Association between Metabolites and the Risk of Lung Cancer: A Systematic Literature Review and Meta-Analysis of Observational Studies
Abstract
:1. Introduction
2. Methods
2.1. Literature Search Strategy
2.2. Study Selection Criteria
2.3. Data Extraction
2.4. Assessment of Methodological Quality
2.5. Statistical Analysis
3. Results
3.1. Eligible Studies
3.2. Study Characteristics
3.3. Quality of Eligible Studies
3.4. Association between Metabolites and Lung Cancer Risk
- Total 3-hydroxycotinine (3-HC) (defined as the sum of concentrations of 3-HC and its glucuronide),
- Total cotinine (defined as the sum of concentrations of cotinine and its glucuronide),
- Total nicotine (defined as the sum of concentrations of nicotine and its glucuronide),
- Total NNAL (defined as the sum of concentrations of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and its glucuronides), and,
- Total nicotine equivalent (TNE) (defined as the sum of the concentration of nicotine, cotinine, 3-HC and their respective glucuronides).
3.5. Quantitative Difference in Metabolite Level between Lung Cancer Patients and Controls
4. Discussion
4.1. Overview
4.2. Amino Acids
4.2.1. Methionine
4.2.2. Tryptophan
4.2.3. Proline
4.3. Folate
4.4. Smoking-Related Metabolites
4.4.1. Nicotine and Cotinine
4.4.2. PheT
4.4.3. NNAL
4.4.4. HBMA, HEMA, HPMA and SPMA
4.5. NANA
4.6. Creatine Riboside
4.7. Strengths and Limitations of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- International Agency for Research on Cancer, WHO. Latest Global Cancer Data: Cancer Burden Rises to 18.1 Million New Cases and 9.6 Million Cancer Deaths in 2018; International Agency for Research on Cancer, World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Travis, W.D.; Brambilla, E.; Burke, A.P.; Marx, A.; Nicholson, A.G. Introduction to The 2015 World Health Organization Classification of Tumors of the Lung, Pleura, Thymus, and Heart. J. Thorac. Oncol. 2015, 10, 1240–1242. [Google Scholar] [CrossRef] [Green Version]
- Youlden, D.R.; Cramb, S.M.; Baade, P.D. The International Epidemiology of Lung Cancer: Geographical Distribution and Secular Trends. J. Thorac. Oncol. 2008, 3, 819–831. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.C.S.; Lao, X.Q.; Ho, K.-F.; Goggins, W.B.; Tse, S.L.A. Incidence and mortality of lung cancer: Global trends and association with socioeconomic status. Sci. Rep. 2017, 7, 14300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Cancer Research Fund/American Institute for Cancer Research. Diet, Nutrition, Physical Activity and Lung Cancer; World Cancer Research Fund/American Institute for Cancer Research: Islington, London, UK, 2018. [Google Scholar]
- Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global Cancer Incidence and Mortality Rates and Trends—An Update. Cancer Epidemiol. Biomark. Prev. 2016, 25, 16–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, W.K.; White, N.W.; Chan-Yeung, M.M. Lung cancer epidemiology and risk factors in Asia and Africa. Int. J. Tuberc. Lung Dis. 2004, 8, 1045–1057. [Google Scholar] [PubMed]
- American Lung Association. Lung Cancer Fact Sheet. Available online: https://www.lung.org/lung-health-and-diseases/lung-disease-lookup/lung-cancer/resource-library/lung-cancer-fact-sheet.html (accessed on 1 April 2020).
- Blandin Knight, S.; Crosbie, P.A.; Balata, H.; Chudziak, J.; Hussell, T.; Dive, C. Progress and prospects of early detection in lung cancer. Open Biol. 2017, 7, 170070. [Google Scholar] [CrossRef] [Green Version]
- Walters, S.; Maringe, C.; Coleman, M.P.; Peake, M.D.; Butler, J.; Young, N.; Bergstrom, S.; Hanna, L.; Jakobsen, E.; Kolbeck, K.; et al. Lung cancer survival and stage at diagnosis in Australia, Canada, Denmark, Norway, Sweden and the UK: A population-based study, 2004–2007. Thorax 2013, 68, 551–564. [Google Scholar] [CrossRef] [Green Version]
- Clish, C.B. Metabolomics: An emerging but powerful tool for precision medicine. Mol. Case Stud. 2015, 1, a000588. [Google Scholar] [CrossRef] [Green Version]
- Wishart, D.S. Emerging applications of metabolomics in drug discovery and precision medicine. Nat. Rev. Drug Discov. 2016, 15, 473–484. [Google Scholar] [CrossRef]
- Varella-Garcia, M. Chromosomal and genomic changes in lung cancer. Cell Adhes. Migr. 2010, 4, 100–106. [Google Scholar] [CrossRef] [Green Version]
- Sciacovelli, M.; Gaude, E.; Hilvo, M.; Frezza, C. Chapter One—The Metabolic Alterations of Cancer Cells. In Methods in Enzymology; Galluzzi, L., Kroemer, G., Eds.; Academic Press: Cambridge, MA, USA, 2014; Volume 542, pp. 1–23. [Google Scholar]
- Muñoz-Pinedo, C.; El Mjiyad, N.; Ricci, J.E. Cancer metabolism: Current perspectives and future directions. Cell Death Dis. 2012, 3, e248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantor, J.R.; Sabatini, D.M. Cancer Cell Metabolism: One Hallmark, Many Faces. Cancer Discov. 2012, 2, 881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callejon-Leblic, B.; Garcia-Barrera, T.; Gravalos-Guzman, J.; Pereira-Vega, A.; Gomez-Ariza, J.L. Metabolic profiling of potential lung cancer biomarkers using bronchoalveolar lavage fluid and the integrated direct infusion/ gas chromatography mass spectrometry platform. J. Proteom. 2016, 145, 197–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahrmann, J.F.; Kim, K.; DeFelice, B.C.; Taylor, S.L.; Gandara, D.R.; Yoneda, K.Y.; Cooke, D.T.; Fiehn, O.; Kelly, K.; Miyamoto, S. Investigation of metabolomic blood biomarkers for detection of adenocarcinoma lung cancer. Cancer Epidemiol. Biomark. Prev. 2015, 24, 1716–1723. [Google Scholar] [CrossRef] [Green Version]
- Cameron, S.J.; Lewis, K.E.; Beckmann, M.; Allison, G.G.; Ghosal, R.; Lewis, P.D.; Mur, L.A. The metabolomic detection of lung cancer biomarkers in sputum. Lung Cancer 2016, 94, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Lu, S.; Ou, J.; Wang, G.; Zu, Y.; Chen, F.; Bai, C. Metabonomic characteristics and biomarker research of human lung cancer tissues by HR1H NMR spectroscopy. Cancer Biomark. 2016, 16, 653–664. [Google Scholar] [CrossRef]
- Miyamoto, S.; Taylor, S.L.; Barupal, D.K.; Taguchi, A.; Wohlgemuth, G.; Wikoff, W.R.; Yoneda, K.Y.; Gandara, D.R.; Hanash, S.M.; Kim, K.; et al. Systemic Metabolomic Changes in Blood Samples of Lung Cancer Patients Identified by Gas Chromatography Time-of-Flight Mass Spectrometry. Metabolites 2015, 5, 192–210. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Li, K.; Zhang, X. Next-generation metabolomics in lung cancer diagnosis, treatment and precision medicine: Mini review. Oncotarget 2017, 8, 115774–115786. [Google Scholar] [CrossRef] [Green Version]
- Bamji-Stocke, S.; van Berkel, V.; Miller, D.M.; Frieboes, H.B. A review of metabolism-associated biomarkers in lung cancer diagnosis and treatment. Metabolomics 2018, 14, 81. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration. BMJ 2009, 339, b2700. [Google Scholar] [CrossRef] [Green Version]
- Pietzke, M.; Arroyo, S.F.; Sumpton, D.; Mackay, G.M.; Martin-Castillo, B.; Camps, J.; Joven, J.; Menendez, J.A.; Vazquez, A. Stratification of cancer and diabetes based on circulating levels of formate and glucose. Cancer Metab. 2019, 7, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, S.; Shen, G.; Yin, S.; Xu, W.; Hu, B. Melatonin and tryptophan circadian profiles in patients with advanced non-small cell lung cancer. Adv. Ther. 2009, 26, 886–892. [Google Scholar] [CrossRef] [PubMed]
- Shingyoji, M.; Iizasa, T.; Higashiyama, M.; Imamura, F.; Saruki, N.; Imaizumi, A.; Yamamoto, H.; Daimon, T.; Tochikubo, O.; Mitsushima, T.; et al. The significance and robustness of a plasma free amino acid (PFAA) profile-based multiplex function for detecting lung cancer. BMC Cancer 2013, 13, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyagi, Y.; Higashiyama, M.; Gochi, A.; Akaike, M.; Ishikawa, T.; Miura, T.; Saruki, N.; Bando, E.; Kimura, H.; Imamura, F.; et al. Plasma free amino acid profiling of five types of cancer patients and its application for early detection. PLoS ONE 2011, 6, e24143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawamoto, H.; Hara, H.; Araya, J.; Ichikawa, A.; Fujita, Y.; Utsumi, H.; Hashimoto, M.; Wakui, H.; Minagawa, S.; Numata, T.; et al. Prostaglandin E-Major Urinary Metabolite (PGE-MUM) as a Tumor Marker for Lung Adenocarcinoma. Cancers (Basel) 2019, 11, 768. [Google Scholar] [CrossRef] [Green Version]
- Proenza, A.M.; Oliver, J.; Palou, A.; Roca, P. Breast and lung cancer are associated with a decrease in blood cell amino acid content. J. Nutr. Biochem. 2003, 14, 133–138. [Google Scholar] [CrossRef]
- Yue, X.; He, J.; Zhang, R.; Xu, J.; Zhou, Z.; Zhang, R.; Bi, N.; Wang, Z.; Sun, C.; Wang, L.; et al. Biotransformation-based metabolomics profiling method for determining and quantitating cancer-related metabolites. J. Chromatogr. A 2018, 1580, 80–89. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Kami, K.; Fujimori, T.; Sato, H.; Sato, M.; Yamamoto, H.; Ohashi, Y.; Sugiyama, N.; Ishihama, Y.; Onozuka, H.; Ochiai, A.; et al. Metabolomic profiling of lung and prostate tumor tissues by capillary electrophoresis time-of-flight mass spectrometry. Metabolomics 2013, 9, 444–453. [Google Scholar] [CrossRef] [Green Version]
- Preti, G.; Labows, J.N.; Kostelc, J.G.; Aldinger, S.; Daniele, R. Analysis of lung air from patients with bronchogenic carcinoma and controls using gas chromatography-mass spectrometry. J. Chromatogr. B: Biomed. Sci. Appl. 1988, 432, 1–11. [Google Scholar] [CrossRef]
- Klupczynska, A.; Plewa, S.; Kasprzyk, M.; Dyszkiewicz, W.; Kokot, Z.J.; Matysiak, J. Serum lipidome screening in patients with stage I non-small cell lung cancer. Clin. Exp. Med. 2019, 19, 505–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, J.; Xu, L.; Li, W.; Zheng, C.; Wu, L. Targeted metabolomics for serum amino acids and acylcarnitines in patients with lung cancer. Exp. Ther. Med. 2019, 18, 188–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, G.A.; Shea, B.; O'Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 18 March 2020).
