Occurrence and Exposure Assessment of Mycotoxins in Ready-to-Eat Tree Nut Products through Ultra-High Performance Liquid Chromatography Coupled with High Resolution Q-Orbitrap Mass Spectrometry
Abstract
:1. Introduction
2. Results
2.1. Analytical Method Validation
2.2. Analysis of Real Samples
2.3. Exposure Assessment
3. Conclusions
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Sampling
4.3. Sample Preparation
4.4. UHPLC-Q-Orbitrap HRMS Analysis
4.5. Validation Parameters
4.6. Exposure Assessment
4.7. Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
References
- De Souza, R.G.M.; Schincaglia, R.M.; Pimentel, G.D.; Mota, J.F. Nuts and human health outcomes: A systematic review. Nutrients 2017, 9, 1311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becerra-Tomás, N.; Paz-Graniel, I.; Kendall, C.W.C.; Kahleova, H.; Rahelić, D.; Sievenpiper, J.L.; Salas-Salvadó, J. Nut consumption and incidence of cardiovascular diseases and cardiovascular disease mortality: A meta-analysis of prospective cohort studies. Nutr. Rev. 2019, 77, 691–709. [Google Scholar] [CrossRef] [PubMed]
- Carughi, A.; Feeney, M.J.; Kris-Etherton, P.; Fulgoni, V.; Kendall, C.W.C.; Bulló, M.; Webb, D. Pairing nuts and dried fruit for cardiometabolic health. Nutr. J. 2016, 15, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Gobbo, L.C.; Falk, M.C.; Feldman, R.; Lewis, K.; Mozaffarian, D. Effects of tree nuts on blood lipids, apolipoproteins, and blood pressure: Systematic review, meta-analysis, and dose-response of 61 controlled intervention trials. Am. J. Clin. Nutr. 2015, 102, 1347–1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Nut and Dried Fruit Council. Nuts and Dried Fruits Global Statistical Review 2018/2019. Available online: https://www.nutfruit.org/industry/technical-resources?category=statistical-yearbooks (accessed on 18 May 2020).
- Sataque Ono, E.Y.; Hirozawa, M.T.; Omori, A.M.; de Oliveira, A.J.; Ono, M.A. Chapter 19—Mycotoxins in Nuts and Seeds. In Nuts and Seeds in Health and Disease Prevention, 2nd ed.; Preedy, V.R., Watson, R.R., Eds.; Academic Press: San Diego, CA, USA, 2020; pp. 255–270. [Google Scholar] [CrossRef]
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, 364, 5–24. [Google Scholar]
- European Commission. Commission Regulation (EU) No 165/2010 of 26 February 2010 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxins (Text with EEA relevance). Off. J. Eur. Union 2011, 50, 8–12. [Google Scholar]
- Marín, S.; Ramos, A.J. Chapter 17—Molds and mycotoxins in nuts. In Food Hygiene and Toxicology in Ready-to-Eat Foods; Kotzekidou, P., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 295–312. [Google Scholar]
- Escrivá, L.; Oueslati, S.; Font, G.; Manyes, L. Alternaria mycotoxins in food and feed: An overview. J. Food Qual. 2017, 2017, 1569748. [Google Scholar] [CrossRef] [Green Version]
