gcProfileMakeR: An R Package for Automatic Classification of Constitutive and Non-Constitutive Metabolites
Abstract
:1. Introduction
2. Results
2.1. gcProfileMakeR Input Data
2.2. gcProfileMakeR Data Pretreatment Filters
- cas2rm. The first one, cas2rm, will sort out any CAS number defined by the user, thus allowing the elimination of known contaminants, or compounds that are ubiquitous and complicate further analysis.
- minQuality. The second filter, minQuality, eliminates hits, either first or secondary, with a mean quality below a defined level. Specific retention peaks may be filtered out from the profile if being too strict (e.g., = 95). It allows to use a strategy of low strictness at the integration step and explore the data, decreasing the threshold to define a complete metabolome.
2.3. gcProfileMakeR Data Pretreatment Filters
- NormalizeWithinFiles. The first function NormalizeWithinFiles, analyses each file/sample assigning for each retention time a set of possible hits (compounds). Peak areas of the same compounds with an identical CAS number found in different RTs, will be added (Figure 1b).
- NormalizeBetweenFiles. The second function NormalizeBetweenFiles, reaches a consensus between files in such a way that the same compounds separated in relatively close retention times are grouped together. This is important as even a standard does not always run at the precise same retention time. Thus peaks that appear very close in retention and have the same CAS number are grouped together.
- getGroups. The third function getGroups, establishes what is considered as “Profile”, “Non-constitutive by Frequency” and “Non-constitutive by Quality”. The Profile refers to those compounds that are present in all samples and can be considered constitutive. Non-constitutive by Frequency is a list of compounds present in several, but not all samples of a given class i.e., a species, a mutant or a treatment. The rationale behind including a Non-constitutive by Quality list is that some compounds, even as chemical standards, give low quality due to poor representation in MS libraries, for instance methyl jasmonate (Figure 1c). Indeed a compound may be present in all samples but with low quality. Frequency and quality default thresholds can be adjusted, thus allowing data exploration.
- plotGroup. Results can be plotted with the function plotGroup (Figure 2). In this function, compoundType parameter can be adjusted in order to get profiles (p), non-constitutive by frequency (ncf) or non-constitutive by quality (ncq). Results are plotted according to the average area and quality of each compound grouped in each category. The graphic obtained is in HTML format and allows, by pointing at the columns, to see the actual compound names that are linked to a CAS number (Figure 2). Pointing at the quality percentages it shows the error rates of the quality for a given CAS number. This facilitates working with the graphics. They can also be saved as png.
2.4. Testing gcProfileMakeR in Floral Organ Identity Mutants and RNAi:AmLHY
2.5. Analysis of Volatile Metabolic Pathways with gcProfileMakeR Outputs
2.6. Analysis of Volatile Circadian Emission with gcProfileMakeR
2.7. Analisys of gcProfileMakeR Outputs