- Kukreja, S.C.; Shemerdiak, W.P.; York, P.A.J.; Lad, T.E.; Abramson, E.C.; Thomas, P.A.; Mir, J. Presence of prostaglandin E in lung tumors from normocalcemic patients. Am. J. Med. 1982, 72, 737–742. [Google Scholar] [CrossRef]
- Masri, F.A.; Comhair, S.A.; Koeck, T.; Xu, W.; Janocha, A.; Ghosh, S.; Dweik, R.A.; Golish, J.; Kinter, M.; Stuehr, D.J.; et al. Abnormalities in nitric oxide and its derivatives in lung cancer. Am. J. Respir. Crit. Care Med. 2005, 172, 597–605. [Google Scholar] [CrossRef] [Green Version]
- Okur, H.K.; Yuksel, M.; Lacin, T.; Baysungur, V.; Okur, E. Detection of reactive oxygen metabolites in malignant and adjacent normal tissues of patients with lung cancer. World J. Surg. Oncol. 2013, 11, 9. [Google Scholar] [CrossRef] [Green Version]
- Ordóñez-Mena, J.M.; Schöttker, B.; Fedirko, V.; Jenab, M.; Olsen, A.; Halkjær, J.; Kampman, E.; de Groot, L.; Jansen, E.; Bueno-de-Mesquita, H.B.; et al. Pre-diagnostic vitamin D concentrations and cancer risks in older individuals: An analysis of cohorts participating in the CHANCES consortium. Eur. J. Epidemiol. 2016, 31, 311–323. [Google Scholar] [CrossRef]
- Gao, X.; Wilsgaard, T.; Jansen, E.H.; Holleczek, B.; Zhang, Y.; Xuan, Y.; Anusruti, A.; Brenner, H.; Schottker, B. Pre-diagnostic derivatives of reactive oxygen metabolites and the occurrence of lung, colorectal, breast and prostate cancer: An individual participant data meta-analysis of two large population-based studies. Int. J. Cancer 2019, 145, 49–57. [Google Scholar] [CrossRef]
- Fu, W.; Wang, C.; Zou, L.; Liu, Q.; Gan, Y.; Yan, S.; Song, F.; Wang, Z.; Lu, Z.; Cao, S. Association between exposure to noise and risk of hypertension: A meta-analysis of observational epidemiological studies. J. Hypertens. 2017, 35, 2358–2366. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.; Welch, V. Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; John Wiley & Sons: Chichester, UK, 2019. [Google Scholar]
- DerSimonian, R.; Laird, N. Meta-analysis in clinical trials. Control. Clin. Trials 1986, 7, 177–188. [Google Scholar] [CrossRef]
- StataCorp. Stata Statistical Software: Release 14; StataCorp LLC: College Station, TX, USA, 2015. [Google Scholar]
- Kilkkinen, A.; Knekt, P.; Heliovaara, M.; Rissanen, H.; Marniemi, J.; Hakulinen, T.; Aromaa, A. Vitamin D status and the risk of lung cancer: A cohort study in Finland. Cancer Epidemiol. Biomark. Prev. 2008, 17, 3274–3278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afzal, S.; Bojesen, S.E.; Nordestgaard, B.G. Low Plasma 25-Hydroxyvitamin D and Risk of Tobacco-Related Cancer. Clin. Chem. 2013, 59, 771–780. [Google Scholar] [CrossRef] [PubMed]
- de Waard, F.; Kemmeren, J.M.; van Ginkel, L.A.; Stolker, A.A. Urinary cotinine and lung cancer risk in a female cohort. Br. J. Cancer 1995, 72, 784–787. [Google Scholar] [CrossRef] [PubMed]
- Ellard, G.A.; de Waard, F.; Kemmeren, J.M. Urinary nicotine metabolite excretion and lung cancer risk in a female cohort. Br. J. Cancer 1995, 72, 788–791. [Google Scholar] [CrossRef]
- London, S.J.; Yuan, J.-M.; Chung, F.-L.; Gao, Y.-T.; Coetzee, G.A.; Ross, R.K.; Yu, M.C. Isothiocyanates, glutathione S-transferase M1 and T1 polymorphisms, and lung-cancer risk: A prospective study of men in Shanghai, China. Lancet 2000, 356, 724–729. [Google Scholar] [CrossRef]
- Boffetta, P.; Clark, S.; Shen, M.; Gislefoss, R.; Peto, R.; Andersen, A. Serum cotinine level as predictor of lung cancer risk. Cancer Epidemiol. Biomark. Prev. 2006, 15, 1184–1188. [Google Scholar] [CrossRef] [Green Version]
- Loft, S.; Svoboda, P.; Kasai, H.; Tjonneland, A.; Moller, P.; Sorensen, M.; Overvad, K.; Autrup, H.; Raaschou-Nielsen, O. Prospective study of urinary excretion of 7-methylguanine and the risk of lung cancer: Effect modification by mu class glutathione-S-transferases. Int. J. Cancer 2007, 121, 1579–1584. [Google Scholar] [CrossRef]
- Johansson, M.; Relton, C.; Ueland, P.M.; Vollset, S.E.; Midttun, O.; Nygard, O.; Slimani, N.; Boffetta, P.; Jenab, M.; Clavel-Chapelon, F.; et al. Serum B vitamin levels and risk of lung cancer. JAMA 2010, 303, 2377–2385. [Google Scholar] [CrossRef]
- Timofeeva, M.N.; McKay, J.D.; Smith, G.D.; Johansson, M.; Byrnes, G.B.; Chabrier, A.; Relton, C.; Ueland, P.M.; Vollset, S.E.; Midttun, Ø.; et al. Genetic polymorphisms in 15q25 and 19q13 loci, cotinine levels, and risk of lung cancer in EPIC. Cancer Epidemiol. Biomark. Prev. 2011, 20, 2250–2261. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, S.J.; Yu, K.; Horst, R.L.; Parisi, D.; Virtamo, J.; Albanes, D. Serum 25-hydroxyvitamin D and risk of lung cancer in male smokers: A nested case-control study. PLoS ONE 2011, 6, e20796. [Google Scholar] [CrossRef]
- Yuan, J.M.; Gao, Y.T.; Murphy, S.E.; Carmella, S.G.; Wang, R.; Zhong, Y.; Moy, K.A.; Davis, A.B.; Tao, L.; Chen, M.; et al. Urinary levels of cigarette smoke constituent metabolites are prospectively associated with lung cancer development in smokers. Cancer Res. 2011, 71, 6749–6757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, J.M.; Gao, Y.T.; Wang, R.; Chen, M.; Carmella, S.G.; Hecht, S.S. Urinary levels of volatile organic carcinogen and toxicant biomarkers in relation to lung cancer development in smokers. Carcinogenesis 2012, 33, 804–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eom, S.Y.; Yim, D.H.; Moon, S.I.; Youn, J.W.; Kwon, H.J.; Oh, H.C.; Yang, J.J.; Park, S.K.; Yoo, K.Y.; Kim, H.S.; et al. Polycyclic aromatic hydrocarbon-induced oxidative stress, antioxidant capacity, and the risk of lung cancer: A pilot nested case-control study. Anticancer Res. 2013, 33, 3089–3097. [Google Scholar]
- Chuang, S.C.; Fanidi, A.; Ueland, P.M.; Relton, C.; Midttun, O.; Vollset, S.E.; Gunter, M.J.; Seckl, M.J.; Travis, R.C.; Wareham, N.; et al. Circulating biomarkers of tryptophan and the kynurenine pathway and lung cancer risk. Cancer Epidemiol. Biomark. Prev. 2014, 23, 461–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathe, E.A.; Patterson, A.D.; Haznadar, M.; Manna, S.K.; Krausz, K.W.; Bowman, E.D.; Shields, P.G.; Idle, J.R.; Smith, P.B.; Anami, K.; et al. Noninvasive urinary metabolomic profiling identifies diagnostic and prognostic markers in lung cancer. Cancer Res. 2014, 74, 3259–3270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, J.M.; Butler, L.M.; Gao, Y.T.; Murphy, S.E.; Carmella, S.G.; Wang, R.; Nelson, H.H.; Hecht, S.S. Urinary metabolites of a polycyclic aromatic hydrocarbon and volatile organic compounds in relation to lung cancer development in lifelong never smokers in the Shanghai Cohort Study. Carcinogenesis 2014, 35, 339–345. [Google Scholar] [CrossRef]
- Wang, X.; Cui, J.; Gu, J.; He, H.; Li, B.; Li, W. Plasma 25-hydroxyvitamin D deficiency is associated with the risk of non-small cell lung cancer in a Chinese population. Cancer Biomark. 2015, 15, 663–668. [Google Scholar] [CrossRef]
- Haznadar, M.; Cai, Q.; Krausz, K.W.; Bowman, E.D.; Margono, E.; Noro, R.; Thompson, M.D.; Mathe, E.A.; Munro, H.M.; Steinwandel, M.D.; et al. Urinary Metabolite Risk Biomarkers of Lung Cancer: A Prospective Cohort Study. Cancer Epidemiol. Biomark. Prev. 2016, 25, 978–986. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.M.; Nelson, H.H.; Butler, L.M.; Carmella, S.G.; Wang, R.; Kuriger-Laber, J.K.; Adams-Haduch, J.; Hecht, S.S.; Gao, Y.T.; Murphy, S.E. Genetic determinants of cytochrome P450 2A6 activity and biomarkers of tobacco smoke exposure in relation to risk of lung cancer development in the Shanghai cohort study. Int. J. Cancer 2016, 138, 2161–2171. [Google Scholar] [CrossRef]
