Activity of Semi-Synthetic Mulinanes against MDR, Pre-XDR, and XDR Strains of Mycobacterium tuberculosis
Abstract
:1. Introduction
2. Results
2.1. Purification and Chemical Transformation of Mulinanes
2.2. In Vitro Antituberculosis Activity and Lipophilicity of Mulinanes
2.3. Cytotoxicity and Selective Index of Mulinanes
2.4. In Vivo Antituberculosis Activity of Semi-Synthetic Mulinane 1a
3. Discussion
3.1. Chemical Transformation of Mulinanes
3.2. In Vitro Antituberculosis Activity and Lipophilicity of Mulinanes
3.3. Cytotoxicity and SI of Mulinanes
3.4. In Vivo Antituberculosis Activity of Compound 1a
4. Materials and Methods
4.1. General Procedures and Chromatographic Techniques
4.2. Spectroscopic and Spectrometric Techniques
4.3. Isolation and Purification of Natural Mulinanes
4.4. Preparation of Semi-Synthetic Mulinane Derivatives
4.5. In Vitro Antituberculosis Assay
4.6. Calculation of Lipophilicity
4.7. Cytotoxicity Assay
4.8. Calculation of the SI
4.9. In Vivo Antituberculosis Activity of Semi-Synthetic Mulinane 1a
- X = Final number of animals needed or number of animals from which we must start.
- N = Minimal statistical number that allows concluding the proposed objectives.
- A = 100—a% incidence 1 (deaths from anesthesia during treatment).
- B = 100—b% incidence 2 (deaths caused by disease, humanitarian euthanasia).
- C = 100—c% incidence 3 (deaths in the control group).
- D = 100—d% incidence 4 (deaths caused by anesthesia during infection).
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization, 2020. Global Tuberculosis Report 2020. Available online: https://apps.who.int/iris/bitstream/handle/10665/336069/9789240013131-eng.pdf (accessed on 5 October 2021).
- Singh, A.; Prasad, R.; Balasubramanian, V.; Gupta, N. Drug-resistant tuberculosis and HIV infection: Current perspectives. HIV/AIDS 2020, 12, 9–31. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Announces Updated Definitions of Extensively Drug-Resistant Tuberculosis. 2021. Available online: https://www.who.int/news/item/27-01-2021-who-announces-updated-definitions-of-extensively-drug-resistant-tuberculosis (accessed on 5 October 2021).
- World Health Organization. Global Tuberculosis Report 2019. 2019. Available online: https://apps.who.int/iris/bitstream/handle/10665/329368/9789241565714-eng.pdf (accessed on 5 October 2021).
- World Health Organization. WHO Consolidated Guidelines on Tuberculosis. 2020. Available online: https://apps.who.int/iris/handle/10665/331170 (accessed on 5 October 2021).
- Reber, K.P.; Xu, J.; Guerrero, C.A. Synthesis of mulinanes diterpenoids. J. Org. Chem. 2015, 80, 2397–2406. [Google Scholar] [CrossRef] [PubMed]
- Dzul-Beh, A.J.; Uc-Cachón, A.H.; Bórquez, J.; Loyola, L.A.; Peña-Rodríguez, L.M.; Molina-Salinas, G.M. Mulinane- and azorellane-type diterpenoids: A systematic review of their biosynthesis, chemistry, and pharmacology. Biomolecules 2020, 10, 1333. [Google Scholar] [CrossRef] [PubMed]
- Wickens, G.E. Llareta (Azorella compacta, Umbelliferae): A review. Econ. Bot. 1995, 49, 207–212. [Google Scholar] [CrossRef]
- Marcos, I.S.; Moro, R.F.; Gil-Mesón, A.; Díez, D. 7-6-5 Tricarbocyclic diterpenes: Valparanes, mulinanes, cyathanes, homoverrucosanes, and related ones. Stud. Nat. Prod. Chem. 2016, 48, 137–207. [Google Scholar]
