | |
Asia | India | 15 [60] | 1300 [60] |
Geographical Area | Type of Sample | Germplasm Origin (Place/Bank) | Analytical Configuration | Phenolic Metabolite in Mature Corn Kernels | Relevant Germplasm | Reference | |
---|---|---|---|---|---|---|---|
Free Fraction | Bound Fraction | ||||||
America | Ten landraces: (purple) Kulli, Ayzumo, Paru, Tuimuru, Oke, Huaca, Songo, Colorado, Huillcaparu, Checchi | Bank: Centro de Investigaciones Fitoecogenéticas de Pairumani (Cochabamba, Bolivia) | HPLC-ESI- MS/MS (IT) 1 | Phenolic acids: p-coumaric acid, ferulic acid Anthocyanins (10): Cy3G 12, Cy3MG 13, Cy3DMG 14 Pg3G 15, Pg3MG 16, Pg3DMG 17 Pn3G 18, Pn3MG 19, Pn3DMG 20 Epicatechin-Cy3,5DG 21 | Phenolic acids: p-coumaric acid, ferulic acid, ferulic acid dehydrodimers (8-5’diferulic acid), ferulic acid dehydrotrimers. | Kulli (high anthocyanin contents) | [82] |
Twenty-three landraces: (colored and uncolored) with a Peruvian purple corn as a control | Departments: Santander (4), Cundinamarca (7), Boyacá (12) (Colombia) | HPLC-UV-DAD-ESI-MS 2 | Phenolic acids: caffeic acid, chlorogenic acid, caffeic acid derivative, ferulic acid derivative, sinapic acid derivative. Flavonols: isoquercetin, astragalin, quercetin-rutinoside, isorhamnetin-glucoside, quercetin-diglucoside. Anthocyanins (9): Cy3G 12, Cy3MG 13, Cy3SG 22, Cy3EMG 23 Pg3G 15, Pg3MG 16, Pg3DG 24 Pn3G 18, Pn3MG 19. | Purple colored samples (high phenolic contents) | [83] | ||
Eight accessions (landraces and open pollinated varieties): Navajo Blue, Santa Clara Blue, Flor del Rio, Yoeme Blue, Hopi Blue, Taos Blue, Ohio Blue (Corn Belt dent), Los Lunas High | Bank: Native Seeds/SEARCH (AZ, United States) Bank: Plants of the Southwest (NM, United States) | HPLC-DAD-MS 3 HPLC-MS (FTICR) 4 | Anthocyanins (5): Cy3G 12, Cy3SG 22, Cy3DSG 25 Pg3G 15 Pn3G 18 | Navajo Blue and Ohio Blue (high anthocyanin contents) | [84,85] | ||
Oceania | Six varieties: purple-pericarp sweet corn, reddish-purple-pericarp sweet corn, purple-pericarp, corn, purple-pericarp-blue-aleurone corn, blue aleurone, cherry-aleurone corn | Gatton Research Facility (QLD, Australia) | UHPLC-DAD 5 UHPLC-MS/MS (Q-Orbitrap) 6 UHPLC-ESI-MS/MS (QQQ) 7 | Anthocyanins (18): Cy3G 12, Cy3MG 13 (4 isomers), Cy3DMG 14 (3 isomers). Pg3G 15, Pg3MG 16 (2 isomers), Pg3DMG 17 (2 isomers). Pn3G 18, Pn3MG 19 (3 isomers), Pn3DMG 20 | Purple pericarp-corn (high anthocyanin contents) | [76] | |
Two varieties (derived from PB12.5-2-1 line and a purple Peruvian corn 9PW1): Purple-pericarp and reddish-purple pericarp “super sweet” | Anthocyanins (20): Cy3G 12, Cy3MG 13 (4 isomers), Cy3DMG 14 (3 isomers). Pg3G 15, Pg3MG 16 (4 isomers), Pg3DMG 17 (3 isomers). Pn3G 18, Pn3MG 19 (2 isomers), Pn3DMG 20 | Purple-pericarp corn | [77] | ||||
Asia | Twelve waxy colored corn genotypes (commercial and landraces) | Bank: Plant Breeding Center for Sustainable Agriculture (Khon University, Thailand). Genotypes from various countries of Asia: Thailand, Korea, China, Laos, Taiwan. | HPLC-DAD-MS 3 | Anthocyanins (10): Cy3G 12, Cy3MG 13, Cy3DMG 14, Cy3SG 22, Cy3MSG 26 Pg3G 15, Pg3MG 16. Pn3G 18, Pn3MG 19, Pn3SG 27 | Purplish black genotype KKU-WX111031 (high anthocyanin contents) | [86] | |
