Towards Standardization of Data Normalization Strategies to Improve Urinary Metabolomics Studies by GC×GC-TOFMS
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Subjects and Sample Collection and Storage
4.2. Chemicals, Reagents, and Solvents
4.3. Sample Preparation
4.4. GC×GC-TOFMS Conditions
4.5. Data Processing and Analysis
4.6. Normalization to Creatinine
4.7. Normalization to TPA and TUPA
4.8. Multivariate Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gagnebin, Y.; Tonoli, D.; Lescuyer, P.; Ponte, B.; de Seigneux, S.; Martin, P.; Schappler, J.; Boccard, J.; Rudaz, S. Metabolomic analysis of urine samples by UHPLC-QTOF-MS: Impact of normalization strategies. Anal. Chim. Acta 2017, 955, 27–35. [Google Scholar] [CrossRef]
- De Livera, A.M.; Dias, D.A.; De Souza, D.; Rupasinghe, T.; Pyke, J.; Tull, D.; Roessner, U.; McConville, M.; Speed, T.P. Normalizing and Integrating Metabolomics Data. Anal. Chem. 2012, 84, 10768–10776. [Google Scholar] [CrossRef]
- Koek, M.M.; Jellema, R.H.; van der Greef, J.; Tas, A.C.; Hankemeier, T. Quantitative metabolomics based on gas chromatography mass spectrometry: Status and perspectives. Metabolomics 2010, 7, 307–328. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Shen, G.; Zhang, R.; He, J.; Zhang, Y.; Xu, J.; Yang, W.; Chen, X.; Song, Y.; Abliz, Z. Combination of Injection Volume Calibration by Creatinine and MS Signals’ Normalization to Overcome Urine Variability in LC-MS-Based Metabolomics Studies. Anal. Chem. 2013, 85, 7659–7665. [Google Scholar] [CrossRef]
- Cook, T.; Ma, Y.; Gamagedara, S. Evaluation of statistical techniques to normalize mass spectrometry-based urinary metabolomics data. J. Pharm. Biomed. Anal. 2020, 177, 112854. [Google Scholar] [CrossRef]
- Bidin, M.Z.; Shah, A.M.; Stanslas, J.; Seong, C.L.T. Blood and urine biomarkers in chronic kidney disease: An update. Clin. Chim. Acta 2019, 495, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Herman-Saffar, O.; Boger, Z.; Libson, S.; Lieberman, D.; Gonen, R.; Zeiri, Y. Early non-invasive detection of breast cancer using exhaled breath and urine analysis. Comput. Biol. Med. 2018, 96, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Warrack, B.M.; Hnatyshyn, S.; Ott, K.; Reily, M.D.; Sanders, M.; Zhang, H.; Drexler, D.M. Normalization strategies for metabonomic analysis of urine samples. J. Chromatogr. B 2009, 877, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, L. Sample normalization methods in quantitative metabolomics. J. Chromatogr. A 2016, 1430, 80–95. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.W.A.; Toh, Q.C.; Teo, B.W. Normalisation of urinary biomarkers to creatinine for clinical practice and research--when and why. Singap. Med. J. 2015, 56, 7–10. [Google Scholar] [CrossRef] [Green Version]