- Molina-Salinas, G.M.; Bórquez, J.; Ardiles, A.; Said-Fernández, S.; Loyola, L.A.; San-Martín, A.; González-Collado, I.; Peña-Rodríguez, L.M. Antituberculosis activity of natural and semisynthetic azorellane and mulinane diterpenoids. Fitoterapia 2010, 81, 50–54. [Google Scholar] [CrossRef]
- Molina-Salinas, G.M.; Ramos-Guerra, R.; Vargas-VIllarreal, J.; Mata-Cárdenas, B.; Becerril-Montes, P.; Said-Fernández, S. Bactericidal activity of organic extracts from Flourensia cernua DC against Strains of Mycobacterium tuberculosis. Arch. Med. Res. 2006, 37, 45–49. [Google Scholar] [CrossRef]
- Ávila-Zárraga, J.G.; Martínez, R. Efficient methylation of carboxylic acids with potassium hydroxide/methyl sulfoxide and iodomethane. Synth. Commun. 2001, 31, 2177–2183. [Google Scholar] [CrossRef]
- Corey, E.J.; Suggs, J.W. Classic oxidation of alcohols using pyridinium chlorochromate. Tetrahedron Lett. 1975, 16, 2647–2650. [Google Scholar] [CrossRef]
- Nguta, J.M.; Appiah-Opong, R.; Nyarko, A.K.; Yeboah-Manu, D.; Addo, P.G.A. Current perspectives in drug discovery against tuberculosis from natural products. Int. J. Mycobacteriol. 2015, 4, 165–183. [Google Scholar] [CrossRef] [Green Version]
- Molina-Salinas, G.M.; Bórquez, J.; Said-Fernández, S.; Loyola, L.A.; Yam-Puc, A.; Becerril-Montes, P.; Escalante-Erosa, F.; Peña-Rodríguez, L.M. Antituberculosis activity of alkylated mulinane diterpenoids. Fitoterapia 2010, 81, 219–222. [Google Scholar] [CrossRef] [PubMed]
- Ambrozkiewicz, W.; Kucerová-Chlupácová, M.; Jand’ourek, O.; Konecná, K.; Paterov, P.; Pavel, B.; Vinšov, J.; Doležal, M.; Zitko, J. 5-Alkylamino- N -phenylpyrazine-2-carboxamides: Design, preparation, and antimycobacterial evaluation. Molecules 2020, 25, 1561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarrete-Vázquez, G.; Molina-Salinas, G.M.; Duarte-Fajardo, Z.V.; Vargas-Villarreal, J.; Estrada-Soto, S.; González-Salazar, F.; Hernández-Núñez, E.; Said-Fernández, S. Synthesis and antimycobacterial activity of 4-(5-substituted-1,3,4-oxadiazol-2-yl)pyridines. Bioorg. Med. Chem. 2007, 15, 5502–5508. [Google Scholar] [CrossRef] [PubMed]
- Biava, M.; Porretta, G.C.; Poce, G.; de Logu, A.; Saddi, M.; Meleddu, R.; Manetti, F.; de Rossi, E.; Botta, M. 1,5-Diphenylpyrrole derivatives as antimycobacterial agents. Probing the influence on antimycobacterial activity of lipophilic substituents at the phenyl rings. J. Med. Chem. 2008, 51, 3644–3648. [Google Scholar] [CrossRef]
- Biava, M.; Porretta, G.C.; Poce, G.; de Logu, A.; Meleddu, R.; de Rossi, E.; Manetti, F.; Botta, M. 1,5-Diaryl-2-ethyl pyrrole derivatives as antimycobacterial agents: Design, synthesis, and microbiological evaluation. Eur. J. Med. Chem. 2009, 44, 4734–4738. [Google Scholar] [CrossRef]
- Palmer, B.D.; Thompson, A.M.; Sutherland, H.S.; Blaser, A.; Kmentova, I.; Franzblau, S.G.; Wan, B.; Wang, Y.; Ma, Z.; Denny, W.A. Synthesis and structure-activity studies of biphenyl analogues of the tuberculosis drug (6S)-2-nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-824). J. Med. Chem. 2010, 53, 282–294. [Google Scholar] [CrossRef]
- Onajole, O.K.; Govender, K.; Govender, P.; van Helden, P.D.; Kruger, H.G.; Maguire, G.E.; Muthusamy, K.; Pillay, M.; Wiid, I.; Govender, T. Pentacyclo-undecane derived cyclic tetra-amines: Synthesis and evaluation as potent anti-tuberculosis agents. Eur. J. Med. Chem. 2009, 44, 4297–4305. [Google Scholar] [CrossRef]