Five corn hybrids: Jingke 968, Zhengdan 958, Xianyu 335, Jingkenuo 2000, Jingketion 183 | Bank: Beijing Academy of Agriculture and Forestry Sciences (Beijing, China) | UPLC-MS/MS (QTOF) 8 | Flavanones: eriodyctiol, luteolin | Jingke 968 hybrid (high phenolic contents) | [87] | ||
Four corn hybrids: HQPM-7 (quality protein maize), HM-4 (baby corn), VL Amber (popcorn), Madhuri (sweet corn) | Bank: Directorate of Maize Research (New Delhi, India) | HPLC-DAD 9 LC-ESI-MS/MS (QTOF) 10 | Phenolic acids: p-hydroxybenzoic acid, vanillic acid, syringic acid, caffeic acid, p-coumaric acid, ferulic acid, iso-ferulic acid. Anthocyanins: Cy3G 12 Flavonols: kaempferol, quercetin. | Phenolic acids: p-hydroxybenzoic acid, vanillic acid, syringic acid, caffeic acid, p-coumaric acid, ferulic acid, iso-ferulic acid. Anthocyanins: Cy3G 12 Flavonols: kaempferol, quercetin. | Madhuri (sweet corn) (high phenolic contents) | [88] | |
Mixed | 398 genetically diverse pigmented corn accessions from different origins | Banks: NCRPIS (North Central Regional Plant Introduction Station, Ames, United States). CIMMYT (International Maize and Wheat Improvement Center, Mexico). Native Seeds/SEARCH (AZ, United States). MGCSC (Maize Genetics Cooperation Stock Center, IL, United States). Commercial sources. | HPLC-UV-VIS 11 LC-MS | Anthocyanins (9-10): Cy3G 12, Cy3MG 13 Pg3G 15, Pg3MG 16, Pg3DMG 17 Pn3G 18, Pn3DMG 20 Cy3DMG 14/Pn3MG 19 (coeluted) Flavanol-anthocyanin dimers (condensed anthocyanin forms) | 167 accessions (with anthocyanin production) Peruvian landrace: Arequipa 204 (PI571427) (high anthocyanin contents) | [78] |
Geographical Area | Type of Sample | Germplasm Origin (Place/Bank) | Analytical Configuration | Phenolic Metabolite in Mature Corn Kernels | Relevant Germplasm | Reference | |
---|---|---|---|---|---|---|---|
Free Fraction | Bound Fraction | ||||||
America | Landrace: Blue Bolita | Oaxaxa (Mexico) | HPLC-UV 1 | Phenolic acids: syringic acid, chlorogenic acid, caffeic acid, vanillic acid, 4-hydroxybenzoic acid. | Phenolic acids: Ferulic acid, syringic acid, p-coumaric acid, chlorogenic acid. | [89] | |
Twenty-two teosinte varieties: (Zea perennis, Zea diploperennis, Zea nicagaraguensis, Zea luxurians, Zea mays spp. huehuetenangensis, Zea mays ssp. mexicana, Zea mays ssp. parviglumis, Six modern corn varieties (Zea mays ssp. mays) | Banks: CIMMYT (International Maize and Wheat Improvement Center, Mexico). CINVESTAN (Centro de Investigación y de Estudios avanzados del Instituto Politécnico Nacional, Mexico) Corn seeds from Mexico, Nicaragua and Guatemala. | HPLC-DAD 2 | Phenolic acids: p-coumaric acid, trans-ferulic acid. | Phenolic acids: p-coumaric acid, ferulic acid, diferulic acids (8-5’diferulic acid, 5-5’ diferulic acid). | Teosinte varieties (higher phenolic contents than commercial corn) | [90] | |