2.8. Timescale Improvement Using gcProfileMakeR
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. GC-MS Analysis of Scent Profiles
4.3. Data Analysis
4.4. GC-MS Analysis of Scent Profiles
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Borghi, M.; Fernie, A.R.; Schiestl, F.P.; Bouwmeester, H.J. The Sexual Advantage of Looking, Smelling, and Tasting Good: The Metabolic Network that Produces Signals for Pollinators. Trends Plant Sci. 2017, 22, 338–350. [Google Scholar] [CrossRef]
- Muhlemann, J.K.; Klempien, A.; Dudareva, N. Floral volatiles: From biosynthesis to function. Plant Cell Environ. 2014, 37, 1936–1949. [Google Scholar] [CrossRef] [PubMed]
- Shiojiri, K.; Kishimoto, K.; Ozawa, R.; Kugimiya, S.; Urashimo, S.; Arimura, G.; Horiuchi, J.; Nishioka, T.; Matsui, K.; Takabayashi, J. Changing green leaf volatile biosynthesis in plants: An approach for improving plant resistance against both herbivores and pathogens. Proc. Natl. Acad. Sci. USA 2006, 103, 16672–16676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Causier, B.; Schwarz-Sommer, Z.; Davies, B. Floral organ identity: 20 years of ABCs. Semin. Cell Dev. Biol. 2010, 21, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Manchado-Rojo, M.; Delgado-Benarroch, L.; Roca, M.J.; Weiss, J.; Egea-Cortines, M. Quantitative levels of Deficiensand Globosaduring late petal development show a complex transcriptional network topology of B function. Plant J. 2012, 72, 294–307. [Google Scholar] [CrossRef] [PubMed]
- Kolosova, N.; Gorenstein, N.; Kish, C.M.; Dudareva, N. Regulation of circadian methyl benzoate emission in diurnally and nocturnally emitting plants. Plant Cell 2001, 13, 2333–2347. [Google Scholar] [CrossRef] [Green Version]
- Hendel-Rahmanim, K.; Masci, T.; Vainstein, A.; Weiss, D. Diurnal regulation of scent emission in rose flowers. Planta 2007, 226, 1491–1499. [Google Scholar] [CrossRef]
- Terry, M.I.; Pérez-Sanz, F.; Navarro, P.J.; Weiss, J.; Egea-Cortines, M. The Snapdragon Late Elongated Hypocotyl Plays A Dual Role in Activating Floral Growth and Scent Emission. Cells 2019, 8, 920. [Google Scholar] [CrossRef] [Green Version]
- Terry, M.I.; Pérez-Sanz, F.; Díaz-Galián, M.V.; Cobos, F.P.D.L.; Navarro, P.J.; Egea-Cortines, M.; Weiss, J. The Petunia Chanel Gene is a Zeitlupe Ortholog Coordinating Growth and Scent Profiles. Cells 2019, 8, 343. [Google Scholar] [CrossRef] [Green Version]
- Brandoli, C.; Petri, C.; Egea-Cortines, M.; Weiss, J. The clock gene Gigantea 1 from Petunia hybrida coordinates vegetative growth and inflorescence architecture. Sci. Rep. 2020, 10, 1–17. [Google Scholar] [CrossRef]
- Raguso, R.A.; Schlumpberger, B.O.; Kaczorowski, R.L.; Holtsford, T.P. Phylogenetic fragrance patterns in Nicotiana sections Alatae and Suaveolentes. Phytochemistry 2006, 67, 1931–1942. [Google Scholar] [CrossRef]
- Azuma, H.; Thien, L.B.; Kawano, S. Molecular Phylogeny of Magnolia (Magnoliaceae) Inferred from cpDNA Sequences and Evolutionary Divergence of the Floral Scents. J. Plant Res. 1999, 112, 291–306. [Google Scholar] [CrossRef]
- Weiss, J.; Mühlemann, J.K.; Ruiz-Hernández, V.; Dudareva, N.; Egea-Cortines, M. Phenotypic Space and Variation of Floral Scent Profiles during Late Flower Development in Antirrhinum. Front. Plant Sci. 2016, 7, 1903. [Google Scholar] [CrossRef] [Green Version]