- Arroyo-Manzanares, N.; Huertas-Pérez, J.F.; Gámiz-Gracia, L.; García-Campaña, A.M. A new approach in sample treatment combined with UHPLC-MS/MS for the determination of multiclass mycotoxins in edible nuts and seeds. Talanta 2013, 115, 61–67. [Google Scholar] [CrossRef]
- Azaiez, I.; Giusti, F.; Sagratini, G.; Mañes, J.; Fernández-Franzón, M. Multi-mycotoxins analysis in dried fruit by LC/MS/MS and a modified QuEChERS procedure. Food Anal. Methods 2014, 7, 935–945. [Google Scholar] [CrossRef]
- Cunha, S.C.; Sá, S.V.M.; Fernandes, J.O. Multiple mycotoxin analysis in nut products: Occurrence and risk characterization. Food Chem. Toxicol. 2018, 114, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Nie, J.; Yan, Z.; Li, Z.; Cheng, Y.; Chang, W. Occurrence and co-occurrence of mycotoxins in nuts and dried fruits from China. Food Control 2018, 88, 181–189. [Google Scholar] [CrossRef]
- Alcántara-Durán, J.; Moreno-González, D.; García-Reyes, J.F.; Molina-Díaz, A. Use of a modified QuEChERS method for the determination of mycotoxin residues in edible nuts by nano flow liquid chromatography high resolution mass spectrometry. Food Chem. 2019, 279, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Ruiz, J.L.; Romero-González, R.; Martínez Vidal, J.L.; Garrido Frenich, A. Determination of mycotoxins in nuts by ultra high-performance liquid chromatography-tandem mass spectrometry: Looking for a representative matrix. J. Food Compos. Anal. 2019, 82, 103228. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain. Appropriateness to set a group health-based guidance value for zearalenone and its modified forms. EFSA J 2016, 14, e04425. [Google Scholar] [CrossRef]
- European Food Safety Authority; Arcella, D.; Eskola, M.; Gómez Ruiz, J.A. Dietary exposure assessment to Alternaria toxins in the European population. EFSA J. 2016, 14, e04654. [Google Scholar] [CrossRef]
- Sentandreu, E.; Peris-Díaz, M.D.; Sweeney, S.R.; Chiou, J.; Muñoz, N.; Tiziani, S. A survey of orbitrap all ion fragmentation analysis assessed by an R Metabolist package to study small-molecule metabolites. Chromatographia 2018, 81, 981–994. [Google Scholar] [CrossRef]
- Škrbić, B.; Živančev, J.; Godula, M. Multimycotoxin analysis of crude extracts of nuts with ultra-high performance liquid chromatography/tandem mass spectrometry. J. Food Compos. Anal. 2014, 34, 171–177. [Google Scholar] [CrossRef]
- Varga, E.; Glauner, T.; Berthiller, F.; Krska, R.; Schuhmacher, R.; Sulyok, M. Development and validation of a (semi-)quantitative UHPLC-MS/MS method for the determination of 191 mycotoxins and other fungal metabolites in almonds, hazelnuts, peanuts and pistachios. Anal. Bioanal. Chem. 2013, 405, 5087–5104. [Google Scholar] [CrossRef] [Green Version]