Landraces: Elotero (blue), Chapalote (white) | Concordia (Sinaloa, Mexico) | HPLC-DAD 2 | Phenolic acids: p-hydroxybenzoic acid, p-coumaric acid, sinapic acid, ferulic acid. | Phenolic acids: ferulic acid, p-coumaric acid, sinapic acid, vanillic acid, syringic acid, p-hydroxybenzoic acid. | White corn (high phenolic acid contents) | [91] | |
Twenty-five blue hybrids derived from Criollo negro and Criollo Colorado landraces | Bank: INIFAP (National Forestry Agricultural and Husbandry Research Institute, Guanajuato, Mexico) | HPLC-DAD 2 | Phenolic acid: ferulic acid | Hybrids with similar phenolic contents than landraces | [92] | ||
Eighteen corn phenotypes (commercial varieties and accessions) | Banks: CIMMYT (Mexico). Campo Cotaxtla (Mexico) Colegio de Postgraduados (Mexico) | HPLC-UV 1 | Phenolic acids: ferulic acid Flavonoid: Anthocyanins | Phenolic acids: ferulic acid | AREQ516540TL and Veracruz 42 accessions high anthocyanin levels | [93] | |
Twenty-two accessions from five landraces (Arequipeño, Kculli, Cabanita, Coruca, Granada. | Bank: Maize Research Program (Agraria University of La Molina, Peru) | UPLC-DAD 3 | Phenolic acids: p-coumaric acid, p-coumaric acid derivatives, ferulic acid, ferulic acid derivatives, caffeic acid derivatives. Flavonols: quercetin derivatives. Anthocyanins. | p-coumaric acid, ferulic acid, ferulic acid derivatives | Kculli landrace (high phenolic contents) | [94] | |
America | Thirty-three accession from 14 local landraces | Bank: INIA (National Institute of Agronomic Research, La Platina, Chile) | HPLC-UV 1 | Phenolic acids: vanillic acid, protocatecuic acid, p-coumaric acid, ferulic acid. | Phenolic acids: Ferulic acid, p-coumaric acid. | Pisankalla red landrace (high phenolic content) | [95] |
Landraces: Elote Occidental (red), Criollo Pozolero purpura (black), Cónico negro (black), Criollo amarillo. Vitamaize cultivars (blue/purple): E3E4, VMATF, VM366 | Banks: Landraces (Michoacan, Mexico) Cultivars (CINVESTAV, Mexico) | Screening: DIESI-MSQD 4 Confirmation with: LC-MS/MS (QQQ) 5 | Anthocyanins (18): Cy3G 7, Cy3MG 8, Cy3DMG 9, Cy3SG 10, Cy3DSG 11, Cy3MSG 12 Pg3G 13, Pg3MG 14, Pg3DMG 15, Pg3SG 16, Pg3DSG 17, Pg3MSG 18 Pn3G 19, Pn3MG 20, Pn3DMG 21, Pn3SG 22, Pn3DSG 23, Pn3MSG 24 | Red (high in pelargonidin-based anthocyanins). Black (high in cyanidin derivatives) | [79] | ||
479 hybrids and 81 lines (White, yellow, red, blue, purple phenotypes) | Bank: Quantitative Genetics and Maize Breeding Program (Texas A&M University, United States) | FT-NIRS 6 | Free soluble phenolic compounds | Well correlated with visual color selection for high anthocyanin corn | [80] | ||
Europe | Landraces: Millo Corvo (blue), Scagliolo (yellow), Ottofile (yellow) | Blue corn (Galicia, Spain) Yellow corn (Careno and Zinasco, Italy) | HPLC-DAD 2 | Anthocyanins: Cy3G, Pg3G, Pn3G | Millo Corvo (high anthocyanins) | [96] |
Geographical Area | Type of Sample | Germplasm Origin (Place/Bank) | Analytical Configuration | Carotenoid Metabolite in Mature Corn Kernels | Relevant Germplasm | Reference | |
---|---|---|---|---|---|---|---|
Provitamin A | Non-provitamin A | ||||||
