Extrahypothalamic Control of Energy Balance and Its Connection with Reproduction: Roles of the Amygdala
Abstract
:1. Introduction: The Amygdala
2. A Tight Connection: The Link between Energy Homeostasis and Reproductive Function
3. Metabolic Neuropeptide Pathways and the Amygdala: Roles of NPY/AgRP and POMC
4. The Kisspeptin System and the Amygdala
5. Sex Steroids and the Amygdala: Roles of Estrogens and Androgens
6. Summary and Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Pabba, M. Evolutionary development of the amygdaloid complex. Front. Neuroanat 2013, 7, 27. [Google Scholar] [CrossRef] [Green Version]
- LeDoux, J. The amygdala. Curr. Biol. 2007, 17, R868–R874. [Google Scholar] [CrossRef] [Green Version]
- Sah, P.; Faber, E.S.; Lopez De Armentia, M.; Power, J. The amygdaloid complex: Anatomy and physiology. Physiol. Rev. 2003, 83, 803–834. [Google Scholar] [CrossRef] [Green Version]
- Berthoud, H.R. Metabolic and hedonic drives in the neural control of appetite: Who is the boss? Curr. Opin. Neurobiol. 2011, 21, 888–896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenny, P.J. Reward mechanisms in obesity: New insights and future directions. Neuron 2011, 69, 664–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hebebrand, J.; Albayrak, O.; Adan, R.; Antel, J.; Dieguez, C.; de Jong, J.; Leng, G.; Menzies, J.; Mercer, J.G.; Murphy, M.; et al. “Eating addiction”, rather than “food addiction”, better captures addictive-like eating behavior. Neurosci. Biobehav. Rev. 2014, 47, 295–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stice, E.; Figlewicz, D.P.; Gosnell, B.A.; Levine, A.S.; Pratt, W.E. The contribution of brain reward circuits to the obesity epidemic. Neurosci. Biobehav. Rev. 2013, 37, 2047–2058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziauddeen, H.; Alonso-Alonso, M.; Hill, J.O.; Kelley, M.; Khan, N.A. Obesity and the neurocognitive basis of food reward and the control of intake. Adv. Nutr. 2015, 6, 474–486. [Google Scholar] [CrossRef] [Green Version]
- King, B.M.; Kass, J.M.; Cadieux, N.L.; Sam, H.; Neville, K.L.; Arceneaux, E.R. Hyperphagia and obesity in female rats with temporal lobe lesions. Physiol. Behav. 1993, 54, 759–765. [Google Scholar] [CrossRef]
- King, B.M.; Rollins, B.L.; Stines, S.G.; Cassis, S.A.; McGuire, H.B.; Lagarde, M.L. Sex differences in body weight gains following amygdaloid lesions in rats. Am. J. Physiol. 1999, 277, R975–R980. [Google Scholar] [CrossRef]
- King, B.M.; Rossiter, K.N.; Stines, S.G.; Zaharan, G.M.; Cook, J.T.; Humphries, M.D.; York, D.A. Amygdaloid-lesion hyperphagia: Impaired response to caloric challenges and altered macronutrient selection. Am. J. Physiol. 1998, 275, R485–R493. [Google Scholar] [CrossRef] [PubMed]
- Douglass, A.M.; Kucukdereli, H.; Ponserre, M.; Markovic, M.; Grundemann, J.; Strobel, C.; Alcala Morales, P.L.; Conzelmann, K.K.; Luthi, A.; Klein, R. Central amygdala circuits modulate food consumption through a positive-valence mechanism. Nat. Neurosci. 2017, 20, 1384–1394. [Google Scholar] [CrossRef] [PubMed]
- Manfredi-Lozano, M.; Roa, J.; Tena-Sempere, M. Connecting metabolism and gonadal function: Novel central neuropeptide pathways involved in the metabolic control of puberty and fertility. Front. Neuroendocrinol. 2018, 48, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Lopez, M.; Tena-Sempere, M. Estrogens and the control of energy homeostasis: A brain perspective. Trends Endocrinol. Metab. 2015, 26, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.W.; Elias, C.F. Neuroanatomical Framework of the Metabolic Control of Reproduction. Physiol. Rev. 2018, 98, 2349–2380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbison, A.E. Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nat. Rev. Endocrinol. 2016, 12, 452–466. [Google Scholar] [CrossRef] [PubMed]