- Kessler, A.; Baldwin, I.T. Plant responses to insect herbivory: The emerging molecular analysis. Ann. Rev. Plant Biol. 2002, 53, 299–328. [Google Scholar] [CrossRef]
- Shimoda, T.; Nishihara, M.; Ozawa, R.; Takabayashi, J.; Arimura, G. The effect of genetically enriched (E)-β-ocimene and the role of floral scent in the attraction of the predatory mite Phytoseiulus persimilis to spider mite-induced volatile blends of torenia. New Phytol. 2012, 193, 1009–1021. [Google Scholar] [CrossRef] [PubMed]
- Groen, S.C.; Jiang, S.; Murphy, A.M.; Cunniffe, N.J.; Westwood, J.H.; Davey, M.P.; Bruce, T.J.A.; Caulfield, J.C.; Furzer, O.J.; Reed, A.; et al. Virus Infection of Plants Alters Pollinator Preference: A Payback for Susceptible Hosts? PLoS Pathog. 2016, 12, e1005790. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, J.T. Positive and Negative Regulation of Salicylic Acid-Dependent Cell Death and Pathogen Resistance in Arabidopsis lsd6 and ssi1 Mutants. Mol. Plant-Microbe Interact. 2000, 13, 877–881. [Google Scholar] [CrossRef] [Green Version]
- Vlot, A.C.; Dempsey, D.A.; Klessig, D.F. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 2009, 47, 177–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kegge, W.; Weldegergis, B.T.; Soler, R.; Eijk, M.V.; Dicke, M.; Voesenek, L.A.C.J.; Pierik, R. Canopy light cues affect emission of constitutive and methyl jasmonate-induced volatile organic compounds in A rabidopsis thaliana. New Phytol. 2013, 200, 861–874. [Google Scholar] [CrossRef] [Green Version]
- Frey, M.; Stettner, C.; Paré, P.W.; Schmelz, E.A.; Tumlinson, J.H.; Gierl, A. An Herbivore Elicitor Activates the Gene for Indole Emission in Maize. Proc. Natl. Acad. Sci. USA 2000, 97, 14801–14806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erb, M.; Veyrat, N.; Robert, C.A.M.; Xu, H.; Frey, M.; Ton, J.; Turlings, T.C.J. Indole is an essential herbivore-induced volatile priming signal in maize. Nat. Commun. 2015, 6, 6273. [Google Scholar] [CrossRef] [Green Version]
- Degen, T.; Dillmann, C.; Marion-Poll, F.; Turlings, T.C. High Genetic Variability of Herbivore-Induced Volatile Emission within a Broad Range of Maize Inbred Lines. Plant Physiol. 2004, 135, 1928–1938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knudsen, J.T.; Eriksson, R.; Gershenzon, J.; Ståhl, B. Diversity and Distribution of Floral Scent. Bot. Rev. 2006, 72, 1–120. [Google Scholar] [CrossRef]
- Barman, M.; Mitra, A. Floral maturation and changing air temperatures influence scent volatiles biosynthesis and emission in Jasminum auriculatum Vahl. Environ. Exp. Bot. 2021, 181, 104296. [Google Scholar] [CrossRef]
- Sagae, M.; Oyama-Okubo, N.; Ando, T.; Marchesi, E.; Nakayama, M. Effect of Temperature on the Floral Scent Emission and Endogenous Volatile Profile of Petunia axillaris. Biosci. Biotechnol. Biochem. 2008, 72, 110–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cna’Ani, A.; Mühlemann, J.K.; Ravid, J.; Masci, T.; Klempien, A.; Nguyen, T.T.H.; Dudareva, N.; Pichersky, E.; Vainstein, A. Petunia × hybridafloral scent production is negatively affected by high-temperature growth conditions. Plant Cell Environ. 2015, 38, 1333–1346. [Google Scholar] [CrossRef] [PubMed]