- Yuan, J.M.; Nelson, H.H.; Carmella, S.G.; Wang, R.; Kuriger-Laber, J.; Jin, A.; Adams-Haduch, J.; Hecht, S.S.; Koh, W.P.; Murphy, S.E. CYP2A6 genetic polymorphisms and biomarkers of tobacco smoke constituents in relation to risk of lung cancer in the Singapore Chinese Health Study. Carcinogenesis 2017, 38, 411–418. [Google Scholar] [CrossRef]
- Fanidi, A.; Muller, D.C.; Yuan, J.-M.; Stevens, V.L.; Weinstein, S.J.; Albanes, D.; Prentice, R.; Thomsen, C.A.; Pettinger, M.; Cai, Q.; et al. Circulating Folate, Vitamin B6, and Methionine in Relation to Lung Cancer Risk in the Lung Cancer Cohort Consortium (LC3). J. Nat. Cancer Inst. 2018, 110, 57–67. [Google Scholar] [CrossRef]
- Haznadar, M.; Krausz, K.W.; Margono, E.; Diehl, C.M.; Bowman, E.D.; Manna, S.K.; Robles, A.I.; Ryan, B.M.; Gonzalez, F.J.; Harris, C.C. Inverse association of vitamin D3 levels with lung cancer mediated by genetic variation. Cancer Med. 2018, 7, 2764–2775. [Google Scholar] [CrossRef]
- Larose, T.L.; Guida, F.; Fanidi, A.; Langhammer, A.; Kveem, K.; Stevens, V.L.; Jacobs, E.J.; Smith-Warner, S.A.; Giovannucci, E.; Albanes, D.; et al. Circulating cotinine concentrations and lung cancer risk in the Lung Cancer Cohort Consortium (LC3). Int. J. Epidemiol. 2018, 47, 1760–1771. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Xuan, Y.; Benner, A.; Anusruti, A.; Brenner, H.; Schottker, B. Nitric Oxide Metabolites and Lung Cancer Incidence: A Matched Case-Control Study Nested in the ESTHER Cohort. Oxidative Med. Cell. Longev. 2019, 2019, 6470950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seow, W.J.; Shu, X.O.; Nicholson, J.K.; Holmes, E.; Walker, D.I.; Hu, W.; Cai, Q.; Gao, Y.T.; Xiang, Y.B.; Moore, S.C.; et al. Association of Untargeted Urinary Metabolomics and Lung Cancer Risk Among Never-Smoking Women in China. JAMA Netw. Open 2019, 2, e1911970. [Google Scholar] [CrossRef] [PubMed]
- Hendrick, A.M.; Mitchell, M.D.; Harris, A.L. Plasma prostaglandins in lung cancer. Eur. J. Cancer Clin. Oncol. 1988, 24, 1069–1071. [Google Scholar] [CrossRef]
- Gencer, M.; Ceylan, E.; Aksoy, N.; Uzun, K. Association of serum reactive oxygen metabolite levels with different histopathological types of lung cancer. Respiration 2006, 73, 520–524. [Google Scholar] [CrossRef]
- Zhang, T.; Lai, B.; Duan, L.; Wang, X. [Detection of metabolites of tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in lung cancer smokers' urine]. Zhongguo Fei Ai Za Zhi 2006, 9, 231–235. [Google Scholar] [CrossRef]
- Esme, H.; Cemek, M.; Sezer, M.; Saglam, H.; Demir, A.; Melek, H.; Unlu, M. High levels of oxidative stress in patients with advanced lung cancer. Respirology 2008, 13, 112–116. [Google Scholar] [CrossRef]
- Hwang, S.H.; Ryu, H.J.; Kang, S.J.; Yun, E.H.; Lim, M.K.; Kim, H.T.; Lee, J.S.; Lee, D.H. Levels of tobacco-specific metabolites among non-smoking lung cancer cases at diagnosis: Case-control findings. Asian Pac. J. Cancer Prev. 2014, 14, 6591–6593. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Jang, S.H.; Ryu, J.-S.; Lee, J.E.; Kim, Y.C.; Lee, M.K.; Jang, T.W.; Lee, S.-Y.; Nakamura, H.; Nishikata, N.; et al. The performance of a novel amino acid multivariate index for detecting lung cancer: A case control study in Korea. Lung Cancer 2015, 90, 522–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klupczynska, A.; Plewa, S.; Dyszkiewicz, W.; Kasprzyk, M.; Sytek, N.; Kokot, Z.J. Determination of low-molecular-weight organic acids in non-small cell lung cancer with a new liquid chromatography-tandem mass spectrometry method. J. Pharm Biomed. Anal. 2016, 129, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Klupczynska, A.; Derezinski, P.; Dyszkiewicz, W.; Pawlak, K.; Kasprzyk, M.; Kokot, Z.J. Evaluation of serum amino acid profiles' utility in non-small cell lung cancer detection in Polish population. Lung Cancer 2016, 100, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Xu, L.; Li, W.; Wu, L. Simultaneous determination of thirteen kinds of amino acid and eight kinds of acylcarnitine in human serum by LC-MS/MS and its application to measure the serum concentration of lung cancer patients. Biomed. Chromatogr. 2016, 30, 1796–1806. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, H.; Liu, R.; Gao, P.; Yang, X.; Jin, W.; Zhang, Y.; Bi, K.; Li, Q. A Novel Strategy for Targeted Lipidomics Based on LC-Tandem-MS Parameters Prediction, Quantification, and Multiple Statistical Data Mining: Evaluation of Lysophosphatidylcholines as Potential Cancer Biomarkers. Anal. Chem. 2019, 91, 3389–3396. [Google Scholar] [CrossRef]
- Church, T.R.; Anderson, K.E.; Caporaso, N.E.; Geisser, M.S.; Le, C.T.; Zhang, Y.; Benoit, A.R.; Carmella, S.G.; Hecht, S.S. A prospectively measured serum biomarker for a tobacco-specific carcinogen and lung cancer in smokers. Cancer Epidemiol. Biomark. Prev. 2009, 18, 260–266. [Google Scholar] [CrossRef] [Green Version]
- Skaaby, T.; Husemoen, L.L.; Thuesen, B.H.; Pisinger, C.; Jorgensen, T.; Roswall, N.; Larsen, S.C.; Linneberg, A. Prospective population-based study of the association between serum 25-hydroxyvitamin-D levels and the incidence of specific types of cancer. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1220–1229. [Google Scholar] [CrossRef] [Green Version]
- Maeda, J.; Higashiyama, M.; Imaizumi, A.; Nakayama, T.; Yamamoto, H.; Daimon, T.; Yamakado, M.; Imamura, F.; Kodama, K. Possibility of multivariate function composed of plasma amino acid profiles as a novel screening index for non-small cell lung cancer: A case control study. BMC Cancer 2010, 10, 690. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.M.; Koh, W.P.; Murphy, S.E.; Fan, Y.; Wang, R.; Carmella, S.G.; Han, S.; Wickham, K.; Gao, Y.T.; Yu, M.C.; et al. Urinary levels of tobacco-specific nitrosamine metabolites in relation to lung cancer development in two prospective cohorts of cigarette smokers. Cancer Res. 2009, 69, 2990–2995. [Google Scholar] [CrossRef] [Green Version]
- Hecht, S.S.; Murphy, S.E.; Stepanov, I.; Nelson, H.H.; Yuan, J.M. Tobacco smoke biomarkers and cancer risk among male smokers in the Shanghai cohort study. Cancer Lett. 2013, 334, 34–38. [Google Scholar] [CrossRef] [Green Version]
- Lai, H.-S.; Lee, J.-C.; Lee, P.-H.; Wang, S.-T.; Chen, W.-J. Plasma free amino acid profile in cancer patients. Semi. Cancer Biol. 2005, 15, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Hashim, N.A.A.; Ab-Rahim, S.; Suddin, L.S.; Saman, M.S.A.; Mazlan, M. Global serum metabolomics profiling of colorectal cancer. Mol. Clin. Oncol. 2019, 11, 3–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yusof, H.M.; Ab-Rahim, S.; Suddin, L.S.; Saman, M.S.A.; Mazlan, M. Metabolomics Profiling on Different Stages of Colorectal Cancer: A Systematic Review. Malays. J. Med. Sci. 2018, 25, 16–34. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Li, Z.; Li, H.; Jiang, Y. Metabolomics: A promising diagnostic and therapeutic implement for breast cancer. OncoTargets Ther. 2019, 12, 6797–6811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norton, J.A.; Gorschboth, C.M.; Wesley, R.A.; Burt, M.E.; Brennan, M.F. Fasting plasma amino acid levels in cancer patients. Cancer 1985, 56, 1181–1186. [Google Scholar] [CrossRef]
- Kubota, A.; Meguid, M.M.; Hitch, D.C. Amino acid profiles correlate diagnostically with organ site in three kinds of malignant tumors. Cancer 1992, 69, 2343–2348. [Google Scholar] [CrossRef]