- Liao, C.-D.; Wong, J.W.; Zhang, K.; Yang, P.; Wittenberg, J.B.; Trucksess, M.W.; Hayward, D.G.; Lee, N.S.; Chang, J.S. Multi-mycotoxin analysis of finished grain and nut products using ultrahigh-performance liquid chromatography and positive electrospray ionization-quadrupole orbital ion trap high-resolution mass spectrometry. J. Agric. Food Chem. 2015, 63, 8314–8332. [Google Scholar] [CrossRef]
- García-Cela, E.; Ramos, A.J.; Sanchis, V.; Marin, S. Risk management towards food safety objective achievement regarding to mycotoxins in pistachio: The sampling and measurement uncertainty issue. Food Control 2013, 31, 392–402. [Google Scholar] [CrossRef]
- Luttfullah, G.; Hussain, A. Studies on contamination level of aflatoxins in some dried fruits and nuts of Pakistan. Food Control 2011, 22, 426–429. [Google Scholar] [CrossRef]
- Spanjer, M.C.; Rensen, P.M.; Scholten, J.M. LC–MS/MS multi-method for mycotoxins after single extraction, with validation data for peanut, pistachio, wheat, maize, cornflakes, raisins and figs. Food Addit. Contam. Part A 2008, 25, 472–489. [Google Scholar] [CrossRef] [PubMed]
- Castaldo, L.; Graziani, G.; Gaspari, A.; Izzo, L.; Tolosa, J.; Rodríguez-Carrasco, Y.; Ritieni, A. Target analysis and retrospective screening of multiple mycotoxins in pet food using UHPLC-Q-Orbitrap hrms. Toxins 2019, 11, 434. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Commission Decision 2002/657/EC of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off. J. Eur. Union 2002, 221, 8–36. [Google Scholar]
- Leclercq, C.; Arcella, D.; Piccinelli, R.; Sette, S.; Le Donne, C. The italian national food consumption survey INRAN-SCAI 2005–06: Main results in terms of food consumption. Public Health Nutr. 2009, 12, 2504–2532. [Google Scholar] [CrossRef] [Green Version]
Recovery (%) (RSDR (%)) | |||||
---|---|---|---|---|---|
Analyte | SSE (%) | 20 ng/g | 5 ng/g | 1 ng/g | LOQ (ng/g) |
almonds | |||||
NEO | 106 | 83 (12) | 77 (16) | 88 (7) | 0.78 |
AFG2 | 101 | 88 (16) | 82 (19) | 78 (14) | 0.20 |
AFG1 | 111 | 83 (20) | 78 (20) | 82 (13) | 0.39 |
AFB2 | 106 | 93 (15) | 94 (16) | 83 (12) | 0.20 |
AFB1 | 117 | 100 (10) | 95 (15) | 95 (5) | 0.39 |
HT-2 | 115 | 105 (8) | 89 (17) | 79 (8) | 0.78 |
A-ZAL | 102 | 88 (11) | 92 (12) | 83 (10) | 0.39 |
A-ZOL | 109 | 92 (7) | 88 (9) | 87 (6) | 0.78 |
AOH | 105 | 81 (14) | 73 (14) | 71 (14) | 0.20 |
T-2 | 114 | 104 (16) | 87 (11) | 89 (13) | 0.78 |
B-ZAL | 118 | 96 (10) | 95 (13) | 89 (10) | 0.78 |
B-ZOL | 98 | 95 (9) | 90 (15) | 76 (9) | 0.20 |
ZON | 120 | 94 (18) | 81 (17) | 86 (18) | 0.20 |
AME | 149 | 94 (15) | 85 (16) | 81 (15) | 0.78 |
ENN B | 77 | 94 (6) | 90 (9) | 98 (10) | 0.78 |
ENN B1 | 106 | 106 (14) | 84 (13) | 74 (10) | 0.78 |
ENN A1 | 111 | 87 (3) | 86 (5) | 95 (18) | 0.39 |
ENN A | 102 | 86 (12) | 83 (13) | 89 (12) | 0.78 |
walnuts | |||||
NEO | 91 | 85 (9) | 81 (14) | 92 (10) | 0.78 |
AFG2 | 93 | 85 (5) | 78 (9) | 82 (10) | 0.20 |