America | Landraces: Roxo, Palha Roxa, Mato Grosso, Palha Roxa, Rajado, Rajado 8 Carreiras, Roxo do Emilio, MPA, Língua de Papagaio | Santa Catarina (Brazil) | HPLC-UV-VIS 1 | β-cryptoxanthin, α-carotene, cis-β-carotene, trans-β-carotene | Lutein, zeaxanthin | Palha Roxa, MPA, Roxo (high contents) | [102] |
Twenty-six landraces (yellow, white, orange, variegated, purple) | SINTRA-Small Farmer Association (Santa Catarina, Brazil) | HPLC-UV-VIS 1 | β-cryptoxanthin, α-carotene, β-carotene. | Lutein, zeaxanthin | Roxo 41 and MPA1 (high contents) | [103] | |
Twenty-two landraces (white, yellow, orange) | Brazil (Bank not informed) | HPLC-DAD 2 | β-cryptoxanthin, α-cryptoxanthin, α-carotene, β-carotene. | Lutein, zeaxanthin | MC3, MC14 (high contents) | [104] | |
Eight landraces: Tuxpeño (yellow), Tablocillo (red), Chapalote (red) | Sinaloa (Mexico) | HPLC-DAD 2 | β-cryptoxanthin, β-carotene | Lutein, zeaxanthin | Tuxpeño (high contents) | [105] | |
Africa | Landraces: 26 white and 35 orange (Mthikinya) | Central Malawi | HPLC-DAD 2 | β-cryptoxanthin, β-carotene | Lutein, zeaxanthin | Orange group with high contents | [106] |
421 tropical adapted yellow endosperm inbred lines | Ibadan (Nigeria) | HPLC-DAD 2 | β-cryptoxanthin, α-carotene, β-carotene (cis+trans isomers) | Lutein, zeaxanthin | Variable | [107] | |
Asia | Sweet corn varieties: Jingtian 3, Jingtian 5. Waxy corn varieties: Suyunuo 11, Jignuo 8, Jingtianzihuanuo 2 | China (Bank not informed) | HPLC-DAD-APCI-MS/MS 3 | All-trans-α-carotene, 9-cis-α-carotene, 9′-cis-α-carotene, all-trans-β-carotene, 9-cis-β-carotene, 13-cis-β-carotene, all-trans-β-cryptoxanthin, 9-cis-β-cryptoxanthin, 9′-cis- β-cryptoxanthin, 13 or 13’-cis- β-cryptoxanthin, 15-cis- β-cryptoxanthin, all-trans-α-cryptoxanthin, 9-cis-α-cryptoxanthin | All-trans-lutein, 9 or 9′-cis-lutein, 13-cis-lutein-5,6-epoxide, all-trans-zeaxanthin, violaxanthin, neochrome, neoxanthin, 13-cis-neoxanthin | Sweet varieties (high contents) | [98] |
Sweet corn varieties: Jingtian 5, Suyu 29 | Luhe Experimental Station of Jiangsu Academy of Agricultural Sciences (China) | HPLC-DAD-APCI-MS/MS 3 | All-trans-α-carotene, all-trans-β-carotene, all-trans-β-cryptoxanthin, all-trans-α-cryptoxanthin | Neoxanthin, violaxanthin, all-trans-lutein, all-trans-zeaxanthin. | Suyu 29 with orange kernel (high contents) | [108] | |
Europe | Four landrances: Formentone ottofile rosso (red), Formentone ottofile giallo (yellow), Nostrato del Palazzaccio (yellow), Nano di Verni (yellow), yellow comercial variety. | Regional Germplasm Bank Network (Italy). Comunitá Montana della Mediavalle del Serchio (Italy) | HPLC-DAD 2 | β-cryptoxanthin, β-carotene. | Lutein, zeaxanthin | Nano di Verni (high contents) | [109] |
93 Landraces | European Union Maize Landraces Core Collection (EUMLCC) | HPLC-DAD 2 | Lutein, zeaxanthin | Overall landraces from Italy and France (high contents) | [110] | ||
Mixed | Ten landraces and inbred lines | CYMMIT (International Maize and Wheat Improvement Center, Mexico). BSSS (Iowa Stiff Stalk Syntetic, United States). MRI (Maize Research Institute, Serbia). Samples from Mexico, United States, France, Serbia, Netherland. | HPLC-DAD 2 | β-carotene | Lutein | Orange and red colored corn kernels (high contents) | [111] |