- Cascino, A.; Muscaritoli, M.; Cangiano, C.; Conversano, L.; Laviano, A.; Ariemma, S.; Meguid, M.M.; Rossi Fanelli, F. Plasma amino acid imbalance in patients with lung and breast cancer. Anticancer Res. 1995, 15, 507–510. [Google Scholar]
- Georgiannos, S.N.; Weston, P.M.; Goode, A.W. Correlation between albuminuria and positively charged amino acids in gastrointestinal cancer. Int. Surg. 1995, 80, 49–52. [Google Scholar]
- Sugimura, T.; Birnbaum, S.M.; Winitz, M.; Greenstein, J.P. Quantitative nutritional studies with water-soluble, chemically defined diets. VIII. The forced feeding of diets each lacking in one essential amino acid. Arch. Biochem. Biophys. 1959, 81, 448–455. [Google Scholar] [CrossRef]
- Halpern, B.C.; Clark, B.R.; Hardy, D.N.; Halpern, R.M.; Smith, R.A. The effect of replacement of methionine by homocystine on survival of malignant and normal adult mammalian cells in culture. Proc. Natl. Acad. Sci. USA 1974, 71, 1133–1136. [Google Scholar] [CrossRef] [Green Version]
- Mecham, J.O.; Rowitch, D.; Wallace, C.D.; Stern, P.H.; Hoffman, R.M. The metabolic defect of methionine dependence occurs frequently in human tumor cell lines. Biochem. Biophys. Res. Commun. 1983, 117, 429–434. [Google Scholar] [CrossRef]
- Stern, P.H.; Wallace, C.D.; Hoffman, R.M. Altered methionine metabolism occurs in all members of a set of diverse human tumor cell lines. J. Cell. Physiol. 1984, 119, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Lieu, E.L.; Nguyen, T.; Rhyne, S.; Kim, J. Amino acids in cancer. Exp. Mol. Med. 2020, 52, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Locasale, J.W. Serine, glycine and one-carbon units: Cancer metabolism in full circle. Nat. Rev. Cancer 2013, 13, 572–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shuvalov, O.; Petukhov, A.; Daks, A.; Fedorova, O.; Vasileva, E.; Barlev, N.A. One-carbon metabolism and nucleotide biosynthesis as attractive targets for anticancer therapy. Oncotarget 2017, 8, 23955–23977. [Google Scholar] [CrossRef] [Green Version]
- Clemens, M.J.; Elia, A.; Morley, S.J. Regulation and dysregulation of protein synthesis in cancer cells. In Systems Biology of Cancer; Thiagalingam, S., Ed.; Cambridge University Press: Cambridge, UK, 2015; pp. 70–92. [Google Scholar] [CrossRef]
- Borrego, S.L.; Fahrmann, J.; Datta, R.; Stringari, C.; Grapov, D.; Zeller, M.; Chen, Y.; Wang, P.; Baldi, P.; Gratton, E.; et al. Metabolic changes associated with methionine stress sensitivity in MDA-MB-468 breast cancer cells. Cancer Metab. 2016, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Booher, K.; Lin, D.-W.; Borrego, S.L.; Kaiser, P. Downregulation of Cdc6 and pre-replication complexes in response to methionine stress in breast cancer cells. Cell Cycle (Georgetown, Tex.) 2012, 11, 4414–4423. [Google Scholar] [CrossRef] [Green Version]
- Tsou, J.A.; Hagen, J.A.; Carpenter, C.L.; Laird-Offringa, I.A. DNA methylation analysis: A powerful new tool for lung cancer diagnosis. Oncogene 2002, 21, 5450–5461. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.X.; Sheng, D.Q.; Cheng, L.; Song, X.Y. Current Landscape of Epigenetics in Lung Cancer: Focus on the Mechanism and Application. J. Oncol. 2019, 2019, 8107318. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.; Miyauchi, S.; Martindale, R.G.; Herdman, A.V.; Podolsky, R.; Miyake, K.; Mager, S.; Prasad, P.D.; Ganapathy, M.E.; Ganapathy, V. Upregulation of the amino acid transporter ATB0,+ (SLC6A14) in colorectal cancer and metastasis in humans. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2005, 1741, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Gupta, N.; Prasad, P.D.; Ghamande, S.; Moore-Martin, P.; Herdman, A.V.; Martindale, R.G.; Podolsky, R.; Mager, S.; Ganapathy, M.E.; Ganapathy, V. Up-regulation of the amino acid transporter ATB0,+ (SLC6A14) in carcinoma of the cervix. Gynecol. Oncol. 2006, 100, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Karunakaran, S.; Umapathy, N.S.; Thangaraju, M.; Hatanaka, T.; Itagaki, S.; Munn, D.H.; Prasad, P.D.; Ganapathy, V. Interaction of tryptophan derivatives with SLC6A14 (ATB0,+) reveals the potential of the transporter as a drug target for cancer chemotherapy. Biochem. J. 2008, 414, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.C. Glutathione synthesis. Biochim. Biophys. Acta (BBA)-Bioenerg. 2013, 1830, 3143–3153. [Google Scholar] [CrossRef] [Green Version]
- Janssen-Heininger, Y.M.; Nolin, J.D.; Hoffman, S.M.; van der Velden, J.L.; Tully, J.E.; Lahue, K.G.; Abdalla, S.T.; Chapman, D.G.; Reynaert, N.L.; van der Vliet, A.; et al. Emerging mechanisms of glutathione-dependent chemistry in biology and disease. J. Cell. Biochem. 2013, 114, 1962–1968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chai, E.Z.; Siveen, K.S.; Shanmugam, M.K.; Arfuso, F.; Sethi, G. Analysis of the intricate relationship between chronic inflammation and cancer. Biochem. J. 2015, 468, 1–15. [Google Scholar] [CrossRef]
- Campbell, K.; Vowinckel, J.; Keller, M.A.; Ralser, M. Methionine Metabolism Alters Oxidative Stress Resistance via the Pentose Phosphate Pathway. Antioxid. Redox Signal. 2016, 24, 543–547. [Google Scholar] [CrossRef] [Green Version]
- Luo, S.; Levine, R.L. Methionine in proteins defends against oxidative stress. FASEB J. 2009, 23, 464–472. [Google Scholar] [CrossRef] [Green Version]
- van Baren, N.; Van den Eynde, B.J. Tryptophan-Degrading Enzymes in Tumoral Immune Resistance. Front. Immunol. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Badawy, A.A.B. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. Int. J. Tryptophan Res. 2017, 10, 1178646917691938. [Google Scholar] [CrossRef] [Green Version]
- Munn, D.H.; Mellor, A.L. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J. Clin. Investig. 2007, 117, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Heng, B.; Lim, C.K.; Lovejoy, D.B.; Bessede, A.; Gluch, L.; Guillemin, G.J. Understanding the role of the kynurenine pathway in human breast cancer immunobiology. Oncotarget 2016, 7, 6506–6520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phang, J.M. Proline Metabolism in Cell Regulation and Cancer Biology: Recent Advances and Hypotheses. Antioxid. Redox Signal. 2017, 30, 635–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagano, T.; Nakano, M.; Nakashima, A.; Onishi, K.; Yamao, S.; Enari, M.; Kikkawa, U.; Kamada, S. Identification of cellular senescence-specific genes by comparative transcriptomics. Sci. Rep. 2016, 6, 31758. [Google Scholar] [CrossRef] [Green Version]
- Nagano, T.; Nakashima, A.; Onishi, K.; Kawai, K.; Awai, Y.; Kinugasa, M.; Iwasaki, T.; Kikkawa, U.; Kamada, S. Proline dehydrogenase promotes senescence through the generation of reactive oxygen species. J. Cell Sci. 2017, 130, 1413–1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Mao, C.; Wang, M.; Liu, N.; Ouyang, L.; Liu, S.; Tang, H.; Cao, Y.; Liu, S.; Wang, X.; et al. Cancer progression is mediated by proline catabolism in non-small cell lung cancer. Oncogene 2020, 39, 2358–2376. [Google Scholar] [CrossRef]
- Hecht, S.S. Tobacco smoke carcinogens and lung cancer. J. Natl. Cancer Inst. 1999, 91, 1194–1210. [Google Scholar] [CrossRef] [Green Version]
- Hecht, S.S. Lung carcinogenesis by tobacco smoke. Int. J.Cancer 2012, 131, 2724–2732. [Google Scholar] [CrossRef] [Green Version]
- Tobacco smoke and involuntary smoking. IARC Monogr. Eval. Carcinog. Risks Hum. 2004, 83, 1–1438.