AFG1 | 91 | 79 (5) | 70 (8) | 76 (11) | 0.78 |
AFB2 | 103 | 91 (4) | 84 (8) | 79 (12) | 0.39 |
AFB1 | 97 | 102 (6) | 83 (12) | 78 (10) | 0.39 |
HT-2 | 107 | 97 (9) | 88 (11) | 76 (9) | 0.78 |
A-ZAL | 103 | 99 (10) | 81 (12) | 100 (9) | 0.78 |
A-ZOL | 110 | 88 (7) | 78 (15) | 75 (9) | 0.78 |
AOH | 105 | 83 (4) | 71 (6) | 74 (8) | 0.20 |
T-2 | 96 | 86 (10) | 84 (13) | 79 (8) | 0.78 |
B-ZAL | 105 | 95 (5) | 91 (11) | 99 (12) | 0.78 |
B-ZOL | 97 | 94 (7) | 85 (7) | 95 (12) | 0.20 |
ZON | 100 | 81 (7) | 78 (7) | 73 (5) | 0.20 |
AME | 114 | 80 (7) | 74 (9) | 81 (15) | 0.78 |
ENN B | 74 | 101 (5) | 90 (9) | 84 (16) | 0.78 |
ENN B1 | 99 | 88 (8) | 89 (10) | 76 (8) | 0.78 |
ENN A1 | 96 | 105 (8) | 99 (9) | 76 (13) | 0.78 |
ENN A | 107 | 99 (8) | 87 (15) | 86 (8) | 0.78 |
pistachios | |||||
NEO | 103 | 86 (10) | 75 (14) | 72 (8) | 0.78 |
AFG2 | 82 | 106 (10) | 82 (14) | 82 (9) | 0.39 |
AFG1 | 91 | 80 (11) | 70 (11) | 73 (6) | 0.78 |
AFB2 | 87 | 113 (10) | 103 (11) | 97 (7) | 0.39 |
AFB1 | 94 | 87 (18) | 82 (18) | 79 (13) | 0.39 |
HT-2 | 105 | 91 (14) | 85 (17) | 88 (14) | 0.78 |
A-ZAL | 86 | 99 (13) | 99 (16) | 88 (17) | 0.78 |
A-ZOL | 97 | 83 (15) | 85 (15) | 89 (7) | 0.78 |
AOH | 83 | 84 (16) | 77 (17) | 83 (13) | 0.39 |
T-2 | 85 | 92 (11) | 98 (14) | 85 (18) | 0.78 |
B-ZAL | 96 | 87 (10) | 89 (15) | 81 (9) | 0.78 |
B-ZOL | 112 | 92 (9) | 92 (13) | 89 (12) | 0.78 |
ZON | 118 | 104 (9) | 105 (9) | 107 (13) | 0.20 |
AME | 148 | 87 (10) | 77 (16) | 75 (14) | 0.78 |
ENN B | 115 | 99 (14) | 92 (16) | 83 (15) | 0.78 |
ENN B1 | 116 | 102 (6) | 94 (8) | 96 (16) | 0.78 |
ENN A1 | 118 | 105 (13) | 99 (16) | 96 (13) | 0.78 |
ENN A | 114 | 100 (14) | 92 (17) | 96 (15) | 0.78 |
Analytes (n) | Method | Sample Treatment | Sensitivity (µg/kg) | References |
---|---|---|---|---|
Aflatoxins (B1, B2, G1, G2), CIT, DON, FB1, FB2, FUS-X, HT-2, OTA, T-2, STE, ZEN (14) | UHPLC-MS/MS | QuEChERS-DLLME | 0.61–150 | Arroyo-Manzanares et al., 2013 [12] |
Aflatoxins (B1, B2, G1, G2), BEA, DAS, enniatins (A, A1, B, B1), FB1, FB2, FB3, HT-2, OTA, T-2 (16) | LC-MS/MS | QuEChERS-SPE cartridge | 0.2–45 | Azaiez et al., 2014 [13] |
Aflatoxins (B1, B2, G1, G2), DAS, 3AC-DON, 15AC-DON, DON, FB1, FB2, FUS-X, HT-2, NEO, OTA, T-2, ZEN (16) | LC-MS/MS | QuEChERS-Z-Sep+ + C18 | 1.25–5 | Cunha et al., 2018 [14] |
Aflatoxins (B1, B2, G1, G2), AME, AOH, BEA, enniatins (A, A1, B, B1), OTA, OTB, T-2, TEN, ZEN (16) | UPLC-MS/MS | QuEChERS-C18 | 0.1–5 | Wang et al., 2018 [15] |
3-ADON, aflatoxins (B1, B2, G1, G2, M1), DAS, ERGC1, ERGC2, FB1, FB2, GLI, HT-2, OTA, T-2, α-ZEL, ZEN (17) | Nano flow LC-HRMS | QuEChERS EMR-Lipid | 0.05–5 | Alcantara et al., 2019 [16] |
Aflatoxins (B1, B2, G1, G2), α-ZEL, ZEN (6) | UHPLC-MS/MS | QuEChERS-C18 | 0.5–1 | Hidalgo et al., 2019 [17] |