- Domingo-Almenara, X.; Montenegro-Burke, J.R.; Benton, H.P.; Siuzdak, G. Annotation: A Computational Solution for Streamlining Metabolomics Analysis. Anal. Chem. 2018, 90, 480–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricroch, A.E.; Bergé, J.B.; Kuntz, M. Evaluation of Genetically Engineered Crops Using Transcriptomic, Proteomic, and Metabolomic Profiling Techniques: Table, I. Plant Physiol. 2011, 155, 1752–1761. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, J.; Psychogios, N.; Young, N.; Wishart, D.S. MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009, 37, W652–W660. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Wishart, D.S. Using Metabo Analyst 3.0 for Comprehensive Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2016, 55, 14.10.1–14.10.91. [Google Scholar] [CrossRef] [PubMed]
- Spicer, R.; Salek, R.M.; Moreno, P.; Cañueto, D.; Steinbeck, C. Navigating freely-available software tools for metabolomics analysis. Metabolomics 2017, 13, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domingo-Almenara, X.; Brezmes, J.; Vinaixa, M.; Samino, S.; Ramirez, N.; Ramon-Krauel, M.; Lerin, C.; Díaz, M.; Ibáñez, L.; Correig, X.; et al. eRah: A Computational Tool Integrating Spectral Deconvolution and Alignment with Quantification and Identification of Metabolites in GC/MS-Based Metabolomics. Anal. Chem. 2016, 88, 9821–9829. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Zhu, Z.-J. MetFlow: An interactive and integrated workflow for metabolomics data cleaning and differential metabolite discovery. Bioinformatics 2019, 35, 2870–2872. [Google Scholar] [CrossRef]
- Domingo-Almenara, X.; Montenegro-Burke, J.R.; Ivanisevic, J.; Thomas, A.; Sidibé, J.; Teav, T.; Guijas, C.; Aisporna, A.E.; Rinehart, D.; Hoang, L.; et al. XCMS-MRM and METLIN-MRM: A cloud library and public resource for targeted analysis of small molecules. Nat. Methods 2018, 15, 681–684. [Google Scholar] [CrossRef]
- Jonsson, P.; Johansson, A.I.; Gullberg, J.; Trygg, J.; Grung, B.; Marklund, S.; Sjöström, M.; Antti, H.; Moritz, T. High-Throughput Data Analysis for Detecting and Identifying Differences between Samples in GC/MS-Based Metabolomic Analyses. Anal. Chem. 2005, 77, 5635–5642. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, S.; Huang, Z.; Zhang, S.; Liao, Q.; Zhang, C.; Lin, T.; Qin, M.; Peng, M.; Yang, C.; et al. Rewiring of the Fruit Metabolome in Tomato Breeding. Cell 2018, 172, 249–261.e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terry, M.I.; Ruiz-Hernández, V.; Águila, D.J.; Weiss, J.; Egea-Cortines, M. The Effect of Post-harvest Conditions in Narcissus sp. Cut Flowers Scent Profile. Front. Plant Sci. 2021, 11, 2144. [Google Scholar] [CrossRef]
- Hughes, M.E.; Abruzzi, K.C.; Allada, R.; Anafi, R.; Arpat, A.B.; Asher, G.; Baldi, P.; De Bekker, C.; Bell-Pedersen, D.; Blau, J.; et al. Guidelines for Genome-Scale Analysis of Biological Rhythms. J. Biol. Rhythm. 2017, 32, 380–393. [Google Scholar] [CrossRef] [Green Version]
- Hervé, M.R.; Nicolè, F.; Cao, K.-A.L. Multivariate Analysis of Multiple Datasets: A Practical Guide for Chemical Ecology. J. Chem. Ecol. 2018, 44, 215–234. [Google Scholar] [CrossRef]