- West, R. Tobacco smoking: Health impact, prevalence, correlates and interventions. Psychol. Health 2017, 32, 1018–1036. [Google Scholar] [CrossRef] [Green Version]
- Thielen, A.; Klus, H.; Muller, L. Tobacco smoke: Unraveling a controversial subject. Exp. Toxicol. Pathol. 2008, 60, 141–156. [Google Scholar] [CrossRef]
- Borgerding, M.; Klus, H. Analysis of complex mixtures–cigarette smoke. Exp. Toxicol. Pathol. 2005, 57 (Suppl. 1), 43–73. [Google Scholar] [CrossRef]
- Hecht, S.S. Research opportunities related to establishing standards for tobacco products under the Family Smoking Prevention and Tobacco Control Act. Nicotine Tob. Res. 2012, 14, 18–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benowitz, N.L.; Hukkanen, J.; Jacob, P. Nicotine chemistry, metabolism, kinetics and biomarkers. In Handbook of Experimental Pharmacology; Springer: Berlin, Germany, 2009. [Google Scholar] [CrossRef] [Green Version]
- Jacob, P.; Shulgin, A.T.; Benowitz, N.L. Synthesis of (3'R,5'S)-trans-3'-hydroxycotinine, a major metabolite of nicotine. Metabolic formation of 3'-hydroxycotinine in humans is highly stereoselective. J. Med. Chem. 1990, 33, 1888–1891. [Google Scholar] [CrossRef] [PubMed]
- Neurath, G.B.; Dünger, M.; Orth, D.; Pein, F.G. Trans-3'-hydroxycotinine as a main metabolite in urine of smokers. Int. Arch. Occup. Environ. Health 1987, 59, 199–201. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.E.; von Weymarn, L.B.; Schutten, M.M.; Kassie, F.; Modiano, J.F. Chronic nicotine consumption does not influence 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis. Cancer Prev. Res. (Phila) 2011, 4, 1752–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maier, C.R.; Hollander, M.C.; Hobbs, E.A.; Dogan, I.; Linnoila, R.I.; Dennis, P.A. Nicotine does not enhance tumorigenesis in mutant K-ras-driven mouse models of lung cancer. Cancer Prev. Res. (Phila) 2011, 4, 1743–1751. [Google Scholar] [CrossRef] [Green Version]
- Benowitz, N.L.; Dains, K.M.; Dempsey, D.; Yu, L.; Jacob, P., 3rd. Estimation of nicotine dose after low-level exposure using plasma and urine nicotine metabolites. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1160–1166. [Google Scholar] [CrossRef] [Green Version]
- Benowitz, N.L.; St. Helen, G.; Nardone, N.; Cox, L.S.; Jacob, P., III. Urine Metabolites for Estimating Daily Intake of Nicotine From Cigarette Smoking. Nicotine Tob Res. 2019, 22, 288–292. [Google Scholar] [CrossRef]
- Moorthy, B.; Chu, C.; Carlin, D.J. Polycyclic aromatic hydrocarbons: From metabolism to lung cancer. Toxicol. Sci. 2015, 145, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Kamal, R.; Ahamed, I.; Wagh, M.; Bihari, V.; Sathian, B.; Kesavachandran, C.N. PAH exposure-associated lung cancer: An updated meta-analysis. Occup. Med. 2018, 68, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, B.; Hutchinson, E.; Unwin, J.; Fletcher, T. Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: A review and meta-analysis. Environ. Health Perspect. 2004, 112, 970–978. [Google Scholar] [CrossRef] [PubMed]
- Bostrom, C.E.; Gerde, P.; Hanberg, A.; Jernstrom, B.; Johansson, C.; Kyrklund, T.; Rannug, A.; Tornqvist, M.; Victorin, K.; Westerholm, R. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ. Health Perspect. 2002, 110, 451–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr. Eval. Carcinog. Risks Hum. 2010, 92, 1–853.
- Miller, K.P.; Ramos, K.S. Impact of cellular metabolism on the biological effects of benzo[a]pyrene and related hydrocarbons. Drug Metab. Rev. 2001, 33, 1–35. [Google Scholar] [CrossRef]
- Ramos, K.S.; Moorthy, B. Bioactivation of polycyclic aromatic hydrocarbon carcinogens within the vascular wall: Implications for human atherogenesis. Drug Metab. Rev. 2005, 37, 595–610. [Google Scholar] [CrossRef]
- Rybicki, B.A.; Nock, N.L.; Savera, A.T.; Tang, D.; Rundle, A. Polycyclic aromatic hydrocarbon-DNA adduct formation in prostate carcinogenesis. Cancer Lett. 2006, 239, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Alexandrov, K.; Rojas, M.; Satarug, S. The critical DNA damage by benzo(a)pyrene in lung tissues of smokers and approaches to preventing its formation. Toxicol. Lett. 2010, 198, 63–68. [Google Scholar] [CrossRef]
- Hecht, S.S.; Chen, M.; Yagi, H.; Jerina, D.M.; Carmella, S.G. r-1,t-2,3,c-4-Tetrahydroxy-1,2,3,4-tetrahydrophenanthrene in Human Urine. Cancer Epidemiol. Biomark. Prev. 2003, 12, 1501. [Google Scholar]
- Gunduz, I.; Kondylis, A.; Jaccard, G.; Renaud, J.M.; Hofer, R.; Ruffieux, L.; Gadani, F. Tobacco-specific N-nitrosamines NNN and NNK levels in cigarette brands between 2000 and 2014. Regul. Toxicol. Pharmacol. 2016, 76, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Yalcin, E.; de la Monte, S. Tobacco nitrosamines as culprits in disease: Mechanisms reviewed. J. Physiol. Biochem. 2016, 72, 107–120. [Google Scholar] [CrossRef]
- Chang, C.M.; Edwards, S.H.; Arab, A.; Del Valle-Pinero, A.Y.; Yang, L.; Hatsukami, D.K. Biomarkers of Tobacco Exposure: Summary of an FDA-Sponsored Public Workshop. Cancer Epidemiol. Biomark. Prev. 2017, 26, 291–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hecht, S.S.; Yuan, J.-M.; Hatsukami, D. Applying tobacco carcinogen and toxicant biomarkers in product regulation and cancer prevention. Chem. Res. Toxicol. 2010, 23, 1001–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagchi, P.; Geldner, N.; deCastro, B.R.; De Jesús, V.R.; Park, S.K.; Blount, B.C. Crotonaldehyde exposure in U.S. tobacco smokers and nonsmokers: NHANES 2005–2006 and 2011–2012. Environ. Res. 2018, 163, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chung, F.L.; Tanaka, T.; Hecht, S.S. Induction of liver tumors in F344 rats by crotonaldehyde. Cancer Res. 1986, 46, 1285–1289. [Google Scholar]
- International Agency for Research on Cancer, WHO. IARC Monographs on the Identification of Carcinogenic Hazards to Humans. Available online: https://monographs.iarc.fr/list-of-classifications/ (accessed on 1 April 2020).
- Talhout, R.; Schulz, T.; Florek, E.; van Benthem, J.; Wester, P.; Opperhuizen, A. Hazardous compounds in tobacco smoke. Int. J. Environ. Res. Public Health 2011, 8, 613–628. [Google Scholar] [CrossRef]
- Nazaroff, W.W.; Singer, B.C. Inhalation of hazardous air pollutants from environmental tobacco smoke in US residences. J. Expo. Anal. Environ. Epidemiol. 2004, 14, S71–S77. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.-T.; Hu, Y.; Tong, D.; Huang, J.; Gu, L.; Wu, X.-R.; Chung, F.-L.; Li, G.-M.; Tang, M.-s. Effect of carcinogenic acrolein on DNA repair and mutagenic susceptibility. J. Biol. Chem. 2012, 287, 12379–12386. [Google Scholar] [CrossRef] [Green Version]
- Huff, J. Benzene-induced cancers: Abridged history and occupational health impact. Int. J. Occup. Environ. Health 2007, 13, 213–221. [Google Scholar] [CrossRef]
- Baan, R.; Grosse, Y.; Straif, K.; Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; et al. A review of human carcinogens--Part F: Chemical agents and related occupations. Lancet Oncol. 2009, 10, 1143–1144. [Google Scholar] [CrossRef]