- Pinilla, L.; Aguilar, E.; Dieguez, C.; Millar, R.P.; Tena-Sempere, M. Kisspeptins and reproduction: Physiological roles and regulatory mechanisms. Physiol. Rev. 2012, 92, 1235–1316. [Google Scholar] [CrossRef]
- Motschall, E.; Falck-Ytter, Y. Searching the MEDLINE literature database through PubMed: A short guide. Onkologie 2005, 28, 517–522. [Google Scholar] [CrossRef]
- Schwartz, G.J.; Zeltser, L.M. Functional organization of neuronal and humoral signals regulating feeding behavior. Annu. Rev. Nutr. 2013, 33, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Horvath, T.L. Neurobiology of feeding and energy expenditure. Annu. Rev. Neurosci. 2007, 30, 367–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joly-Amado, A.; Cansell, C.; Denis, R.G.; Delbes, A.S.; Castel, J.; Martinez, S.; Luquet, S. The hypothalamic arcuate nucleus and the control of peripheral substrates. Best Pract. Res. Clin. Endocrinol. Metab. 2014, 28, 725–737. [Google Scholar] [CrossRef]
- Anderson, E.J.P.; Çakir, I.; Carrington, S.J.; Cone, R.D.; Ghamari-Langroudi, M.; Gillyard, T.; Gimenez, L.E.; Litt, M.J. 60 YEARS OF POMC: Regulation of feeding and energy homeostasis by α-MSH. J. Mol. Endocrinol. 2016, 56, T157–T174. [Google Scholar] [CrossRef] [Green Version]
- Huo, L.; Grill, H.J.; Bjørbaek, C. Divergent regulation of proopiomelanocortin neurons by leptin in the nucleus of the solitary tract and in the arcuate hypothalamic nucleus. Diabetes 2006, 55, 567–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hentges, S.T.; Otero-Corchon, V.; Pennock, R.L.; King, C.M.; Low, M.J. Proopiomelanocortin expression in both GABA and glutamate neurons. J. Neurosci. 2009, 29, 13684–13690. [Google Scholar] [CrossRef] [PubMed]
- Irani, B.G.; Haskell-Luevano, C. Feeding effects of melanocortin ligands—A historical perspective. Peptides 2005, 26, 1788–1799. [Google Scholar] [CrossRef] [PubMed]
- Dores, R.M.; Londraville, R.L.; Prokop, J.; Davis, P.; Dewey, N.; Lesinski, N. Molecular evolution of GPCRs: Melanocortin/melanocortin receptors. J. Mol. Endocrinol. 2014, 52, T29–T42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gantz, I.; Miwa, H.; Konda, Y.; Shimoto, Y.; Tashiro, T.; Watson, S.J.; DelValle, J.; Yamada, T. Molecular cloning, expression, and gene localization of a fourth melanocortin receptor. J. Biol. Chem. 1993, 268, 15174–15179. [Google Scholar] [CrossRef]
- Mountjoy, K.G.; Mortrud, M.T.; Low, M.J.; Simerly, R.B.; Cone, R.D. Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol. Endocrinol. (Baltim. Md.) 1994, 8, 1298–1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boghossian, S.; Park, M.; York, D.A. Melanocortin activity in the amygdala controls appetite for dietary fat. AJP: Regul. Integr. Comp. Physiol. 2010, 298, R385–R393. [Google Scholar] [CrossRef] [PubMed]
- Kwon, E.; Jo, Y.H. Activation of the ARC(POMC)-->MeA Projection Reduces Food Intake. Front. Neural. Circuits 2020, 14, 595783. [Google Scholar] [CrossRef] [PubMed]
- Cravo, R.M.; Margatho, L.O.; Osborne-Lawrence, S.; Donato, J.; Atkin, S.; Bookout, A.L.; Rovinsky, S.; Frazão, R.; Lee, C.E.; Gautron, L.; et al. Characterization of Kiss1 neurons using transgenic mouse models. Neuroscience 2011, 173, 37–56. [Google Scholar] [CrossRef] [Green Version]
