Analytical Methodology for a Metabolome Atlas of Goat’s Plasma, Milk and Feces Using 1H-NMR and UHPLC-HRMS
Abstract
:1. Introduction
2. Results
2.1. Optimization of Extraction Protocol
2.1.1. Plasma
2.1.2. Milk
2.1.3. Feces
2.2. Matrix Complementarity
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.1.1. Plasma
4.1.2. Milk
4.1.3. Feces
4.2. Sample Preparation
4.2.1. Plasma
4.2.2. Milk
4.2.3. Feces
4.3. Data Acquisition
4.3.1. UHPLC-MS
4.3.2. 1H-NMR
4.4. Data Processing
4.4.1. UHPLC-MS
4.4.2. 1H-NMR
4.5. Data Fusion
4.6. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fontanesi, L. Metabolomics and livestock genomics: Insights into a phenotyping frontier and its applications in animal breeding. Anim. Front. 2016, 6, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Funeshima, N.; Miura, R.; Katoh, T.; Yaginuma, H.; Kitou, T.; Yoshimura, I.; Konda, K.; Hamano, S.; Shirasuna, K. Metabolomic profiles of plasma and uterine luminal fluids from healthy and repeat breeder Holstein cows. BMC Vet. Res. 2021, 17, 54. [Google Scholar] [CrossRef]
- Paudyal, S.; Maunsell, F.P.; Richeson, J.T.; Risco, C.A.; Donovan, D.A.; Pinedo, P.J. Rumination time and monitoring of health disorders during early lactation. Animal 2018, 12, 1484–1492. [Google Scholar] [CrossRef]
- Salama, A.A.K.; Contreras-Jodar, A.; Love, S.; Mehaba, N.; Such, X.; Caja, G. Milk yield, milk composition, and milk metabolomics of dairy goats intramammary-challenged with lipopolysaccharide under heat stress conditions. Sci. Rep. 2020, 10, 5055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiehn, O.; Kopka, J.; Dormann, P.; Altmann, T.; Trethewey, R.N.; Willmitzer, L. Metabolite profiling for plant functional genomics. Nat. Biotechnol. 2000, 18, 1157–1161. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S. Metabolomics: Applications to food science and nutrition research. Trends Food Sci. Technol. 2008, 19, 482–493. [Google Scholar] [CrossRef]
- Goldansaz, S.A.; Guo, A.C.; Sajed, T.; Steele, M.A.; Plastow, G.S.; Wishart, D.S. Livestock metabolomics and the livestock metabolome: A systematic review. PLoS ONE 2017, 12, e0177675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xi, X.; Kwok, L.Y.; Wang, Y.; Ma, C.; Mi, Z.; Zhang, H. Ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry MS(E)-based untargeted milk metabolomics in dairy cows with subclinical or clinical mastitis. J. Dairy Sci. 2017, 100, 4884–4896. [Google Scholar] [CrossRef]
- Xu, W.; Vervoort, J.; Saccenti, E.; Kemp, B.; van Hoeij, R.J.; van Knegsel, A.T.M. Relationship between energy balance and metabolic profiles in plasma and milk of dairy cows in early lactation. J. Dairy Sci. 2020, 103, 4795–4805. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.; Yun, E.J.; Kim, K.H. Food metabolomics: From farm to human. Curr. Opin. Biotechnol. 2016, 37, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Mandal, R.; Wishart, D.S.; Ametaj, B.N. A Multi-Platform Metabolomics Approach Identifies Urinary Metabolite Signatures That Differentiate Ketotic from Healthy Dairy Cows. Front. Vet. Sci. 2021, 8, 595983. [Google Scholar] [CrossRef]
- Gabli, Z.; Djerrou, Z.; Gabli, A.E.; Bensalem, M. Prevalence of mastitis in dairy goat farms in Eastern Algeria. Vet. World 2019, 12, 1563–1572. [Google Scholar] [CrossRef] [Green Version]
- Contreras, A.; Sierra, D.; Sánchez, A.; Corrales, J.C.; Marco, J.C.; Paape, M.J.; Gonzalo, C. Mastitis in small ruminants. Small Rumin. Res. 2007, 68, 145–153. [Google Scholar] [CrossRef]
- Hussein, H.A.; Fouad, M.T.; Abd El-Razik, K.A.; Abo El-Maaty, A.M.; D’Ambrosio, C.; Scaloni, A.; Gomaa, A.M. Study on prevalence and bacterial etiology of mastitis, and effects of subclinical mastitis and stage of lactation on SCC in dairy goats in Egypt. Trop. Anim. Health Prod. 2020, 52, 3091–3097. [Google Scholar] [CrossRef]