- Chetwynd, A.J.; Abdul-Sada, A.; Holt, S.G.; Hill, E.M. Use of a pre-analysis osmolality normalisation method to correct for variable urine concentrations and for improved metabolomic analyses. J. Chromatogr. A 2016, 1431, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Chadha, V.; Garg, U.; Alon, U.S. Measurement of urinary concentration: A critical appraisal of methodologies. Pediatr. Nephrol. 2001, 16, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Wagner, B.D.; Accurso, F.J.; Laguna, T.A. The applicability of urinary creatinine as a method of specimen normalization in the cystic fibrosis population. J. Cyst. Fibros. Off. J. Eur. Cyst. Fibros. Soc. 2010, 9, 212–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, D.; Robards, K.; Prenzler, P.D.; Kendall, M. Recent and potential developments in the analysis of urine: A review. Anal. Chim. Acta 2011, 684, 17–29. [Google Scholar] [CrossRef]
- Boeniger, M.F.; Lowry, L.K.; Rosenberg, J. Interpretation of urine results used to assess chemical exposure with emphasis on creatinine adjustments: A review. Am. Ind. Hyg. Assoc. J. 1993, 54, 615–627. [Google Scholar] [CrossRef]
- Garde, A.H.; Hansen, Å.M.; Kristiansen, J.; Knudsen, L.E. Comparison of Uncertainties Related to Standardization of Urine Samples with Volume and Creatinine Concentration. Ann. Occup. Hyg. 2004, 48, 171–179. [Google Scholar]
- Waikar, S.S.; Sabbisetti, V.S.; Bonventre, J.V. Normalization of urinary biomarkers to creatinine during changes in glomerular filtration rate. Kidney Int. 2010, 78, 486–494. [Google Scholar] [CrossRef] [Green Version]
- Barr Dana, B.; Wilder Lynn, C.; Caudill Samuel, P.; Gonzalez Amanda, J.; Needham Lance, L.; Pirkle James, L. Urinary Creatinine Concentrations in the U.S. Population: Implications for Urinary Biologic Monitoring Measurements. Environ. Health Perspect. 2005, 113, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.C.; Brindle, E.; Holman, D.J.; Shofer, J.; Klein, N.A.; Soules, M.R.; O’Connor, K.A. Comparison of Specific Gravity and Creatinine for Normalizing Urinary Reproductive Hormone Concentrations. Clin. Chem. 2004, 50, 924–932. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Watson, D.G. A short review of applications of liquid chromatography mass spectrometry based metabolomics techniques to the analysis of human urine. Analyst 2015, 140, 2907–2915. [Google Scholar] [CrossRef]
- Chan, E.C.Y.; Pasikanti, K.K.; Nicholson, J.K. Global urinary metabolic profiling procedures using gas chromatography-mass spectrometry. Nat. Protoc. 2011, 6, 1483–1499. [Google Scholar] [CrossRef] [PubMed]
- Fiehn, O. Metabolomics by Gas Chromatography-Mass Spectrometry: Combined Targeted and Untargeted Profiling. Curr. Protoc. Mol. Biol. 2016, 114, 30.4.1–30.4.32. [Google Scholar] [CrossRef] [PubMed]
- Mattarucchi, E.; Guillou, C. Critical aspects of urine profiling for the selection of potential biomarkers using UPLC-TOF-MS. Biomed. Chromatogr. 2012, 26, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Vogl, F.C.; Mehrl, S.; Heizinger, L.; Schlecht, I.; Zacharias, H.U.; Ellmann, L.; Nürnberger, N.; Gronwald, W.; Leitzmann, M.F.; Rossert, J.; et al. Evaluation of dilution and normalization strategies to correct for urinary output in HPLC-HRTOFMS metabolomics. Anal. Bioanal. Chem. 2016, 408, 8483–8493. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, P.; Lv, M.; Guo, H.; Huang, Y.; Zhang, Z.; Xu, F. Influences of Normalization Method on Biomarker Discovery in Gas Chromatography–Mass Spectrometry-Based Untargeted Metabolomics: What Should Be Considered? Anal. Chem. 2017, 89, 5342–5348. [Google Scholar] [CrossRef]