Germplasm | Origin | Evaluated Trait | Type of Marker | Method for Diversity Classification | Reference |
---|---|---|---|---|---|
Eight Peruvian highland corn landraces: Confite Morocho (5) 1, Chullpi (6), Uchuquilla (5), Cusco Gigante (9), Huayleño (9), Paro (4), San Gerónimo-Huancavelicano (6), Shajatu (6) | Peru | Plant traits: height, ear height, leaf number, leaf number above ear, leaf length, leaf width | Morphological | Ward-Modified Location Model (MLM) | [123] |
Four Peruvian highland corn landraces: Confite Morocho (5) 1, Confite Punteagudo (9), Cusco Gigante (5), Uchuquilla (5) | Peru | Internal ear traits: cob and pith diameters, glume length and texture, cupule length and width | Morphological | Ward-MLM | [124] |
134 corn populations from 34 highland localities and 10 witnesses | Mexico | 32 vegetative, reproductive, and yield traits | Morphological | Modified Location Model (MLM) | [131] |
Thirty-four accessions (Choclero landrace) | Chile | 2 phenological, 16 vegetative 12 reproductive and 9 qualitative traits | Morphological | Ward and Manhattan distance method | [125] |
Seventy-nine corn accessions: flint (59) 1, pop (16) and dent (4) races | Turkey | 16 traits: 6 ear and 10 tassel traits | Morphological | Unweighted pair group method of arithmetic average (UPMGA) | [126] |
Six corn landraces: Altiplano (32) 1, Blanco (13), Amarillo Grande (25), Amarillo Chico (34), Pisingallo (16) and Orgullo Cuarentón (24) | Argentina | --- | Molecular: 18 SSR (microsatellites or simple sequence length polymorphisms) | Bayesian method and Nei’s genetic distances | [128] |
Corn inbred lines: group I: 7 tropical and subtropical lines; group II: 7 temperate lines | Group I: Brazil Group II: United States | --- | Molecular: 22 SSR | Markov Chain Monte Carlo algorithm for the Bayesian clustering method and the Self-Organizing Tree Algorithm (SOTA) | [127] |
Ninety white dent race accessions | Uruguay | 17 traits: vegetative, reproductive and yield | Morphological Molecular: 26 SSR | Molecular results: Ward, canonical and Bayesian methods | [129] |
349 inbred lines: 283 ex-PVP (Plant Variety Protected) inbreds and 66 public inbred lines. | United States | --- | Sequence-based markers: Genotyping-by-sequencing (GBS), 77,314 SNP (single-nucleotide polymorphism) markers | Ward and Nei’s distance methods | [130] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gálvez Ranilla, L. The Application of Metabolomics for the Study of Cereal Corn (Zea mays L.). Metabolites 2020, 10, 300. https://doi.org/10.3390/metabo10080300
Gálvez Ranilla L. The Application of Metabolomics for the Study of Cereal Corn (Zea mays L.). Metabolites. 2020; 10(8):300. https://doi.org/10.3390/metabo10080300
Chicago/Turabian StyleGálvez Ranilla, Lena. 2020. "The Application of Metabolomics for the Study of Cereal Corn (Zea mays L.)" Metabolites 10, no. 8: 300. https://doi.org/10.3390/metabo10080300
APA StyleGálvez Ranilla, L. (2020). The Application of Metabolomics for the Study of Cereal Corn (Zea mays L.). Metabolites, 10(8), 300. https://doi.org/10.3390/metabo10080300