- Cuadros-Inostroza, Á.; Caldana, C.; Redestig, H.; Kusano, M.; Lisec, J.; Peña-Cortés, H.; Willmitzer, L.; Hannah, M.A. TargetSearch—A Bioconductor package for the efficient preprocessing of GC-MS metabolite profiling data. BMC Bioinform. 2009, 10, 428. [Google Scholar] [CrossRef] [Green Version]
- Moayedpour, S.; Parastar, H. RMet: An automated R based software for analyzing GC-MS and GC×GC-MS untargeted metabolomic data. Chemom. Intell. Lab. Syst. 2019, 194, 103866. [Google Scholar] [CrossRef]
- Amrad, A.; Moser, M.; Mandel, T.; de Vries, M.; Schuurink, R.C.; Freitas, L.; Kuhlemeier, C. Gain and Loss of Floral Scent Production through Changes in Structural Genes during Pollinator-Mediated Speciation. Curr. Biol. 2016, 26, 3303–3312. [Google Scholar] [CrossRef] [Green Version]
- Byers, K.J.R.P.; Vela, J.P.; Peng, F.; Riffell, J.A.; Bradshaw, H.D. Floral volatile alleles can contribute to pollinator-mediated reproductive isolation in monkeyflowers (Mimulus). Plant J. 2014, 80, 1031–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sas, C.; Müller, F.; Kappel, C.; Kent, T.V.; Wright, S.I.; Hilker, M.; Lenhard, M. Repeated Inactivation of the First Committed Enzyme Underlies the Loss of Benzaldehyde Emission after the Selfing Transition in Capsella. Curr. Biol. 2016, 26, 3313–3319. [Google Scholar] [CrossRef] [Green Version]
- Bey, M.; Stüber, K.; Fellenberg, K.; Schwarz-Sommer, Z.; Sommer, H.; Saedler, H.; Zachgo, S. Characterization of Antirrhinum Petal Development and Identification of Target Genes of the Class B MADS Box Gene DEFICIENS. Plant Cell 2004, 16, 3197–3215. [Google Scholar] [CrossRef] [Green Version]
- Suchet, C.; Dormont, L.; Schatz, B.; Giurfa, M.; Simon, V.; Raynaud, C.; Chave, J. Floral scent variation in two Antirrhinum majus subspecies influences the choice of naïve bumblebees. Behav. Ecol. Sociobiol. 2011, 65, 1015–1027. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, Y.; Wu, K.; Gao, X.W.; Guo, Y.Y. Field-Testing of Synthetic Herbivore-Induced Plant Volatiles as Attractants for Beneficial Insects. Environ. Èntomol. 2008, 37, 1410–1415. [Google Scholar] [CrossRef]
- Schwarz-Sommer, Z.; Hue, I.; Huijser, P.; Flor, P.; Hansen, R.; Tetens, F.; Lönnig, W.; Saedler, H.; Sommer, H. Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: Evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J. 1992, 11, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Fix, E. Discriminatory Analysis: Nonparametric Discrimination, Consistency Properties; USAF School of Aviation Medicine: Dayton, OH, USA, 1951. [Google Scholar]
- Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene Selection for Cancer Classification using Support Vector Machines. Mach. Learn. 2002, 46, 389–422. [Google Scholar] [CrossRef]
- Rish, I. An empirical study of the naive Bayes classifier. In Proceedings of the IJCAI Workshop on Empirical Methods in Artificial Intelligence, Seattle, WA, USA, 4–6 August 2001; Volume 3, pp. 41–46. [Google Scholar]
- Smits, G.; Jordaan, E. Improved SVM regression using mixtures of kernels. In Proceedings of the 2002 International Joint Conference on Neural Networks, IJCNN’02 (Cat. No.02CH37290). Honolulu, HI, USA, 12–17 May 2002; Volume 3, pp. 2785–2790. [Google Scholar]