- Ylva Persson, I.O. Direct and indirect measurement of somatic cell count as indicator of intramammary infection in dairy goats. Acta Vet. Scand. 2011, 53, 15. [Google Scholar] [CrossRef] [Green Version]
- Klein, M.S.; Buttchereit, N.; Miemczyk, S.P.; Immervoll, A.K.; Louis, C.; Wiedemann, S.; Junge, W.; Thaller, G.; Oefner, P.J.; Gronwald, W. NMR metabolomic analysis of dairy cows reveals milk glycerophosphocholine to phosphocholine ratio as prognostic biomarker for risk of ketosis. J. Proteome Res. 2012, 11, 1373–1381. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, T.F.; Vázquez-Fresno, R.; Serra-Cayuela, A.; Dong, E.; Mandal, R.; Hennessy, D.; McAuliffe, S.; Dillon, P.; Wishart, D.S.; Stanton, C.; et al. Pasture Feeding Changes the Bovine Rumen and Milk Metabolome. Metabolites 2018, 8, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Zheng, N.; Zhao, X.; Zhang, Y.; Han, R.; Yang, J.; Zhao, S.; Li, S.; Guo, T.; Zang, C.; et al. Metabolomic biomarkers identify differences in milk produced by Holstein cows and other minor dairy animals. J. Proteom. 2016, 136, 174–182. [Google Scholar] [CrossRef]
- Scherpenhuizen, J.M.; Narayan, E.J.; Quinn, J.C. Timed environmental exposure indicates sample stability for reliable noninvasive measurement of fecal cortisol metabolite concentrations in sheep. Domest. Anim. Endocrinol. 2020, 72, 106423. [Google Scholar] [CrossRef]
- Rathahao-Paris, E.; Alves, S.; Junot, C.; Tabet, J.-C. High resolution mass spectrometry for structural identification of metabolites in metabolomics. Metabolomics 2015, 12, 10. [Google Scholar] [CrossRef]
- Sundekilde, U.K.; Poulsen, N.A.; Larsen, L.B.; Bertram, H.C. Nuclear magnetic resonance metabonomics reveals strong association between milk metabolites and somatic cell count in bovine milk. J. Dairy Sci. 2013, 96, 290–299. [Google Scholar] [CrossRef]
- Caboni, P.; Murgia, A.; Porcu, A.; Manis, C.; Ibba, I.; Contu, M.; Scano, P. A metabolomics comparison between sheep’s and goat’s milk. Food Res. Int. 2019, 119, 869–875. [Google Scholar] [CrossRef]
- Palma, M.; Hernandez-Castellano, L.E.; Castro, N.; Arguello, A.; Capote, J.; Matzapetakis, M.; de Almeida, A.M. NMR-metabolomics profiling of mammary gland secretory tissue and milk serum in two goat breeds with different levels of tolerance to seasonal weight loss. Mol. Biosyst. 2016, 12, 2094–2107. [Google Scholar] [CrossRef] [PubMed]
- Geishauser, T.; Leslie, K.; Tenhag, J.; Bashiri, A. Evaluation of Eight Cow-Side Ketone Tests in Milk for Detection of Subclinical Ketosis in Dairy Cows. J. Dairy Sci. 2000, 83, 296–299. [Google Scholar] [CrossRef]
- Enjalbert, F.; Nicot, M.C.; Bayourthe, C.; Moncoulon, R. Ketone Bodies in Milk and Blood of Dairy Cows: Relationship between Concentrations and Utilization for Detection of Subclinical Ketosis. J. Dairy Sci. 2001, 84, 583–589. [Google Scholar] [CrossRef]
- Sun, H.Z.; Wang, D.M.; Wang, B.; Wang, J.K.; Liu, H.Y.; Guan, L.L.; Liu, J.X. Metabolomics of four biofluids from dairy cows: Potential biomarkers for milk production and quality. J. Proteome Res. 2015, 14, 1287–1298. [Google Scholar] [CrossRef] [PubMed]
- Dulude-de Broin, F.; Cote, S.D.; Whiteside, D.P.; Mastromonaco, G.F. Faecal metabolites and hair cortisol as biological markers of HPA-axis activity in the Rocky mountain goat. Gen. Comp. Endocrinol. 2019, 280, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Martias, C.; Baroukh, N.; Mavel, S.; Blasco, H.; Lefèvre, A.; Roch, L.; Montigny, F.; Gatien, J.; Schibler, L.; Dufour-Rainfray, D.; et al. Optimization of Sample Preparation for Metabolomics Exploration of Urine, Feces, Blood and Saliva in Humans Using Combined NMR and UHPLC-HRMS Platforms. Molecules 2021, 26, 4111. [Google Scholar] [CrossRef]
- Dieme, B.; Lefevre, A.; Nadal-Desbarats, L.; Galineau, L.; Madji Hounoum, B.; Montigny, F.; Blasco, H.; Andres, C.R.; Emond, P.; Mavel, S. Workflow methodology for rat brain metabolome exploration using NMR, LC-MS and GC-MS analytical platforms. J. Pharm. Biomed. Anal. 2017, 142, 270–278. [Google Scholar] [CrossRef]