- Krolikowski, F.J.; Reuter, K.; Waalkes, T.P.; Sieber, S.M.; Adamson, R.H. Serum sialic acid levels in lung cancer patients. Pharmacology 1976, 14, 47–51. [Google Scholar] [CrossRef]
- Hogan-Ryan, A.; Fennelly, J.J.; Jones, M.; Cantwell, B.; Duffy, M.J. Serum sialic acid and CEA concentrations in human breast cancer. Br. J. Cancer 1980, 41, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.S.; Adhvaryu, S.G.; Balar, D.B.; Parikh, B.J.; Shah, P.M. Clinical application of serum levels of sialic acid, fucose and seromucoid fraction as tumour markers in human leukemias. Anticancer Res. 1994, 14, 747–751. [Google Scholar] [PubMed]
- Feijoo, C.; Paez de la Cadena, M.; Rodriguez-Berrocal, F.J.; Martinez-Zorzano, V.S. Sialic acid levels in serum and tissue from colorectal cancer patients. Cancer Lett. 1997, 112, 155–160. [Google Scholar] [CrossRef]
- Berbec, H.; Paszkowska, A.; Siwek, B.; Gradziel, K.; Cybulski, M. Total serum sialic acid concentration as a supporting marker of malignancy in ovarian neoplasia. Eur. J. Gynaecol. Oncol. 1999, 20, 389–392. [Google Scholar]
- Wongkham, S.; Boonla, C.; Kongkham, S.; Wongkham, C.; Bhudhisawasdi, V.; Sripa, B. Serum total sialic acid in cholangiocarcinoma patients: An ROC curve analysis. Clin. Biochem. 2001, 34, 537–541. [Google Scholar] [CrossRef]
- Zhang, Z.; Wuhrer, M.; Holst, S. Serum sialylation changes in cancer. Glycoconj. J. 2018, 35, 139–160. [Google Scholar] [CrossRef] [Green Version]
- Helenius, A.; Aebi, M. Intracellular Functions of N-Linked Glycans. Science 2001, 291, 2364. [Google Scholar] [CrossRef] [Green Version]
- Rudd, P.M.; Wormald, M.R.; Stanfield, R.L.; Huang, M.; Mattsson, N.; Speir, J.A.; DiGennaro, J.A.; Fetrow, J.S.; Dwek, R.A.; Wilson, I.A. Roles for glycosylation of cell surface receptors involved in cellular immune recognition. J. Mol. Biol. 1999, 293, 351–366. [Google Scholar] [CrossRef]
- Vajaria, B.N.; Patel, P.S. Glycosylation: A hallmark of cancer? Glycoconj. J. 2017, 34, 147–156. [Google Scholar] [CrossRef]
- Shah, M.H.; Telang, S.D.; Shah, P.M.; Patel, P.S. Tissue and serum α2-3- and α2-6-linkage specific sialylation changes in oral carcinogenesis. Glycoconj. J. 2008, 25, 279–290. [Google Scholar] [CrossRef]
- Fuster, M.M.; Esko, J.D. The sweet and sour of cancer: Glycans as novel therapeutic targets. Nat. Rev. Cancer 2005, 5, 526–542. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Ordonez-Mena, J.M.; Chen, T.; Schottker, B.; Arndt, V.; Brenner, H. Circulating 25-hydroxyvitamin D serum concentration and total cancer incidence and mortality: A systematic review and meta-analysis. Prev. Med. 2013, 57, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.C.; Zhang, Z.L.; Wan, Z.; Wang, L.; Weber, P.; Eggersdorfer, M.; Qin, L.Q.; Zhang, W. Circulating 25-hydroxyvitamin D and risk of lung cancer: A dose-response meta-analysis. Cancer Causes Control. 2015, 26, 1719–1728. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Su, X.; Klein, M.S.; Lewis, I.A.; Fiehn, O.; Rabinowitz, J.D. Metabolite Measurement: Pitfalls to Avoid and Practices to Follow. Ann. Rev. Biochem. 2017, 86, 277–304. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Janssen-Heijnen, M.L.; Schipper, R.M.; Razenberg, P.P.; Crommelin, M.A.; Coebergh, J.W. Prevalence of co-morbidity in lung cancer patients and its relationship with treatment: A population-based study. Lung Cancer 1998, 21, 105–113. [Google Scholar] [CrossRef]
- López-Encuentra, A. Comorbidity in operable lung cancer: A multicenter descriptive study on 2992 patients. Lung Cancer 2002, 35, 263–269. [Google Scholar] [CrossRef]
- Dima, S.; Chen, K.-H.; Wang, K.-J.; Wang, K.-M.; Teng, N.-C. Effect of Comorbidity on Lung Cancer Diagnosis Timing and Mortality: A Nationwide Population-Based Cohort Study in Taiwan. BioMed Res. Int. 2018, 2018, 1252897. [Google Scholar] [CrossRef] [Green Version]
- Ran, N.; Pang, Z.; Gu, Y.; Pan, H.; Zuo, X.; Guan, X.; Yuan, Y.; Wang, Z.; Guo, Y.; Cui, Z.; et al. An Updated Overview of Metabolomic Profile Changes in Chronic Obstructive Pulmonary Disease. Metabolites 2019, 9, 111. [Google Scholar] [CrossRef] [Green Version]
- Arneth, B.; Arneth, R.; Shams, M. Metabolomics of Type 1 and Type 2 Diabetes. Int. J. Mol. Sci. 2019, 20, 2467. [Google Scholar] [CrossRef] [Green Version]
Reference, Year | No. of Study Participants (Case/Control) | Type of Lung Cancer Cases (n) | Type of Biological Sample | Method Used for Metabolite Identification | Level of Identification g | Age of Participants at Recruitment | Gender of Participants | Location of Study (Study Name, if Applicable) | Smoking Status a |
---|---|---|---|---|---|---|---|---|---|
Cohort studies reporting the association between exposure to metabolite and lung cancer (n = 4) | |||||||||
Kilkkinen et al., 2008 [48] | 6937 (122 cases) | NR | Serum | Nicotine Metabolite RIA kit | N.A. | 50.9 ± 14.9 b | 3207M, 3730F | Finland (MFhes) | 2052A, 4885N |
Afzal et al., 2013 [49] | 9791 (507 cases) | NR | Plasma | DiaSorin Liaison 25(OH)D TOTAL assay | N.A. | 58 (48–65) c | 4359M, 5432F | Copenhagen, Denmark (CCHS) | 7474E, 2317N |
Ordóñez-Mena et al., 2016 [42] | 8928 (134 cases) | NR | Serum | Immunoassay | N.A. | 63 (57–67) c | 3545M, 5383F | Germany (ESTHER cohort) | NR |
4307 (58 cases) | NR | Serum | Immunoassay | N.A. | 62 (56–68) c | 1553M, 2754F | Norway (TROMSØ cohort) | N/F | |
Gao et al., 2019a [43] | 4345 (39 cases) | NR | Serum | d-ROM assay | N.A. | 69 (64–74) c | 1966M, 2379F | Germany (ESTHER cohort) | 335A, 1552F, 2374N, 84U |
221/1000 (case-cohort study) | NR | Serum | d-ROM assay | N.A. | Ca: 51 (44–56) c Cohort: 42 (37–50) c | Ca: 150M, 71F Cohort: 548M, 452F | Norway (TROMSØ cohort) | Ca: 181A, 28F, 11N, 1U Cohort: 443A, 245F, 310N, 2U | |
Case-control studies reporting the association between exposure to metabolite and lung cancer (n = 23) | |||||||||
de Waard et al., 1995 [50] | 92/305 | NR | 12H Urine | Capillary gas chromatography-mass spectrometry | N.A. | 40–64 d | F | Utrecht, Netherlands (DOM Project) | Ca: 69A, 23P Co: 257A, 191P |
Ellard et al., 1995 [51] | 69/255 | NR | 12H Urine | Automated colorimetric method – automated versions of the manual direct barbituric acid and alkaline picrate | N.A. | 40–64 d | F | Utrecht, Netherlands (DOM Project) | Ca: 48A, 21N Co: 58A, 197P |
London et al., 2000 [52] | 232/710 | NR | Urine | HPLC | N.A. | 58.8 ± 4.8 b | M | Shanghai, China (SCS) | Ca: 189A, 19F, 24N Co: 337A, 58F, 315N |
Boffetta et al., 2006 [53] | 1741/1741 | NR | Serum | Qualitative immunoassay | N.A. | Adults (Actual age range reported as categorical data) | Ca: 1322M, 419F Co: 1322M, 419F | Norway | Ca: 1393A, 96E, 128F, 53N, 71U Co: 727A, 67E, 411F, 445N, 91U |
Loft et al., 2007 [54] | 251/261 | AC (81) SCLC (55) SCC (51) Others (34) | Urine | HPLC | N.A. | 50–64 d | Ca: 138M, 113F Co: 146M, 115F | Denmark (DCH Study) | In total, 399A, 94F, 15N |