- Sawicki, R.; Golus, J.; Przekora, A.; Ludwiczuk, A.; Sieniawska, E.; Ginalska, G. Antimycobacterial activity of Cinnamaldehyde in a Mycobacterium tuberculosis (H37Ra) model. Molecules 2018, 23, 2381. [Google Scholar] [CrossRef] [Green Version]
- Dzul-Beh, A.D.J.; García-Sosa, K.; Uc-Cachón, A.H.; Bórquez, J.; Loyola, L.A.; Barrios-García, H.B.; Peña-Rodríguez, L.M.; Molina-Salinas, G.M. In Vitro growth inhibition and bactericidal activity of Spathulenol against drug-resistant clinical isolates of Mycobacterium tuberculosis. Rev. Bras. Farmacogn. 2019, 29, 798–800. [Google Scholar] [CrossRef]
- Nicoletti, M.; Di Fabio, A.; D´Andrea, A.; Salvatore, G.; van Baren, C.; Coussio, J.D. Diterpenoid acids from Mulinum spinosum. Phytochemistry 1996, 43, 1065–1067. [Google Scholar] [CrossRef]
- Loyola, L.A.; Borquez, J.; Morales, G.; San-Martin, A. Mulinolic acid, a diterpenoid from Mulinum crassifolium. Phytochemistry 1996, 43, 165–168. [Google Scholar] [CrossRef]
- Loyola, L.A.; Morales, G. Mulinenic acid, a rearranged diterpenoid from Mulinum crassifolium. J. Nat. Prod. 1991, 54, 1404–1408. [Google Scholar] [CrossRef]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Vicente, E.; Pérez-Silanes, S.; Lima, L.M.; Ancizu, S.; Burguete, A.; Solano, B.; Villar, R.; Aldana, I.; Monge, A. Selective activity against Mycobacterium tuberculosis of a new quinoxaline 1,4-di-N-oxides. Bioorg. Med. Chem. 2009, 17, 385–389. [Google Scholar] [CrossRef]
- Hernández-Pando, R.; Orozcoe, H.; Sampieri, A.; Pavón, L.; Velasquillo, C.; Larriva-Sahd, J.; Alcocer, J.M.; Madrid, M.V. Correlation between the kinetics of Th1, Th2 cells and pathology in a murine model of experimental pulmonary tuberculosis. Immunology 1996, 89, 26–33. [Google Scholar]
- Rook, G.; Hernández-Pando, R.; Zumla, A. Tuberculosis due to high-dose challenge in partially immune individuals: A problem for vaccination? J. Infect. Dis. 2009, 199, 613–618. [Google Scholar] [CrossRef] [Green Version]
- De Steenwinkel, J.E.; de Knegt, G.J.; Ten Kate, M.T.; van Belkum, A.; Verbrugh, H.A.; Hernández-Pando, R.; van Soolingen, D.; Bakker-Woudenberg, I.A. Immunological parameters to define infection progression and therapy response in a well-defined tuberculosis model in mice. Int. J. Immunopathol. Pharmacol. 2009, 22, 723–734. [Google Scholar] [CrossRef]
- Islas-Weinstein, L.; Marquina-Castillo, B.; Mata-Espinosa, D.; Chávez, J.; Balboa, L.; Marín Franco, J.L.; Guerrero-Romero, D.; Barrios-Payan, J.; Hernandez-Pando, R. The cholinergic system contributes to the immunopathological progression of experimental pulmonary tuberculosis. Front. Immunol. 2021, 11, 581911. [Google Scholar] [CrossRef] [PubMed]
- Veziris, N.; Ibrahim, M.; Lounis, N.; Andries, K.; Jarlier, V. Sterilizing activity of second-line regimens containing TMC207 in a murine model of tuberculosis. PLoS ONE 2011, 6, e17556. [Google Scholar] [CrossRef]
- Bello-Monroy, O.; Mata-Espinosa, D.; Enríquez-Cortina, C.; Souza, V.; Miranda, R.U.; Bucio, L.; Barrios-Payán, J.; Marquina-Castillo, B.; Rodríguez-Ochoa, I.; Rosales, D.; et al. Hepatocyte growth factor enhances the clearance of a multidrug resistant Mycobacterium tuberculosis strain by high doses of conventional chemotherapy, preserving liver function. J. Cell Physiol. 2020, 235, 1637–1648. [Google Scholar] [CrossRef]