- Manfredi-Lozano, M.; Roa, J.; Ruiz-Pino, F.; Piet, R.; García-Galiano, D.; Pineda, R.; Zamora, A.; Leon, S.; Sánchez-Garrido, M.A.; Romero-Ruiz, A.; et al. Defining a novel leptin-melanocortin-kisspeptin pathway involved in the metabolic control of puberty. Mol. Metab. 2016, 5, 844–857. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; He, X.; Zhao, Z.; Feng, Q.; Lin, R.; Sun, Y.; Ding, T.; Xu, F.; Luo, M.; Zhan, C. Whole-brain mapping of the direct inputs and axonal projections of POMC and AgRP neurons. Front. Neuroanat. 2015, 9, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhan, C.; Zhou, J.; Feng, Q.; Zhang, J.-E.; Lin, S.; Bao, J.; Wu, P.; Luo, M. Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. J. Neurosci. 2013, 33, 3624–3632. [Google Scholar] [CrossRef] [PubMed]
- Roozendaal, B.; McEwen, B.S.; Chattarji, S. Stress, memory and the amygdala. Nat. Reviews. Neurosci. 2009, 10, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Boey, D.; Herzog, H. NPY and Y receptors: Lessons from transgenic and knockout models. Neuropeptides 2004, 38, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Pedragosa Badia, X.; Stichel, J.; Beck-Sickinger, A.G. Neuropeptide Y receptors: How to get subtype selectivity. Front. Endocrinol. 2013, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Wood, J.; Verma, D.; Lach, G.; Bonaventure, P.; Herzog, H.; Sperk, G.; Tasan, R.O. Structure and function of the amygdaloid NPY system: NPY Y2 receptors regulate excitatory and inhibitory synaptic transmission in the centromedial amygdala. Brain Struct. Funct. 2016, 221, 3373–3391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ollmann, M.M.; Wilson, B.D.; Yang, Y.K.; Kerns, J.A.; Chen, Y.; Gantz, I.; Barsh, G.S. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 1997, 278, 135–138. [Google Scholar] [CrossRef]
- Hahn, T.M.; Breininger, J.F.; Baskin, D.G.; Schwartz, M.W. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat. Neurosci. 1998, 1, 271–272. [Google Scholar] [CrossRef] [PubMed]
- Chronwall, B.M.; DiMaggio, D.A.; Massari, V.J.; Pickel, V.M.; Ruggiero, D.A.; O’Donohue, T.L. The anatomy of neuropeptide-Y-containing neurons in rat brain. NSC 1985, 15, 1159–1181. [Google Scholar] [CrossRef]
- Pineda, R.; Plaisier, F.; Millar, R.P.; Ludwig, M. Amygdala Kisspeptin Neurons: Putative Mediators of Olfactory Control of the Gonadotropic Axis. Neuroendocrinology 2017, 104, 223–238. [Google Scholar] [CrossRef] [Green Version]
- Primeaux, S.D.; York, D.A.; Bray, G.A. Neuropeptide Y administration into the amygdala alters high fat food intake. Peptides 2006, 27, 1644–1651. [Google Scholar] [CrossRef] [PubMed]
- Ip, C.K.; Zhang, L.; Farzi, A.; Qi, Y.; Clarke, I.; Reed, F.; Shi, Y.-C.; Enriquez, R.; Dayas, C.; Graham, B.; et al. Amygdala NPY Circuits Promote the Development of Accelerated Obesity under Chronic Stress Conditions. Cell Metab. 2019, 30, 111–128.e116. [Google Scholar] [CrossRef]
- Betley, J.N.; Cao, Z.F.H.; Ritola, K.D.; Sternson, S.M. Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell 2013, 155, 1337–1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soto, M.; Cai, W.; Konishi, M.; Kahn, C.R. Insulin signaling in the hippocampus and amygdala regulates metabolism and neurobehavior. Proc. Natl. Acad. Sci. USA 2019, 116, 6379–6384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padilla, S.L.; Qiu, J.; Nestor, C.C.; Zhang, C.; Smith, A.W.; Whiddon, B.B.; Ronnekleiv, O.K.; Kelly, M.J.; Palmiter, R.D. AgRP to Kiss1 neuron signaling links nutritional state and fertility. Proc. Natl. Acad. Sci. USA 2017, 114, 2413–2418. [Google Scholar] [CrossRef] [Green Version]
- Pineda, R.; Aguilar, E.; Pinilla, L.; Tena-Sempere, M. Physiological roles of the kisspeptin/GPR54 system in the neuroendocrine control of reproduction. Prog. Brain. Res. 2010, 181, 55–77. [Google Scholar] [CrossRef]
- Wolfe, A.; Hussain, M.A. The Emerging Role(s) for Kisspeptin in Metabolism in Mammals. Front. Endocrinol. 2018, 9, 184. [Google Scholar] [CrossRef] [PubMed]