Aflatoxins (B1, B2, G1, G2), AME, AOH, enniatins (A, A1, B, B2), HT-2, NEO, T-2, α-ZAL, α-ZEL, β-ZAL, β-ZEL, ZEN (18) | UHPLC-HRMS | QuEChERS-C18 | 0.2–0.78 | Present work |
Range (µg/kg) | ||||
---|---|---|---|---|
Analyte | Incidence (n, (%)) | Mean (µg/kg) | Min | Max |
Almonds (n = 17) | ||||
AFB1 | 1 (6) | 0.45 | - | - |
α-ZAL | 3 (18) | 3.99 | 3.70 | 4.54 |
α-ZEL | 1 (6) | 1.40 | - | - |
β-ZEL | 2 (12) | 0.54 | 0.46 | 0.62 |
AOH | 2 (12) | 0.35 | 0.34 | 0.37 |
Walnuts (n = 22) | ||||
α-ZAL | 2 (12) | 2.18 | 2.13 | 2.24 |
β-ZAL | 3 (18) | 3.13 | 1.67 | 5.24 |
β-ZEL | 4 (24) | 0.39 | 0.3 | 0.55 |
ZEN | 3 (18) | 0.44 | <LOQ | 0.93 |
AOH | 9 (53) | 0.67 | 0.29 | 1.65 |
AME | 3 (18) | 1.63 | 1.13 | 1.95 |
ENN B1 | 1 (6) | 1.30 | - | - |
Pistachios (n = 15) | ||||
α-ZAL | 2 (12) | 25.75 | 2.16 | 49.35 |
β-ZAL | 1 (6) | 11.86 | - | - |
α-ZEL | 2 (12) | 1.50 | 1.26 | 1.74 |
β-ZEL | 10 (59) | 3.42 | 0.96 | 8.60 |
AOH | 1 (6) | 7.75 | - | - |
Combinations of Mycotoxins | Incidence (n, (%)) |
---|---|
Almonds (n = 17) | |
α-ZAL + α-ZEL | 1 (6) |
Walnuts (n = 22) | |
AOH + α-ZAL | 1 (6) |
AOH + β-ZEL | 1 (6) |
AOH + ZEN | 2 (12) |
α-ZAL + AME | 1 (6) |
α-ZAL + β-ZAL | 1 (6) |
α-ZEL + β-ZEL | 1 (6) |
AOH + α-ZAL + ZEN | 1 (6) |
AOH + β-ZEL + AME | 1 (6) |
AOH + β-ZEL + β-ZAL + AME | 1 (6) |
Pistachios (n = 15) | |
α-ZAL+ β-ZAL | 1 (6) |
β-ZAL + β-ZEL | 1 (6) |
α-ZEL + β-ZEL | 1 (6) |
AOH + β-ZEL | 1 (6) |
Risk Characterization (%TDI or %TTC) | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Child | Teenager | Adult | Elderly | ||||||||||||||||
C (µg/kg) | Mean | P95th | Mean | P95th | Mean | P95th | Mean | P95th | |||||||||||
Mycotoxins | TDI or TTC (µg/kg bw/day) | LB | UB | LB | UB | LB | UB | LB | UB | LB | UB | LB | UB | LB | UB | LB | UB | LB | UB |
∑ ZENd | 0.25 | 7.25 | 59.70 | 0.7 | 5.9 | 1.9 | 15.6 | 0.4 | 3.2 | 1.2 | 10.1 | 0.4 | 3.3 | 1.0 | 8.5 | 0.5 | 3.8 | 1.3 | 10.5 |
AOH | 0.0025 | 0.10 | 0.48 | 0.8 | 4.8 | 2.8 | 12.4 | 0.4 | 2.4 | 1.6 | 8.0 | 0.4 | 2.8 | 1.6 | 6.8 | 0.8 | 3.2 | 1.6 | 8.4 |
AME | 0.0025 | 0.25 | 0.82 | 2.4 | 8.0 | 6.4 | 21.2 | 1.2 | 4.4 | 4.4 | 14.0 | 1.2 | 4.4 | 3.6 | 11.6 | 1.6 | 5.2 | 4.4 | 14.4 |
Analyte | Retention Time (min) | Elemental Composition | Adduct Ion | Theoretical Mass (m/z) | Measured Mass (m/z) | Accuracy (Δ ppm) | Collision Energy (eV) | Product Ions (m/z) |
---|---|---|---|---|---|---|---|---|
NEO | 4.25 | C19H26O8 | (M+NH4)+ | 400.19659 | 400.19632 | −0.67 | 10 | 305.13803 |
141.00530 | ||||||||
AFG2 | 4.52 | C17H14O7 | (M+H)+ | 331.08123 | 331.08078 | −1.36 | 37 | 313.07010 |
245.08032 | ||||||||
AFG1 | 4.55 | C17H12O7 | (M+H)+ | 329.06558 | 329.06549 | −0.27 | 40 | 243.06467 |
200.04640 | ||||||||
AFB2 | 4.60 | C17H14O6 | (M+H)+ | 315.08631 | 315.08615 | −0.51 | 36 | 287.09064 |
259.05945 | ||||||||
AFB1 | 4.64 | C17H12O6 | (M+H)+ | 313.07066 | 313.07053 | −0.42 | 36 | 285.07489 |
269.04373 | ||||||||