Johansson et al., 2010 [55] | 899/1815 | SCLC (110) AC (272) LCC (50) SCC (200) Others (267) | Serum | LC-MS/MS, GC-MS/MS and microbiological assay | N.A. | 59 (43–73) e | Ca: 559M, 340F Co: 1126M, 689F | Europe (EPIC Study) | Ca: 529A, 260F, 96N, 14U Co: 413A, 663F, 707N, 32U |
Timofeeva et al., 2011 [56] | 894/1805 | SCLC (108) AC (270) LCC (50) SCC (199) Others/Unknown (267) | Plasma/Serum | LC-MS/MS | N.A. | Adults (Actual age range reported as categorical data) | Ca: 556M, 338F Co: 1117M, 688F | Europe (EPIC Study) | Ca: 526A, 258F, 96N Co: 409A, 659F, 705N |
Weinstein et al., 2011 [57] | 500/500 | SCLC (100) SCC (179) AC (73) Others (148) | Fasting serum | DiaSorin Liaison 25(OH)D TOTAL assay | N.A. | 59 (55–62) c | M | Finland (ATBC) | A |
Yuan et al., 2011 [58] | 476/476 | AC (105) SCC (153) SCLC (22) Others (35) Unknown (161) | Urine | LC-MS/MS, GC-MS/MS | N.A. | Ca: 57.4 ± 5.0 b Co: 57.2 ± 4.9 b | M | Shanghai, China (SCS) | A |
Yuan et al., 2012 [59] | 343/392 | AC (70) SCC (104) SCLC (22) Others (28) Unknown (119) | Urine | LC-MS/MS, GC-MS/MS | N.A. | NR | M | Shanghai, China (SCS) | A |
Eom et al., 2013 [60] | 35/140 | NR | Urine | HPLC | N.A. | Ca: 68.87 ± 6.86 b Co: 68.86 ± 6.85 b | Ca: 27M, 8F Co: 108M, 32F | South Korea (KMCC) | Ca: 28A/F, 7N Co: 91A/F, 48N |
Chuang et al., 2014 [61] | 893/1748 | SCLC (140) AC (284) LCC (63) SCC(198) Others (208) | Blood | LC-MS/MS, GC-MS/MS | N.A. | 59 (42–72) e | Ca: 556M, 337F Co: 1086M, 662F | Europe (EPIC Study) | Ca: 526A, 257F, 96N, 14U Co: 396A, 648F, 674N, 30U |
Mathe et al., 2014 [62] | 469/536 | NSCLC | Urine | UPLC-ESI-QTOFMS | Level 1 | Ca: 66.2 f Co: 66.6 f | Ca: 237M, 232F Co: 276M, 260F | Greater Baltimore, Maryland, USA | Ca: 222A, 214F, 33N Co: 71A, 249F, 216N |
Yuan et al., 2014 [63] | 82/83 | SCC (16) AC (34) SCLC (2) Others (9) Unknown (21) | Urine | LC-MS/MS | N.A. | Ca: 58.1 ± 5.2 b Co: 58.0 ± 5.4 b | M | Shanghai, China (SCS) | N |
Wang et al., 2015 [64] | 100/100 | SCC (35) AC (51) Others (14) | Serum | LC-MS/MS and HPLC | N.A. | Ca: 57.1 ± 9.2 b Co: 56.6 ± 9.2 b | Ca: 52M, 48F Co: 51M, 49F | Changchun, Jilin, China | Ca: 48A, 20F, 32N Co: 9A, 35F, 56N |
Haznadar et al., 2016 [65] | 178/351 | AC (59) SCC (36) NSCLC (19) SCLC (29) LCC (9) Others (13) Unknown (13) | Urine | UPLC-MS | Level 1 | Ca: 57.7 ± 8.6 b Co: 57.3 ± 8.5 b | Ca: 101M, 77F Co: 194M, 152F | South-eastern states, USA (SCCS) | Ca: 127A, 39F, 7N Co: 140A, 99F, 97N |
Yuan et al., 2016 [66] | 325/356 | SCC (102) AC (80) SCLC (15) Others (17) Unknown (111) | Urine | LC-MS/MS, GC-MS/MS | N.A. | Ca: 56.7 ± 4.9 b Co: 56.7 ± 4.9 b | M | Shanghai, China (SCS) | A |
Yuan et al., 2017 [67] | 197/197 | AC (51) SCC (48) SCLC (25) Others (49) Unknown (24) | Urine | LC-MS/MS, GC-MS/MS | N.A. | 60.8 ± 6.2 b | Ca: 165M, 32F Co: 164M, 33F | Singapore (SCHS) | A |
Fanidi et al., 2018 [68] | 5364/5364 | LCC (174) SCLC (492) SCC (836) AC (2056) Others/Unknown (1806) | Plasma/Serum | LC-MS/MS, GC-MS/MS and microbiological assay | N.A. | 60 (44–72) e | 2908M, 2456F | Europe, Australia, China, Singapore, USA (LC3) | 2519A, 1518F, 1327N |
Haznadar et al., 2018 [69] | 406/437 | AC (202) SCC (108) NSCLC (96) | Serum | UPLC-MS | N.A. | Ca: 66.3 ± 10.0 b Co: 67.0 ± 8.9 b | Ca: 214M, 192F Co: 234M, 203F | Baltimore, Maryland, USA | Ca: 191A, 186F, 29N Co: 52A, 209F, 176N |
Larose et al., 2018 [70] | 5364/5364 | LCC (174) SCLC (492) SCC (836) AC (2056) Others/Unknown (1806) | Plasma/Serum | LC-MS/MS | N.A. | 60 (44–72) e | 2908M, 2456F | Europe, Australia, China, Singapore, USA (LC3) | 2519A, 1518F, 1327N |
Gao et al., 2019b [71] | 245/735 | NR | Urine | Nitrite/nitrate colorimetric assay | N.A. | 62 (59–68) c | Ca: 170M, 75F Co: 509M, 226F | Germany (ESTHER cohort) | Ca: 124A, 87F, 29N Co: 365A, 260F, 93N |
Seow et al., 2019 [72] | 275/289 | AC (135) SCC (9) Others (19) Unknown (112) | Urine | UPLC-MS and 600-MHz hydrogen 1 NMR | Level 2 | Ca: 61 (52–65) c Co: 62 (53–66) c | F | Shanghai, China (SWHS) | N |
Studies reporting the concentration of metabolites in lung cancer patients and controls (n = 24) | |||||||||
Kukreja et al., 1982 [39] | 14 (Self-controlled) | SCC (8) AC (4) LCC (2) | Tumor tissue | Silicic acid chromatography and radioimmunoassay | N.A. | NR | M | Chicago, Illinois, USA | NR |
Hendrick et al., 1988 [73] | 29/18 | AC/LCC (11) SCC (9) SCLC (8) | Plasma | Radioimmunoassay | N.A. | Ca: 65.4 ± 7.0 b Co: 65.5 ± 10.2 b | Ca: 20M, 9F Co: 11M, 7F | NR | NR |
Preti et al., 1988 [34] | 10/8 | SCC (6) LCC (2) | Exhaled breath | GC-MS | Level 1 | Ca: 54–77 d Co: 57–66 d | Ca: 7M, 3F Co: 4M, 4F | Pennsylvania, USA | Ca: 4A, 6F Co: 4A, 1F, 3N |
Proenza et al., 2003 [30] | 14/14 | NR | Fasting plasma | HPLC | N.A. | Ca: 64.4 ± 6.0 b Co:59.8 ± 7.9 b | M | Spain | NR |
Masri et al., 2005 [40] | 11/35 | NR | Exhaled breath | Chemiluminescent analyzer, amperometric sensor | N.A. | NR | NR | Cleaveland, Ohio, USA | NR |
Gencer et al., 2006 [74] | 38/26 | EC (14) SCLC (12) AC (12) | Fasting serum | Technicon RA-XT® autoanalyzer | N.A. | AC: 54 ± 12 b EC: 59.6 ± 14 b SCLC: 52 ± 9 b Co: 53.2 ± 12 b | AC: 9M, 3F EC: 11M, 3F SCLC: 10M, 2F Co: 21M, 5F | NR | NR |
Zhang et al., 2006 [75] | 10/12 | NR | 24H Urine | HPLC and GC-MS/MS | N.A. | 30–70 d | M | Beijing, China | Ca: 2A, 8F Co: 8A, 4N |
Esme et al., 2008 [76] | 49/20 | AC (24) SCC (21) LCC (4) | Blood | Spectrophotometric method | N.A. | Ca: 57.2 ± 10.1 b Co: 52.1 ± 12.1 b | Ca: 40M, 9F Co: 9M, 11F | Turkey | A |
Hu et al., 2009 [26] | 30/63 | NSCLC | Non-fasting serum & Urine | HPLC, amino acid analyzer | N.A. | Ca: 59.7 ± 8.0 b Co: 67.0 ± 5.4 b | Ca: 7M, 3F Co: 4M, 4F | Anhui, China | NR |
Miyagi et al., 2011 [28] | 200/996 | AC (133) SCC (35) SCLC (8) Others (9) Unknown (15) | Fasting plasma | HPLC–electrospray ionization mass spectrometry | N.A. | Ca: 65.0 ± 10.0 b Co: 63.2 ± 9.2 b | Ca: 125M, 75F Co: 635M, 371F | Japan | Ca: 84A, 54F, 60N, 2U Co: 137A, 245F, 536N, 78U |
Kami et al., 2013 [33] | 9 (Self-controlled) | AC (3) SCC (4) LCC (1) PC (1) | Tumor tissue | Capillary electrophoresis time-of-flight mass spectrometry | Level 2 | 56–82 d | 8M, 1F | NR | NR |
Okur et al., 2013 [41] | 15 (Self-controlled) | AC (3) EC (12) | Tumor tissue | Chemiluminescence assay | N.A. | 63.6 ± 9.2 b | M | Istanbul, Turkey | A |
Shingyogi et al., 2013 [27] | 86/323h | AC (55) SCC (12) Other NSCLC (8) SCLC (11) Unknown (3) | Fasting serum | HPLC–electrospray ionization mass spectrometry | N.A. | Ca: 67.8 ± 8.2 b Co: 61.9 ± 6.0 b | Ca: 68M, 18F Co: 263M, 60F | Japan | Ca: 29A, 36F, 18N, 3U Co: 62A, 107F, 139N, 15U |
Hwang et al., 2014 [77] | 74/85 | NSCLC | Urine | LC-MS | N.A. | Ca: 64.0 ± 10.3 b Co: 55.5 ± 7.2 b | Ca: 45M, 29F Co: 23M, 62F | Goyang, South Korea | N |
Kim et al., 2015 [78] | 75/80 | AC (37) SCC (30) Other NSCLC (4) Unknown (1) | Fasting plasma | HPLC–electrospray ionization mass spectrometry | N.A. | Ca: 65.6 ± 9.2 b Co: 63.2 ± 8.9 b | Ca: 51M, 21F Co: 44M, 26F | South Korea | Ca: 40A, 13F, 19N Co: 8A, 25F, 34N, 3U |
Klupczynska et al., 2016a [79] | 90/62 | AC (40) SCC (50) | Fasting serum | LC–MS/MS | N.A. | Ca: 64 ± 6.9 b Co: 62 ± 8.8 b | Ca: 58M, 32F Co: 40M, 22F | Poznan, Poland | Ca: 43A, 46N, 1U Co: 11A, 49N, 3U |