- Navarro, V.M. Metabolic regulation of kisspeptin—The link between energy balance and reproduction. Nat. Rev. Endocrinol. 2020, 16, 407–420. [Google Scholar] [CrossRef]
- Hudson, A.D.; Kauffman, A.S. Metabolic actions of kisspeptin signaling: Effects on body weight, energy expenditure, and feeding. Pharmacol. Ther. 2021, 107974. [Google Scholar] [CrossRef]
- Velasco, I.; Leon, S.; Barroso, A.; Ruiz-Pino, F.; Heras, V.; Torres, E.; Leon, M.; Ruohonen, S.T.; Garcia-Galiano, D.; Romero-Ruiz, A.; et al. Gonadal hormone-dependent vs. -independent effects of kisspeptin signaling in the control of body weight and metabolic homeostasis. Metabolism 2019, 98, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Galiano, D.; Pinilla, L.; Tena-Sempere, M. Sex steroids and the control of the Kiss1 system: Developmental roles and major regulatory actions. J. Neuroendocrinol. 2012, 24, 22–33. [Google Scholar] [CrossRef]
- Smith, J.T.; Cunningham, M.J.; Rissman, E.F.; Clifton, D.K.; Steiner, R.A. Regulation of Kiss1 gene expression in the brain of the female mouse. Endocrinology 2005, 146, 3686–3692. [Google Scholar] [CrossRef]
- Smith, J.T.; Dungan, H.M.; Stoll, E.A.; Gottsch, M.L.; Braun, R.E.; Eacker, S.M.; Clifton, D.K.; Steiner, R.A. Differential regulation of KiSS-1 mRNA expression by sex steroids in the brain of the male mouse. Endocrinology 2005, 146, 2976–2984. [Google Scholar] [CrossRef]
- Yeo, S.H.; Kyle, V.; Morris, P.G.; Jackman, S.; Sinnett-Smith, L.C.; Schacker, M.; Chen, C.; Colledge, W.H. Visualisation of Kiss1 Neurone Distribution Using a Kiss1-CRE Transgenic Mouse. J. Neuroendocrinol. 2016, 28, 713. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Semaan, S.J.; Clifton, D.K.; Steiner, R.A.; Dhamija, S.; Kauffman, A.S. Regulation of Kiss1 Expression by Sex Steroids in the Amygdala of the Rat and Mouse. Endocrinology 2011, 152, 2020–2030. [Google Scholar] [CrossRef] [Green Version]
- Di Giorgio, N.P.; Semaan, S.J.; Kim, J.; López, P.V.; Bettler, B.; Libertun, C.; Lux-Lantos, V.A.; Kauffman, A.S. Impaired GABAB receptor signaling dramatically up-regulates Kiss1 expression selectively in nonhypothalamic brain regions of adult but not prepubertal mice. Endocrinology 2014, 155, 1033–1044. [Google Scholar] [CrossRef] [Green Version]
- Clarkson, J.; d’Anglemont de Tassigny, X.; Colledge, W.H.; Caraty, A.; Herbison, A.E. Distribution of kisspeptin neurones in the adult female mouse brain. J. Neuroendocrinol. 2009, 21, 673–682. [Google Scholar] [CrossRef]
- Cao, J.; Patisaul, H.B. Sex-specific expression of estrogen receptors α and β and Kiss1 in the postnatal rat amygdala. J. Comp. Neurol. 2013, 521, 465–478. [Google Scholar] [CrossRef] [Green Version]
- Comninos, A.N.; Anastasovska, J.; Sahuri-Arisoylu, M.; Li, X.; Li, S.; Hu, M.; Jayasena, C.N.; Ghatei, M.A.; Bloom, S.R.; Matthews, P.M.; et al. Kisspeptin signaling in the amygdala modulates reproductive hormone secretion. Brain Struct. Funct. 2016, 221, 2035–2047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lass, G.; Li, X.F.; de Burgh, R.A.; He, W.; Kang, Y.; Hwa-Yeo, S.; Sinnett-Smith, L.C.; Manchishi, S.M.; Colledge, W.H.; Lightman, S.L.; et al. Optogenetic stimulation of kisspeptin neurones within the posterodorsal medial amygdala increases luteinising hormone pulse frequency in female mice. J. Neuroendocrinol. 2020, 32, e12823. [Google Scholar] [CrossRef] [PubMed]
- Fergani, C.; Leon, S.; Padilla, S.L.; Verstegen, A.M.J.; Palmiter, R.D.; Navarro, V.M. NKB signaling in the posterodorsal medial amygdala stimulates gonadotropin release in a kisspeptin-independent manner in female mice. eLife 2018, 7, e40476. [Google Scholar] [CrossRef]