HT−2 | 4.74 | C22H32O8 | (M+NH4)+ | 442.24354 | 442.24323 | −0.70 | 27 | 263.12744 |
215.10641 | ||||||||
α-ZAL | 4.81 | C18H26O5 | (M-H)− | 321.17044 | 321.17065 | 0.65 | 29 | 259.09497 |
91.00272 | ||||||||
α-ZEL | 4.83 | C18H24O5 | (M-H)− | 319.15510 | 319.15500 | −0.31 | 36 | 174.95604 |
129.01947 | ||||||||
T-2 | 4.84 | C24H34O9 | (M+NH4)+ | 484.25411 | 484.25430 | 0.39 | 23 | 215.10603 |
185.09561 | ||||||||
AOH | 4.85 | C14H10O5 | (M-H)− | 257.04555 | 257.04581 | 1.01 | −32 | 215.03490 |
213.05569 | ||||||||
β-ZAL | 4.94 | C18H26O5 | (M-H)− | 321.17044 | 321.17059 | 0.47 | 40 | 259.09497 |
91.00272 | ||||||||
β-ZEL | 4.97 | C18H24O5 | (M-H)− | 319.15510 | 319.15500 | −0.31 | 36 | 174.95604 |
160.97665 | ||||||||
ZEN | 5.01 | C18H22O5 | (M+H)+ | 317.13945 | 317.13928 | −0.54 | −32 | 175.03989 |
131.05008 | ||||||||
AME | 5.13 | C15H12O5 | (M-H)− | 271.06120 | 271.06140 | 0.74 | −36 | 256.03751 |
228.04276 | ||||||||
ENN B | 5.56 | C33H57N3O9 | (M+NH4)+ | 657.44331 | 657.44348 | 0.26 | 50 | 214.14320 |
196.13280 | ||||||||
ENN B1 | 5.68 | C34H59N3O9 | (M+NH4)+ | 671.45986 | 671.45935 | −0.76 | 48 | 214.14343 |
196.13295 | ||||||||
ENN A1 | 5.82 | C35H61N3O9 | (M+NH4)+ | 685.47461 | 685.47449 | −0.18 | 48 | 228.15900 |
210.14847 | ||||||||
ENN A | 5.99 | C36H63N3O9 | (M+NH4)+ | 699.49026 | 699.48987 | −0.56 | 43 | 228.15900 |
210.14847 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narváez, A.; Rodríguez-Carrasco, Y.; Castaldo, L.; Izzo, L.; Graziani, G.; Ritieni, A. Occurrence and Exposure Assessment of Mycotoxins in Ready-to-Eat Tree Nut Products through Ultra-High Performance Liquid Chromatography Coupled with High Resolution Q-Orbitrap Mass Spectrometry. Metabolites 2020, 10, 344. https://doi.org/10.3390/metabo10090344
Narváez A, Rodríguez-Carrasco Y, Castaldo L, Izzo L, Graziani G, Ritieni A. Occurrence and Exposure Assessment of Mycotoxins in Ready-to-Eat Tree Nut Products through Ultra-High Performance Liquid Chromatography Coupled with High Resolution Q-Orbitrap Mass Spectrometry. Metabolites. 2020; 10(9):344. https://doi.org/10.3390/metabo10090344
Chicago/Turabian StyleNarváez, Alfonso, Yelko Rodríguez-Carrasco, Luigi Castaldo, Luana Izzo, Giulia Graziani, and Alberto Ritieni. 2020. "Occurrence and Exposure Assessment of Mycotoxins in Ready-to-Eat Tree Nut Products through Ultra-High Performance Liquid Chromatography Coupled with High Resolution Q-Orbitrap Mass Spectrometry" Metabolites 10, no. 9: 344. https://doi.org/10.3390/metabo10090344
APA StyleNarváez, A., Rodríguez-Carrasco, Y., Castaldo, L., Izzo, L., Graziani, G., & Ritieni, A. (2020). Occurrence and Exposure Assessment of Mycotoxins in Ready-to-Eat Tree Nut Products through Ultra-High Performance Liquid Chromatography Coupled with High Resolution Q-Orbitrap Mass Spectrometry. Metabolites, 10(9), 344. https://doi.org/10.3390/metabo10090344