Klupczynska et al., 2016b [80] | 90/63 | AC (40) SCC (50) | Fasting serum | LC–MS/MS | N.A. | Ca: 64 ± 6.9 b Co: 62 ± 8.7 b | Ca: 58M, 32F Co: 41M, 22F | Poznan, Poland | Ca: 43A, 46N, 1U Co: 11A, 49N, 4U |
Ni et al., 2016 [81] | 40/100 | NR | Serum | LC–MS/MS | N.A. | Ca: 51–83 d Co: NR | Ca: 26M, 14F Co: NR | Beijing, China | NR |
Yue et al., 2018 [31] | 20/20 | SCLC | Fasting plasma | LC–MS/MS | Levels 1, 2 (for different metabolites) | NR | NR | Beijing, China | NR |
Kawamoto et al., 2019 [29] | 54/124 | AC | Urine | Radioimmunoassay | N.A. | Ca: 66.6 ± 10.0 b Co: 44.2 ± 12.9 b | Ca: 23M, 31F Co: 52M, 72F | Tokyo, Japan | Ca: 30A/F, 24N Co: 124N |
Klupczynska et al., 2019 [35] | 20/20 | AC (9) SCC (11) | Fasting serum | Triple quadrupole tandem mass spectrometer coupled with HPLC | N.A. | Ca: 62 ± 5 b Co: 63 ± 6 b | Ca: 11M, 9F Co: 8M, 12F | Poznan, Poland | Ca: 12A, 8F/N/U Co: 6A, 14F/N/U |
Ni et al., 2019 [36] | 17/30 | AC (4) SCC (5) SCLC (5) Other NSCLC (3) | Fasting serum | LC–MS/MS | N.A. | Ca: 53–77 d Co: 34–85 d | Ca: 13M, 4F Co: 23M, 7F | Beijing, China | Ca: 4A, 5F, 8N Co: 7A, 6F, 16N, 1U |
Pietzke et al., 2019 [25] | 56/50 | AC (31) SCC (20) | Fasting plasma | GC-MS, LC-MS | N.A. | Ca: 66 ± 9 b Co: 48 ± 14 b | Ca: 49M, 7F Co: NR | NR | Ca: 28A, 28F/N/U Co: NR |
Zhang et al., 2019 [82] | 28/38 | NR | Fasting plasma | HPLC-MS/MS | N.A. | Ca: 30–79 d Co: 20–79 d | Ca: 23M, 5F Co: 20M, 18F | Shenyang, China | Ca: 21A, 7N Co: 15A, 8N, 15U |
Studies reporting both the association between exposure to metabolite and lung cancer and the concentration of metabolites in lung cancer patients and controls (n = 2) | |||||||||
Church et al., 2009 [83] | 100/100 | NR | Non-fasting serum | GC-MS | N.A. | 55–74 d | Ca: 71M, 29F Co: 64M, 36F | USA (PLCO) | A |
Skaaby et al., 2014 [84] | 12204 (126 cases) | NR | Serum | HPLC, immunoassay, IDS-SYS 25-Hydroxy Vitamin D method | N.A. | 18–71 d | 5866M, 6338F | Denmark (Monica10, Inter99, Health2006) | 4554A, 3401F, 4249N |
Reference, Year. | Selection (4) a | Comparability (2) b | Determination of Exposure/Outcome (3) c | Overall Quality Score |
---|---|---|---|---|
Kukreja et al., 1982 [39] | 1 | 2 | 3 | 6.8 d |
Hendrick et al., 1988 [73] | 3 | 0 | 2 | 5 |
Preti et al., 1988 [34] | 3 | 0 | 2 | 5 |
de Waard et al., 1995 [50] | 4 | 1 | 2 | 7 |
Ellard et al., 1995 [51] | 4 | 2 | 2 | 8 |
London et al., 2000 [52] | 4 | 1 | 3 | 8 |
Proenza et al., 2003 [30] | 2 | 0 | 2 | 4 |
Masri et al., 2005 [40] | 3 | 2 | 3 | 9 d |
Boffetta et al., 2006 [53] | 4 | 2 | 3 | 9 |
Gencer et al., 2006 [74] | 2 | 0 | 2 | 4 |
Zhang et al., 2006 [75] | 1 | 0 | 2 | 3 |
Loft et al., 2007 [54] | 4 | 2 | 2 | 8 |
Esme et al., 2008 [76] | 3 | 1 | 2 | 6 |
Kilkkinen et al., 2008 [48] | 4 | 2 | 2 | 8 |
Church et al., 2009 [83] | 4 | 2 | 2 | 8 |
Hu et al., 2009 [26] | 3 | 0 | 2 | 5 |
Johansson et al., 2010 [55] | 3 | 2 | 3 | 8 |
Miyagi et al., 2011 [28] | 3 | 2 | 2 | 7 |
Timofeeva et al., 2011 [56] | 4 | 2 | 2 | 8 |
Weinstein et al., 2011 [57] | 4 | 2 | 2 | 8 |
Yuan et al., 2011 [58] | 4 | 2 | 3 | 9 |
Yuan et al., 2012 [59] | 4 | 2 | 3 | 9 |
Afzal et al., 2013 [49] | 4 | 2 | 3 | 9 |
Eom et al., 2013 [60] | 4 | 2 | 2 | 8 |
Kami et al., 2013 [33] | 2 | 2 | 3 | 7.9 d |
Okur et al., 2013 [41] | 3 | 2 | 3 | 9 d |
Shingyogi et al., 2013 [27] | 3 | 0 | 2 | 5 |
Chuang et al., 2014 [61] | 3 | 2 | 2 | 7 |
Hwang et al., 2014 [77] | 2 | 1 | 2 | 5 |
Mathe et al., 2014 [62] | 3 | 2 | 2 | 7 |
Skaaby et al., 2014 [84] | 3 | 2 | 3 | 8 |
Yuan et al., 2014 [63] | 4 | 2 | 3 | 9 |
Kim et al., 2015 [78] | 3 | 2 | 2 | 7 |
Wang et al., 2015 [64] | 3 | 2 | 2 | 7 |
Haznadar et al., 2016 [65] | 3 | 2 | 2 | 7 |
Klupczynska et al., 2016a [79] | 3 | 2 | 2 | 7 |
Klupczynska et al., 2016b [80] | 3 | 0 | 2 | 5 |
Ni et al., 2016 [81] | 3 | 2 | 2 | 7 |
Ordóñez-Mena et al., 2016-ESTHER [42] | 4 | 2 | 3 | 9 |
Ordóñez-Mena et al., 2016-TROMSØ [42] | 4 | 2 | 2 | 8 |
Yuan et al., 2016 [66] | 4 | 2 | 3 | 9 |
Yuan et al., 2017 [67] | 4 | 2 | 3 | 9 |
Fanidi et al., 2018 [68] | 3 | 2 | 2 | 7 |
Haznadar et al., 2018 [69] | 3 | 2 | 2 | 7 |
Larose et al., 2018 [70] | 2 | 2 | 2 | 6 |
Yue et al., 2018 [31] | 3 | 1 | 2 | 6 |
Gao et al., 2019a–ESTHER [43] | 3 | 2 | 3 | 8 |
Gao et al., 2019a–TROMSØ [43] | 3 | 2 | 2 | 7 |
Gao et al., 2019b [71] | 3 | 2 | 3 | 8 |
Kawamoto et al., 2019 [29] | 3 | 2 | 2 | 7 |
Klupczynska et al., 2019 [35] | 2 | 2 | 2 | 6 |
Ni et al., 2019 [36] | 3 | 2 | 2 | 7 |
Pietzke et al., 2019 [25] | 2 | 0 | 2 | 4 |
Seow et al., 2019 [72] | 4 | 2 | 2 | 8 |
Zhang et al., 2019 [82] | 2 | 0 | 2 | 4 |
Metabolite. | OR | 95% CI | No. of Studies | I2 (%) | Cochran’s Q Test’s p-Value | Forest Plot |
---|---|---|---|---|---|---|
Serum/Plasma | ||||||
Cotinine † | 14.19 | 2.92–69.00 | 3 | 96.8 | <0.001 | Figure S1a |
Folate | 0.82 | 0.72–0.94 | 2 | 47.7 | 0.167 | Figure S1b |
Urine | ||||||
Creatine Riboside † | 3.30 | 1.33–8.15 | 2 | 84.7 | 0.011 | Figure S1c |
NANA | 2.01 | 1.49–2.72 | 2 | 0.0 | 0.458 | Figure S1d |
PheT | 2.49 | 1.53–4.05 | 2 | 0.0 | 0.673 | Figure S1e |
Total 3-HC (3-HC + 3-HC-Gluc) | 3.71 | 2.41–5.72 | 2 | 0.0 | 0.499 | Figure S1f |
Total Cotinine (Cotinine + Cotinine-Gluc) | 3.53 | 2.62–4.77 | 3 | 0.0 | 0.406 | Figure S1g |
Total Nicotine (Nicotine + Nicotine-Gluc) | 2.51 | 1.71–3.70 | 2 | 8.9 | 0.295 | Figure S1h |
Total NNAL (NNAL + NNAL-Glucs) | 2.17 | 1.63–2.89 | 3 | 28.3 | 0.248 | Figure S1i |
Total Nicotine Equivalent (Total nicotine + Total cotinine + Total 3-HC) | 3.75 | 2.45–5.73 | 2 | 16.3 | 0.274 | Figure S1j |
Metabolite | WMD (μmol/L) | 95% CI (μmol/L) | No. of Studies | I2 (%) | Cochran’s Q Test’s p-Value | Forest Plot |
---|---|---|---|---|---|---|
Plasma | ||||||
Methionine † | −2.04 | −4.01–−0.06 | 5 | 86.0 | <0.001 | Figure S2a |
Tryptophan † | −6.85 | −11.07–−2.63 | 4 | 87.1 | <0.001 | Figure S2b |
Proline † | 15.98 | 6.59–25.37 | 6 | 83.6 | <0.001 | Figure S2c |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.B.; Ang, L.; Yau, W.-P.; Seow, W.J. Association between Metabolites and the Risk of Lung Cancer: A Systematic Literature Review and Meta-Analysis of Observational Studies. Metabolites 2020, 10, 362. https://doi.org/10.3390/metabo10090362
Lee KB, Ang L, Yau W-P, Seow WJ. Association between Metabolites and the Risk of Lung Cancer: A Systematic Literature Review and Meta-Analysis of Observational Studies. Metabolites. 2020; 10(9):362. https://doi.org/10.3390/metabo10090362
Chicago/Turabian StyleLee, Kian Boon, Lina Ang, Wai-Ping Yau, and Wei Jie Seow. 2020. "Association between Metabolites and the Risk of Lung Cancer: A Systematic Literature Review and Meta-Analysis of Observational Studies" Metabolites 10, no. 9: 362. https://doi.org/10.3390/metabo10090362
APA StyleLee, K. B., Ang, L., Yau, W. -P., & Seow, W. J. (2020). Association between Metabolites and the Risk of Lung Cancer: A Systematic Literature Review and Meta-Analysis of Observational Studies. Metabolites, 10(9), 362. https://doi.org/10.3390/metabo10090362