- Adekunbi, D.A.; Li, X.F.; Li, S.; Adegoke, O.A.; Iranloye, B.O.; Morakinyo, A.O.; Lightman, S.L.; Taylor, P.D.; Poston, L.; O’Byrne, K.T. Role of amygdala kisspeptin in pubertal timing in female rats. PLoS ONE 2017, 12, e0183596. [Google Scholar] [CrossRef] [Green Version]
- Gresham, R.; Li, S.; Adekunbi, D.A.; Hu, M.; Li, X.F.; O’Byrne, K.T. Kisspeptin in the medial amygdala and sexual behavior in male rats. Neurosci. Lett. 2016, 627, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Adekunbi, D.A.; Li, X.F.; Lass, G.; Shetty, K.; Adegoke, O.A.; Yeo, S.H.; Colledge, W.H.; Lightman, S.L.; O’Byrne, K.T. Kisspeptin neurones in the posterodorsal medial amygdala modulate sexual partner preference and anxiety in male mice. J. Neuroendocrinol. 2018, 30, e12572. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, S.; Tang, C.; Sing, K.; Kim, H.W.; Millar, R.P.; Tello, J.A. Medial Amygdala Kiss1 Neurons Mediate Female Pheromone Stimulation of Luteinizing Hormone in Male Mice. Neuroendocrinology 2019, 108, 172–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephens, S.B.Z.; Chahal, N.; Munaganuru, N.; Parra, R.A.; Kauffman, A.S. Estrogen Stimulation of Kiss1 Expression in the Medial Amygdala Involves Estrogen Receptor-α But Not Estrogen Receptor-β. Endocrinology 2016, 157, 4021–4031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, L.B.; Haubenthal, F.T.; Silveira, M.A.; Bohlen, T.M.; Metzger, M.; Donato, J.; Frazao, R. Conspecific odor exposure predominantly activates non-kisspeptin cells in the medial nucleus of the amygdala. Neurosci. Lett. 2018, 681, 12–16. [Google Scholar] [CrossRef]
- Xu, P.; Cao, X.; He, Y.; Zhu, L.; Yang, Y.; Saito, K.; Wang, C.; Yan, X.; Hinton Jr, A.O.; Zou, F.; et al. Estrogen receptor–α in medial amygdala neurons regulates body weight. J. Clin. Investig. 2015, 125, 2861–2876. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, S.C.; Korach, K.S. Estrogen Receptors: New Directions in the New Millennium. Endocr. Rev. 2018, 39, 664–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mauvais-Jarvis, F.; Clegg, D.J.; Hevener, A.L. The role of estrogens in control of energy balance and glucose homeostasis. Endocr. Rev. 2013, 34, 309–338. [Google Scholar] [CrossRef] [Green Version]
- Geary, N.; Asarian, L.; Korach, K.S.; Pfaff, D.W.; Ogawa, S. Deficits in E2-dependent control of feeding, weight gain, and cholecystokinin satiation in ER-alpha null mice. Endocrinology 2001, 142, 4751–4757. [Google Scholar] [CrossRef]
- Okura, T.; Koda, M.; Ando, F.; Niino, N.; Ohta, S.; Shimokata, H. Association of polymorphisms in the estrogen receptor alpha gene with body fat distribution. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 1020–1027. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.P.; Boyd, J.; Frank, G.R.; Takahashi, H.; Cohen, R.M.; Specker, B.; Williams, T.C.; Lubahn, D.B.; Korach, K.S. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N. Engl. J. Med. 1994, 331, 1056–1061. [Google Scholar] [CrossRef]
- Grumbach, M.M.; Auchus, R.J. Estrogen: Consequences and implications of human mutations in synthesis and action. J. Clin. Endocrinol. Metab. 1999, 84, 4677–4694. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Nedungadi, T.P.; Zhu, L.; Sobhani, N.; Irani, B.G.; Davis, K.E.; Zhang, X.; Zou, F.; Gent, L.M.; Hahner, L.D.; et al. Distinct hypothalamic neurons mediate estrogenic effects on energy homeostasis and reproduction. Cell Metab. 2011, 14, 453–465. [Google Scholar] [CrossRef] [Green Version]
- Donohoe, T.P.; Stevens, R. Modulation of food intake by amygdaloid estradiol benzoate implants in female rats. Physiol. Behav. 1981, 27, 105–114. [Google Scholar] [CrossRef]
- Eckel, L.A.; Geary, N. Estradiol treatment increases feeding-induced c-Fos expression in the brains of ovariectomized rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 281, R738–R746. [Google Scholar] [CrossRef]