- Kawamura, M.; Ohmoto, A.; Hashimoto, T.; Yagami, F.; Owada, M.; Sugawara, T. Second morning urine method is superior to the casual urine method for estimating daily salt intake in patients with hypertension. Hypertens. Res. 2012, 35, 611–616. [Google Scholar] [CrossRef] [Green Version]
- Kavouras, S.A.; Johnson, E.C.; Bougatsas, D.; Arnaoutis, G.; Panagiotakos, D.B.; Perrier, E.; Klein, A. Validation of a urine color scale for assessment of urine osmolality in healthy children. Eur. J. Nutr. 2016, 55, 907–915. [Google Scholar] [CrossRef] [Green Version]
- Witte, E.C.; Lambers Heerspink, H.J.; de Zeeuw, D.; Bakker, S.J.L.; de Jong, P.E.; Gansevoort, R. First morning voids are more reliable than spot urine samples to assess microalbuminuria. J. Am. Soc. Nephrol. JASN 2009, 20, 436–443. [Google Scholar] [CrossRef] [Green Version]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Emwas, A.; Saccenti, E.; Gao, X.; McKay, R.T.; Dos Santos, V.A.M.; Roy, R.; Wishart, D.S. Recommended strategies for spectral processing and post-processing of 1D (1)H-NMR data of biofluids with a particular focus on urine. Metab. Off. J. Metab. Soc. 2018, 14, 31. [Google Scholar]
- Rosen Vollmar, A.K.; Rattray, N.J.W.; Cai, Y.; Santos-Neto, Á.J.; Deziel, N.C.; Jukic, A.M.Z.; Johnson, C.H. Normalizing Untargeted Periconceptional Urinary Metabolomics Data: A Comparison of Approaches. Metabolites 2019, 9, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almstetter, M.; Oefner, P.; Dettmer, K. Comprehensive two-dimensional gas chromatography in metabolomics. Anal. Bioanal. Chem. 2012, 402, 1993–2013. [Google Scholar] [CrossRef] [PubMed]
- Sinkov, N.A.; Harynuk, J.J. Cluster resolution: A metric for automated, objective and optimized feature selection in chemometric modeling. Talanta 2011, 83, 1079–1087. [Google Scholar] [CrossRef]
- Sinkov, N.A.; Harynuk, J.J. Three-dimensional cluster resolution for guiding automatic chemometric model optimization. Talanta 2013, 103, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Sinkov, N.A.; Sandercock, P.M.L.; Harynuk, J.J. Chemometric classification of casework arson samples based on gasoline content. Forensic Sci. Int. 2014, 235, 24–31. [Google Scholar] [CrossRef] [PubMed]
Sample | Sex | CT | TPA | TUPA | Sample | Sex | CT | TPA | TUPA |
---|---|---|---|---|---|---|---|---|---|
S1M | M | 8.42 × 106 | 1.34 × 109 | 3.27 × 108 | S14M | F | 1.75 × 107 | 2.41 × 109 | 7.01 × 108 |
S1E | M | 3.57 × 106 | 8.28 × 108 | 2.48 × 108 | S14E | F | 1.32 × 107 | 1.83 × 109 | 5.99 × 108 |
S2M | F | 3.83 × 106 | 1.81 × 109 | 5.02 × 108 | S15M | F | 1.58 × 107 | 2.79 × 109 | 6.85 × 108 |
S2E | F | 2.14 × 106 | 7.14 × 108 | 2.53 × 108 | S16M | F | 1.47 × 107 | 2.16 × 109 | 7.05 × 108 |
S3M | M | 1.28 × 107 | 1.67 × 109 | 4.31 × 108 | S16E | F | 6.64 × 106 | 1.19 × 109 | 3.65 × 108 |
S3E | M | 8.77 × 106 | 2.68 × 109 | 6.48 × 108 | S17M | F | 1.02 × 107 | 1.75 × 109 | 5.71 × 108 |
