Obesogens in Children—An Uncharted Territory
Abstract
:1. Introduction
2. How Do Obesogens Work?
3. Obesogens in Children
3.1. Prenatal Exposure to Obesogens
3.2. Postnatal Exposure to Obesogens
4. The Limitations of Obesogen Studies and Future Perspectives
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Roundtable on Environmental Health Sciences, Research, and Medicine; Board on Population Health and Public Health Practice; Institute of Medicine. Identifying and Reducing Environmental Health Risks of Chemicals in Our Society: Workshop Summary; National Academies Press: Washington, DC, USA, 2014. [Google Scholar]
- Lichtveld, K.; Thomas, K.; Tulve, N.S. Chemical and non-chemical stressors affecting childhood obesity: A systematic scoping review. J. Expo. Sci. Environ. Epidemiol. 2018, 28, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Janesick, A.S.; Blumberg, B. Obesogens: An emerging threat to public health. Am. J. Obstet. Gynecol. 2016, 214, 559–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffin, M.D.; Pereira, S.R.; DeBari, M.K.; Abbott, R.D. Mechanisms of action, chemical characteristics, and model systems of obesogens. BMC Biomed. Eng. 2020, 2, 6. [Google Scholar] [CrossRef] [PubMed]
- Egusquiza, R.J.; Blumberg, B. Environmental obesogens and their impact on susceptibility to obesity: New mechanisms and chemicals. Endocrinology 2020, 161, bqaa024. [Google Scholar] [CrossRef] [Green Version]
- Mahapatra, A.; Gupta, P.; Suman, A.; Kumar Singh, R. Environmental Obesogens and Human Health [Online First]; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Ahmadian, M.; Suh, J.M.; Hah, N.; Liddle, C.; Atkins, A.R.; Downes, M.; Evans, R.M. PPARγ signaling and metabolism: The good, the bad and the future. Nat. Med. 2013, 19, 557–566. [Google Scholar] [CrossRef] [Green Version]
- Decherf, S.; Demeneix, B.A. The obesogen hypothesis: A shift of focus from the periphery to the hypothalamus. J. Toxicol. Environ. Health B Crit. Rev. 2011, 14, 423–448. [Google Scholar] [CrossRef]
- Di Cesare, M.; Sorić, M.; Bovet, P.; Miranda, J.J.; Bhutta, Z.; Stevens, G.A.; Laxmaiah, A.; Kengne, A.P.; Bentham, J. The epidemiological burden of obesity in childhood: A worldwide epidemic requiring urgent action. BMC Med. 2019, 17, 212. [Google Scholar] [CrossRef] [Green Version]
- Botton, J.; Kadawathagedara, M.; de Lauzon-Guillain, B. Endocrine disrupting chemicals and growth of children. Ann. Endocrinol. 2017, 78, 108–111. [Google Scholar] [CrossRef]
- Braun, J.M.; Hauser, R. Bisphenol A and children’s health. Curr. Opin. Pediatr. 2011, 23, 233–239. [Google Scholar] [CrossRef]
- Braun, J.M.; Sathyanarayana, S.; Hauser, R. Phthalate exposure and children’s health. Curr. Opin. Pediatr. 2013, 25, 247–254. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.A.; Park, S.H.; Hong, Y.S.; Ha, E.H.; Park, H. The effect of exposure to persistent organic pollutants on metabolic health among Korean children during a 1-year follow-up. Int. J. Environ. Res. Public Health 2016, 13, 270. [Google Scholar] [CrossRef] [Green Version]
- Kirchner, S.; Kieu, T.; Chow, C.; Casey, S.; Blumberg, B. Prenatal exposure to the environmental obesogen tributyltin predisposes multipotent stem cells to become adipocytes. Mol. Endocrinol. 2010, 24, 526–539. [Google Scholar] [CrossRef]
- Chamorro-García, R.; Sahu, M.; Abbey, R.J.; Laude, J.; Pham, N.; Blumberg, B. Transgenerational inheritance of increased fat depot size, stem cell reprogramming, and hepatic steatosis elicited by prenatal exposure to the obesogen tributyltin in mice. Environ. Health Perspect. 2013, 121, 359–366. [Google Scholar] [CrossRef] [Green Version]
- Janesick, A.S.; Shioda, T.; Blumberg, B. Transgenerational inheritance of prenatal obesogen exposure. Mol. Cell Endocrinol. 2014, 398, 31–35. [Google Scholar] [CrossRef] [Green Version]
- Rantakokko, P.; Main, K.M.; Wohlfart-Veje, C.; Kiviranta, H.; Airaksinen, R.; Vartiainen, T.; Skakkebæk, N.E.; Toppari, J.; Virtanen, H.E. Association of placenta organotin concentrations with growth and ponderal index in 110 newborn boys from Finland during the first 18 months of life: A cohort study. Environ. Health. 2014, 13, 45. [Google Scholar] [CrossRef] [Green Version]
- Valvi, D.; Mendez, M.A.; Martinez, D.; Grimalt, J.O.; Torrent, M.; Sunyer, J.; Vrijheid, M. Prenatal concentrations of polychlorinated biphenyls, DDE, and DDT and overweight in children: A prospective birth cohort study. Environ. Health Perspect. 2012, 120, 451–457. [Google Scholar] [CrossRef] [Green Version]