Compounds | Mycobacterium tuberculosis | Log P | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Type | MDR | Pre-XDR | XDR | Susceptible | ||||||
MIC a | MBC a | MIC a | MBC a | MIC a | MBC a | MIC a | MBC a | |||
1 | N | 165.3 | 165.3 | 165.3 | 165.3 | 82.7 | 82.7 | 165.3 | 165.3 | 6.37 ± 0.28 |
1a | SS | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 2.7 | 5.4 | 5.4 | 6.40 ± 0.27 |
1b | SS | 5.4 | 5.4 | 5.4 | 5.4 | 10.9 | 10.9 | 10.9 | 10.9 | 6.50 ± 0.30 |
1c | SS | 75.6 | 75.6 | 75.6 | 75.6 | 75.6 | 75.6 | 151.3 | 151.3 | 7.34 ± 0.29 |
2 | N | 156 | 156 | 312 | 312 | 312 | 312 | 312 | 312 | 4.91 ± 0.31 |
2a | SS | 10.2 | 10.2 | 20.4 | 20.4 | 10.2 | 10.2 | 20.4 | 20.4 | 4.94 ± 0.30 |
3 | N | 157 | 157 | 314 | 314 | 78.5 | 78.5 | 314 | 314 | 4.35 ± 0.47 |
3a | SS | 10.3 | 10.3 | 10.3 | 10.3 | 20.5 | 20.5 | 20.5 | 20.5 | 4.38 ± 0.41 |
OFX | Positive controls | 1.4 | --- | --- | --- | --- | --- | --- | --- | --- |
CZM | --- | --- | 1.1 | --- | 1.1 | --- | --- | --- | --- | |
RIF | --- | --- | --- | --- | --- | --- | 0.06 | --- | --- |
Compounds | CC50 on Vero Cells | SI |
---|---|---|
1 | 18.2 ± 0.79 | 0.11–0.22 |
1a | 42.2 ± 1.38 | 7.82–15.64 |
1b | ND | ND |
1c | 196.4 ± 8.81 | 1.29–2.57 |
2 | >624 | 2–4 |
2a | >652.8 | 32–64 |
3 | 255.9 ± 21.60 | 0.82–3.26 |
3a | >656 | 32–64 |
DTX | 2.1 ± 0.40 | --- |
Microorganism | Drug Resistant Profile |
---|---|
MDR clinical isolate | STR, INH, RIF, EMB, PZA |
Pre-XDR clinical isolate | STR, INH, RIF, PZA, LVX, OFX |
XDR clinical isolate | STR, INH, RIF, PZA, AMK, KAN, LVX, OFX |
H37Rv ATCC 27294 | ---- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-González, M.A.; Peña-Rodríguez, L.M.; Uc-Cachón, A.H.; Bórquez, J.; Simirgiotis, M.J.; Barrios-García, H.B.; Hernández-Pando, R.; Loyola, L.A.; Areche, C.; Dzul-Beh, A.d.J.; et al. Activity of Semi-Synthetic Mulinanes against MDR, Pre-XDR, and XDR Strains of Mycobacterium tuberculosis. Metabolites 2021, 11, 876. https://doi.org/10.3390/metabo11120876
Martínez-González MA, Peña-Rodríguez LM, Uc-Cachón AH, Bórquez J, Simirgiotis MJ, Barrios-García HB, Hernández-Pando R, Loyola LA, Areche C, Dzul-Beh AdJ, et al. Activity of Semi-Synthetic Mulinanes against MDR, Pre-XDR, and XDR Strains of Mycobacterium tuberculosis. Metabolites. 2021; 11(12):876. https://doi.org/10.3390/metabo11120876
Chicago/Turabian StyleMartínez-González, María Alejandrina, Luis Manuel Peña-Rodríguez, Andrés Humberto Uc-Cachón, Jorge Bórquez, Mario J. Simirgiotis, Hugo Brígido Barrios-García, Rogelio Hernández-Pando, Luis Alberto Loyola, Carlos Areche, Angel de Jesús Dzul-Beh, and et al. 2021. "Activity of Semi-Synthetic Mulinanes against MDR, Pre-XDR, and XDR Strains of Mycobacterium tuberculosis" Metabolites 11, no. 12: 876. https://doi.org/10.3390/metabo11120876
APA StyleMartínez-González, M. A., Peña-Rodríguez, L. M., Uc-Cachón, A. H., Bórquez, J., Simirgiotis, M. J., Barrios-García, H. B., Hernández-Pando, R., Loyola, L. A., Areche, C., Dzul-Beh, A. d. J., Barrios-Payán, J. A., Mata-Espinosa, D., Escalante-Erosa, F., García-Sosa, K., & Molina-Salinas, G. M. (2021). Activity of Semi-Synthetic Mulinanes against MDR, Pre-XDR, and XDR Strains of Mycobacterium tuberculosis. Metabolites, 11(12), 876. https://doi.org/10.3390/metabo11120876