S4M | F | 1.46 × 107 | 1.67 × 109 | 5.41 × 108 | S17MR | F | 5.47 × 106 | 1.05 × 109 | 3.35 × 108 |
S4E | F | 3.04 × 106 | 1.38 × 109 | 3.66 × 108 | S17E | F | 2.31 × 106 | 6.06 × 108 | 2.48 × 108 |
S5M * | M | 1.33 × 106 | 2.39 × 109 | 7.46 × 108 | S18M | M | 2.05 × 107 | 2.71 × 109 | 8.30 × 108 |
S5E * | M | 1.65 × 107 | 1.95 × 109 | 5.15 × 108 | S18E | M | 1.65 × 107 | 1.86 × 109 | 6.28 × 108 |
S6M | F | 5.74 × 106 | 1.70 × 109 | 8.48 × 108 | S19M | F | 2.21 × 107 | 2.28 × 109 | 6.91 × 108 |
S6E | F | 1.19 × 107 | 1.53 × 109 | 4.71 × 108 | S19E | F | 2.07 × 106 | 5.37 × 108 | 1.67 × 108 |
S7M | M | 3.76 × 106 | 1.78 × 109 | 4.61 × 108 | S20M | F | 3.60 × 106 | 1.26 × 109 | 3.54 × 108 |
S7E | M | 4.06 × 106 | 9.66 × 108 | 3.33 × 108 | S20E | F | 4.71 × 106 | 8.62 × 108 | 2.78 × 108 |
S8M | M | 4.59 × 106 | 3.61 × 109 | 4.31 × 108 | S21M | F | 4.38 × 106 | 1.80 × 109 | 4.79 × 108 |
S8E | M | 1.48 × 107 | 1.55 × 109 | 4.20 × 108 | S21E | F | 7.29 × 106 | 1.42 × 109 | 4.55 × 108 |
S9M | M | 7.16 × 106 | 9.16 × 108 | 2.70 × 108 | S22M | M | 6.00 × 106 | 1.22 × 109 | 3.40 × 108 |
S9E | M | 3.61 × 106 | 6.77 × 108 | 2.19 × 108 | S22E | M | 1.72 × 106 | 8.50 × 108 | 2.35 × 108 |
S10M | F | 1.36 × 107 | 1.67 × 109 | 4.47 × 108 | S23M | F | 7.29 × 106 | 9.50 × 108 | 2.57 × 108 |
S10E | F | 1.38 × 107 | 1.71 × 109 | 3.88 × 108 | S23E | F | 2.42 × 106 | 5.38 × 108 | 1.80 × 108 |
S11M | M | 1.35 × 107 | 1.88 × 109 | 5.96 × 108 | S24M | M | 2.75 × 106 | 8.70 × 108 | 2.43 × 108 |
S11MR | M | 1.32 × 107 | 1.87 × 109 | 5.49 × 108 | S24E | M | 9.66 × 106 | 1.39 × 109 | 3.82 × 108 |
S11E | M | 1.17 × 107 | 1.64 × 109 | 4.44 × 108 | S25M | F | 1.51 × 107 | 3.01 × 109 | 7.31 × 108 |
S12M | F | 7.71 × 106 | 1.46 × 109 | 3.87 × 108 | S25E | F | 5.27 × 106 | 1.04 × 109 | 2.77 × 108 |
S12E | F | 4.68 × 106 | 1.04 × 109 | 3.25 × 108 | S26M | M | 4.26 × 106 | 1.29 × 109 | 3.45 × 108 |
S13M | M | 2.72 × 106 | 1.54 × 109 | 4.25 × 108 | S27M | F | 1.17 × 107 | 2.18 × 109 | 6.17 × 108 |
S13E | M | 1.74 × 107 | 2.07 × 109 | 6.09 × 108 | S27E | F | 3.16 × 106 | 6.40 × 108 | 2.21 × 108 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, S.L.; de la Mata, A.P.; Dias, R.P.; Harynuk, J.J. Towards Standardization of Data Normalization Strategies to Improve Urinary Metabolomics Studies by GC×GC-TOFMS. Metabolites 2020, 10, 376. https://doi.org/10.3390/metabo10090376
Nam SL, de la Mata AP, Dias RP, Harynuk JJ. Towards Standardization of Data Normalization Strategies to Improve Urinary Metabolomics Studies by GC×GC-TOFMS. Metabolites. 2020; 10(9):376. https://doi.org/10.3390/metabo10090376
Chicago/Turabian StyleNam, Seo Lin, A. Paulina de la Mata, Ryan P. Dias, and James J Harynuk. 2020. "Towards Standardization of Data Normalization Strategies to Improve Urinary Metabolomics Studies by GC×GC-TOFMS" Metabolites 10, no. 9: 376. https://doi.org/10.3390/metabo10090376
APA StyleNam, S. L., de la Mata, A. P., Dias, R. P., & Harynuk, J. J. (2020). Towards Standardization of Data Normalization Strategies to Improve Urinary Metabolomics Studies by GC×GC-TOFMS. Metabolites, 10(9), 376. https://doi.org/10.3390/metabo10090376