- Nicole, W. Phthalates and childhood body fat: Study finds no evidence of obesogenicity. Environ. Health Perspect. 2016, 124, A78. [Google Scholar] [CrossRef] [Green Version]
- Khalil, N.; Chen, A.; Lee, M. Endocrine disruptive compounds and cardio-metabolic risk factors in children. Curr. Opin. Pharmacol. 2014, 19, 120–124. [Google Scholar] [CrossRef]
- Wang, J.; Sun, B.; Hou, M.; Pan, X.; Li, X. The environmental obesogen bisphenol A promotes adipogenesis by increasing the amount of 11β-hydroxysteroid dehydrogenase type 1 in the adipose tissue of children. Int. J. Obes. 2013, 37, 999–1005. [Google Scholar] [CrossRef]
- Trasande, L.; Attina, T.M.; Blustein, J. Association between urinary bisphenol A concentration and obesity prevalence in children and adolescents. JAMA. 2012, 308, 1113–1121. [Google Scholar] [CrossRef] [Green Version]
- Li, D.K.; Miao, M.; Zhou, Z.; Wu, C.; Shi, H.; Liu, X.; Wang, S.; Yuan, W. Urine bisphenol-A level in relation to obesity and overweight in school-age children. PLoS ONE. 2013, 8, e65399. [Google Scholar]
- Correia-Sá, L.; Kasper-Sonnenberg, M.; Schütze, A.; Pälmke, C.; Norberto, S.; Calhau, C.; Domingues, V.F.; Koch, H.M. Exposure assessment to bisphenol A (BPA) in Portuguese children by human biomonitoring. Environ. Sci. Pollut. Res. Int. 2017, 24, 27502–27514. [Google Scholar] [CrossRef]
- Liu, B.; Lehmler, H.J.; Sun, Y.; Xu, G.; Sun, Q.; Snetselaar, L.G.; Wallace, R.B.; Bao, W. Association of bisphenol A and its substitutes, bisphenol F and bisphenol S, with obesity in United States children and adolescents. Diabetes Metab. J. 2019, 43, 59–75. [Google Scholar] [CrossRef]
- Jacobson, M.H.; Woodward, M.; Bao, W.; Liu, B.; Trasande, L. Urinary bisphenols and obesity prevalence among U.S. children and adolescents. J. Endocr. Soc. 2019, 3, 1715–1726. [Google Scholar] [CrossRef]
- Mansouri, V.; Ebrahimpour, K.; Poursafa, P.; Riahi, R.; Shoshtari-Yeganeh, B.; Hystad, P.; Kelishadi, R. Exposure to phthalates and bisphenol A is associated with higher risk of cardiometabolic impairment in normal weight children. Environ. Sci. Pollut. Res. Int. 2019, 26, 18604–18614. [Google Scholar] [CrossRef]
- Kim, H.W.; Kam, S.; Lee, D.H. Synergistic interaction between polycyclic aromatic hydrocarbons and environmental tobacco smoke on the risk of obesity in children and adolescents: The U.S. National Health and Nutrition Examination Survey 2003–2008. Environ. Res. 2014, 135, 354–360. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, H.; Maher, C.; Arteaga-Solis, E.; Champagne, F.A.; Wu, L.; McDonald, J.D.; Yan, B.; Schwartz, G.J.; Miller, R.L. Prenatal polycyclic aromatic hydrocarbon, adiposity, peroxisome proliferator-activated receptor (PPAR) γ methylation in offspring, grand-offspring mice. PLoS ONE. 2014, 9, e110706. [Google Scholar] [CrossRef] [Green Version]
- Poursafa, P.; Dadvand, P.; Amin, M.M.; Hajizadeh, Y.; Ebrahimpour, K.; Mansourian, M.; Pourzamani, H.; Sunyer, J.; Kelishadi, R. Association of polycyclic aromatic hydrocarbons with cardiometabolic risk factors and obesity in children. Environ. Int. 2018, 118, 203–210. [Google Scholar] [CrossRef]
- Bloom, M.S.; Commodore, S.; Ferguson, P.L.; Neelon, B.; Pearce, J.L.; Baumer, A.; Newman, R.B.; Grobman, W.; Tita, A.; Roberts, J.; et al. Association between gestational PFAS exposure and children’s adiposity in a diverse population. Environ. Res. 2021, 203, 111820. [Google Scholar] [CrossRef]
- Jerrett, M.; McConnell, R.; Wolch, J.; Chang, R.; Lam, C.; Dunton, G.; Gilliland, F.; Lurmann, F.; Islam, T.; Berhane, K. Traffic-related air pollution and obesity formation in children: A longitudinal, multilevel analysis. Environ. Health. 2014, 13, 49. [Google Scholar] [CrossRef] [Green Version]
- Chamorro-Garcia, R.; Blumberg, B. Current research approaches and challenges in the obesogen field. Front. Endocrinol. 2019, 10, 167. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Močnik, M.; Marčun Varda, N. Obesogens in Children—An Uncharted Territory. Metabolites 2021, 11, 882. https://doi.org/10.3390/metabo11120882
Močnik M, Marčun Varda N. Obesogens in Children—An Uncharted Territory. Metabolites. 2021; 11(12):882. https://doi.org/10.3390/metabo11120882
Chicago/Turabian StyleMočnik, Mirjam, and Nataša Marčun Varda. 2021. "Obesogens in Children—An Uncharted Territory" Metabolites 11, no. 12: 882. https://doi.org/10.3390/metabo11120882
APA StyleMočnik, M., & Marčun Varda, N. (2021). Obesogens in Children—An Uncharted Territory. Metabolites, 11(12), 882. https://doi.org/10.3390/metabo11120882