- Rowland, D.L.; Perrings, T.S.; Thommes, J.A. Comparison of androgenic effects on food intake and body weight in adult rats. Physiol. Behav. 1980, 24, 205–209. [Google Scholar] [CrossRef]
- Chai, J.K.; Blaha, V.; Meguid, M.M.; Laviano, A.; Yang, Z.J.; Varma, M. Use of orchiectomy and testosterone replacement to explore meal number-to-meal size relationship in male rats. Am. J. Physiol. 1999, 276, R1366–R1373. [Google Scholar] [CrossRef] [PubMed]
- Anukulkitch, C.; Rao, A.; Dunshea, F.R.; Blache, D.; Lincoln, G.A.; Clarke, I.J. Influence of photoperiod and gonadal status on food intake, adiposity, and gene expression of hypothalamic appetite regulators in a seasonal mammal. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R242–R252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rana, K.; Fam, B.C.; Clarke, M.V.; Pang, T.P.S.; Zajac, J.D.; MacLean, H.E. Increased adiposity in DNA binding-dependent androgen receptor knockout male mice associated with decreased voluntary activity and not insulin resistance. AJP Endocrinol. Metab. 2011, 301, E767–E778. [Google Scholar] [CrossRef]
- Borgquist, A.; Meza, C.; Wagner, E.J. The role of AMP-activated protein kinase in the androgenic potentiation of cannabinoid-induced changes in energy homeostasis. AJP: Endocrinol. Metab. 2015, 308, E482–E495. [Google Scholar] [CrossRef]
- Kamat, A.; Hinshelwood, M.M.; Murry, B.A.; Mendelson, C.R. Mechanisms in tissue-specific regulation of estrogen biosynthesis in humans. Trends Endocrinol. Metab. TEM 2002, 13, 122–128. [Google Scholar] [CrossRef]
- Simerly, R.B.; Chang, C.; Muramatsu, M.; Swanson, L.W. Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: An in situ hybridization study. J. Comp. Neurol. 1990, 294, 76–95. [Google Scholar] [CrossRef] [PubMed]
- McAbee, M.D.; DonCarlos, L.L. Ontogeny of region-specific sex differences in androgen receptor messenger ribonucleic acid expression in the rat forebrain. Endocrinology 1998, 139, 1738–1745. [Google Scholar] [CrossRef]
- Roselli, C.E.; Abdelgadir, S.E.; Ronnekleiv, O.K.; Klosterman, S.A. Anatomic distribution and regulation of aromatase gene expression in the rat brain. Biol. Reprod. 1998, 58, 79–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, C.K.; Morrell, J.I. Distribution and steroid hormone regulation of aromatase mRNA expression in the forebrain of adult male and female rats: A cellular-level analysis using in situ hybridization. J. Comp. Neurol. 1996, 370, 71–84. [Google Scholar] [CrossRef]
- Tiedemann, L.J.; Alink, A.; Beck, J.; Büchel, C.; Brassen, S. Valence Encoding Signals in the Human Amygdala and the Willingness to Eat. J. Neurosci. 2020, 40, 5264–5272. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pineda, R.; Torres, E.; Tena-Sempere, M. Extrahypothalamic Control of Energy Balance and Its Connection with Reproduction: Roles of the Amygdala. Metabolites 2021, 11, 837. https://doi.org/10.3390/metabo11120837
Pineda R, Torres E, Tena-Sempere M. Extrahypothalamic Control of Energy Balance and Its Connection with Reproduction: Roles of the Amygdala. Metabolites. 2021; 11(12):837. https://doi.org/10.3390/metabo11120837
Chicago/Turabian StylePineda, Rafael, Encarnacion Torres, and Manuel Tena-Sempere. 2021. "Extrahypothalamic Control of Energy Balance and Its Connection with Reproduction: Roles of the Amygdala" Metabolites 11, no. 12: 837. https://doi.org/10.3390/metabo11120837
APA StylePineda, R., Torres, E., & Tena-Sempere, M. (2021). Extrahypothalamic Control of Energy Balance and Its Connection with Reproduction: Roles of the Amygdala. Metabolites, 11(12), 837. https://doi.org/10.3390/metabo11120837