- Garrett, D.; Peterson, D.A.; Anderson, C.W.; Thaut, M.H. Comparison of linear, nonlinear, and feature selection methods for eeg signal classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2003, 11, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef] [PubMed]
Metric | Algorithm | Group 1 | Group 2 | ||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
Accuracy | k-NN | 0.77 | 0.17 | 0.9 | 0.14 |
NBC | 0.665 | 0.30 | 0.89 | 0.14 | |
SVM Linear | 0.79 | 0.14 | 0.92 | 0.14 | |
SVM Radial | 0.755 | 0.19 | 0.88 | 0.11 | |
SVM Polynomial | 0.86 | 0.17 | 0.92 | 0.14 | |
RF | 0.84 | 0.18 | 0.98 | 0.06 | |
Kappa | k-NN | 0.47 | 0.38 | 0.78 | 0.34 |
NBC | 0.52 | 0.37 | 0.75 | 0.32 | |
SVM Linear | 0.53 | 0.40 | 0.82 | 0.34 | |
SVM Radial | 0.52 | 0.39 | 0.78 | 0.18 | |
SVM Polynomial | 0.65 | 0.42 | 0.81 | 0.34 | |
RF | 0.61 | 0.46 | 0.95 | 0.14 |
Group and pFreqCutoff | Observed | Predicted | Class.Error | |||
---|---|---|---|---|---|---|
compacta | deficiens | RNAi:AmLHY | Wild type | |||
Group 1 (1.0) | co (28) | 27 | 1 | 0 | 0 | 0.03 |
defnic (8) | 3 | 5 | 0 | 0 | 0.38 | |
RNAi:AmLHY (8) | 1 | 0 | 7 | 0 | 0.13 | |
Wild type (4) | 0 | 0 | 2 | 2 | 0.50 | |
Group 2 (0.7) | co (28) | 28 | 0 | 0 | 0 | 0 |
defnic (9) | 0 | 8 | 0 | 0 | 0 | |
RNAi:AmLHY (8) | 1 | 0 | 6 | 1 | 0.25 | |
Wild type (4) | 0 | 0 | 0 | 4 | 0 |
Group 1 VOC | MDA | Group 2 VOC | MDA |
---|---|---|---|
Acetophenone | 16.74 | Nonanal | 14.18 |
3,5-Dimethoxytoluene | 16.09 | Methyl-2-methylbutyrate | 11.56 |
Methyl benzoate | 12.53 | Farnesene | 11.49 |
Nonanal | 11.73 | Methyl benzoate | 11.33 |
Ocimene | 10.31 | 3,5-Dimethoxytoluene | 11.18 |
Decanal | 3.84 | Acetophenone | 10.59 |
Methyl-2-methylbutyrate | 3.19 | Phenethyl acetate | 8.96 |
Ocimene | 8.80 | ||
Methyl 3,5-dimethoxybenzoate | 8.01 | ||
Decanal | 6.82 | ||
Linalool | 5.84 | ||
2′-/4′-Hydroxyacetophenone | 5.57 | ||
Terpinolene | 5.25 | ||
Benzyl acetate | 2.24 | ||
Ethyl benzoate | 0 | ||
Nonanal | 14.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perez-Sanz, F.; Ruiz-Hernández, V.; Terry, M.I.; Arce-Gallego, S.; Weiss, J.; Navarro, P.J.; Egea-Cortines, M. gcProfileMakeR: An R Package for Automatic Classification of Constitutive and Non-Constitutive Metabolites. Metabolites 2021, 11, 211. https://doi.org/10.3390/metabo11040211
Perez-Sanz F, Ruiz-Hernández V, Terry MI, Arce-Gallego S, Weiss J, Navarro PJ, Egea-Cortines M. gcProfileMakeR: An R Package for Automatic Classification of Constitutive and Non-Constitutive Metabolites. Metabolites. 2021; 11(4):211. https://doi.org/10.3390/metabo11040211
Chicago/Turabian StylePerez-Sanz, Fernando, Victoria Ruiz-Hernández, Marta I. Terry, Sara Arce-Gallego, Julia Weiss, Pedro J. Navarro, and Marcos Egea-Cortines. 2021. "gcProfileMakeR: An R Package for Automatic Classification of Constitutive and Non-Constitutive Metabolites" Metabolites 11, no. 4: 211. https://doi.org/10.3390/metabo11040211
APA StylePerez-Sanz, F., Ruiz-Hernández, V., Terry, M. I., Arce-Gallego, S., Weiss, J., Navarro, P. J., & Egea-Cortines, M. (2021). gcProfileMakeR: An R Package for Automatic Classification of Constitutive and Non-Constitutive Metabolites. Metabolites, 11(4), 211. https://doi.org/10.3390/metabo11040211