- Bitar, T.; Mavel, S.; Emond, P.; Nadal-Desbarats, L.; Lefèvre, A.; Mattar, H.; Soufia, M.; Blasco, H.; Vourc’H, P.; Hleihel, W.; et al. Identification of metabolic pathway disturbances using multimodal metabolomics in autistic disorders in a Middle Eastern population. J. Pharm. Biomed. Anal. 2018, 152, 57–65. [Google Scholar] [CrossRef]
- Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A.C.; Wilson, M.R.; Knox, C.; Bjorndahl, T.C.; Krishnamurthy, R.; Saleem, F.; Liu, P.; et al. The human urine metabolome. PLoS ONE 2013, 8, e73076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disease/Status | Mastitis Xi et al. (2017) [8] | Ketosis Zhang G. et al. 2021 [11] | Mastitis Sundekilde UK et al. 2013 [21] | Healthy Martias C. et al. The Present Study | |||
---|---|---|---|---|---|---|---|
Milk Cow | Urinary Cow | Urinary Cow | Milk Cow | Plasma, Milk and Feces Goat | |||
Significantly Different Between | Metabolite Alteration | Strong Association With Stomatic Cell Count (SCC) | Matrices Where Metabolites Are Present | ||||
Healthy and Clinical | Healthy and Subclinical | Subclinical and Clinical | Preceding Ketosis | During Ketosis | |||
3-Hydroxy-butyric acid | ↗ | ↗ | Milk, Plasma | ||||
4-Hydroxy-phenyl-lactate | ↘ | ↘ | Feces, Plasma | ||||
4-Hydroxy-phenyl-pyruvate | ↘ | Feces | |||||
5-hydroxy-L-tryptophane | ↘ | Feces | |||||
Acetic acid | ↗ | Milk, Feces, Plasma | |||||
Acetoacetic acid | ↗ | Milk, Plasma | |||||
L-Arginine | ↗ | ↗ | Milk, Feces, Plasma | ||||
Ascorbic acid | ↗ | ↗ | NF | ||||
Benzoic acid | ↘ | Feces | |||||
Butyrate | ↗ | Feces, Plasma | |||||
L-Carnitine | ↘ | ↘ | Milk, Feces, Plasma | ||||
Citrate | ↘ | Milk, Plasma | |||||
Dimethylglycine | ↘ | Plasma | |||||
D-Lactose | ↘ | ↘ | Milk, Plasma | ||||
Dopamine | ↗ | Feces | |||||
Fumarate | ↘ | Milk, feces | |||||
Glucose | ↘ | Milk, Feces, Plasma | |||||
Glucose-1-phosphate | ↘ | ↘ | ↘ | Milk | |||
Guanosine monophosphate | ↘ | Plasma | |||||
Hippurate | ↘ | ↘ | Milk, Feces, Plasma | ||||
Isocitric acid | ↗ | Feces, Plasma | |||||
L-Isoleucine | ↗ | ↗ | Milk, Feces, Plasma | ||||
L-Lactic acid | ↗ | ↗ | Milk, Feces, Plasma | ||||
Malate | ↘ | Milk, Feces, Plasma | |||||
Oxoglutarate | ↘ | Milk | |||||
Phosphocholine | ↘ | ↘ | Milk, Feces, Plasma | ||||
L-Proline | ↗ | Milk, Feces, Plasma | |||||
Riboflavin | ↘ | Milk, Feces | |||||
sn-Glycero-3-phosphocholine | ↘ | Milk, Feces, Plasma | |||||
Uridine | ↘ | Milk, Feces, Plasma | |||||
L-Valine | ↗ | Milk, Feces, Plasma |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martias, C.; Gatien, J.; Roch, L.; Baroukh, N.; Mavel, S.; Lefèvre, A.; Montigny, F.; Schibler, L.; Emond, P.; Nadal-Desbarats, L. Analytical Methodology for a Metabolome Atlas of Goat’s Plasma, Milk and Feces Using 1H-NMR and UHPLC-HRMS. Metabolites 2021, 11, 681. https://doi.org/10.3390/metabo11100681
Martias C, Gatien J, Roch L, Baroukh N, Mavel S, Lefèvre A, Montigny F, Schibler L, Emond P, Nadal-Desbarats L. Analytical Methodology for a Metabolome Atlas of Goat’s Plasma, Milk and Feces Using 1H-NMR and UHPLC-HRMS. Metabolites. 2021; 11(10):681. https://doi.org/10.3390/metabo11100681
Chicago/Turabian StyleMartias, Cécile, Julie Gatien, Léa Roch, Nadine Baroukh, Sylvie Mavel, Antoine Lefèvre, Frédéric Montigny, Laurent Schibler, Patrick Emond, and Lydie Nadal-Desbarats. 2021. "Analytical Methodology for a Metabolome Atlas of Goat’s Plasma, Milk and Feces Using 1H-NMR and UHPLC-HRMS" Metabolites 11, no. 10: 681. https://doi.org/10.3390/metabo11100681
APA StyleMartias, C., Gatien, J., Roch, L., Baroukh, N., Mavel, S., Lefèvre, A., Montigny, F., Schibler, L., Emond, P., & Nadal-Desbarats, L. (2021). Analytical Methodology for a Metabolome Atlas of Goat’s Plasma, Milk and Feces Using 1H-NMR and UHPLC-HRMS. Metabolites, 11(10), 681. https://doi.org/10.3390/metabo11100681