Postharvest Water Loss of Wine Grape: When, What and Why
Abstract
:1. Introduction
2. Postharvest Techniques to Induce Water Loss
2.1. Sun-Drying
2.2. Sun-Drying in Plastic Tunnel
2.3. Uncontrolled Dehydration in Fruttaio (Closed Facility)
2.4. Controlled Dehydration in Fruttaio (Closed Facility)
2.5. Withering in Fruttaio with Ambient Control
3. Metabolite Changes in Wine Grape during Postharvest Water Loss
3.1. VOCs
3.2. Non-Volatile Metabolites
4. Quality of Wine from Postharvest Dehydrated Grape
5. Non-Destructive Technology to Monitor Grape Postharvest Metabolic Change
5.1. NIRs
5.2. E-Nose
5.3. Chlorophyll Fluorescence
5.4. NMR
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mencarelli, F.; Tonutti, P. (Eds.) Sweet, Reinforced and Fortified Wines: Grape Biochemistry, Technology and Vinification, 1st ed.; Wiley Blackwell: Chichester, UK, 2013; 365p. [Google Scholar]
- Ossola, C.; Giacosa, S.; Torchio, F.; Río Segade, S.; Caudana, A.; Cagnasso, E.; Gerbi, V.; Rolle, L. Comparison of fortified, sfursat, and passito wines produced from fresh and dehydrated grapes of aromatic black cv. Moscato nero (Vitis vinifera L.). Food Res. Int. 2017, 98, 59–67. [Google Scholar] [PubMed]
- Scienza, A. Sweet Wines: The Essence of European Civilization. In Sweet, Reinforced and Fortified Wines: Grape Biochemistry, Technology and Vinification; Mencarelli, F., Tonutti, P., Eds.; Wiley Blackwell: Chichester, UK, 2013; pp. 5–25. [Google Scholar]
- Mencarelli, F.; Bellincontro, A. Technology and Management of Postharvest Dehydration. In Sweet, Reinforced and Fortified Wines: Grape Biochemistry, Technology and Vinification; Mencarelli, F., Tonutti, P., Eds.; Wiley Blackwell: Chichester, UK, 2013; pp. 51–75. [Google Scholar]
- Miranda, A.; Pereira, V.; Pontes, M.; Albuquerque, F.; Marques, J.C. Acetic acid and ethyl acetate in Madeira wines: Evolution with ageing and assessment of the odour rejection threshold. Ciência e Técnica Vitivinícola 2017, 32, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Vigara, J.J.; Garcıa-Mauricio, J.C. Pedro Ximenez and Malaga. In Sweet, Reinforced and Fortified Wines: Grape Biochemistry, Technology and Vinification; Mencarelli, F., Tonutti, P., Eds.; Wiley Blackwell: Chichester, UK, 2013; pp. 251–267. [Google Scholar]
- Chkaiban, L.; Botondi, R.; Bellincontro, A.; Santis, D.; Kefalas, P.; Mencarelli, F. Influence of postharvest water stress on lipoxygenase and alcohol dehydrogenase activities, and on the composition of some volatile compounds of Gewürztraminer grapes dehydrated under controlled and uncontrolled thermohygrometric conditions. Aust. J. Grape Wine Res. 2007, 13, 142–149. [Google Scholar] [CrossRef]
- Bellincontro, A.; Prosperi, P.; De Santis, D.; Botondi, R.; Mencarelli, F. Control of environmental parameters in postharvest partial dehydration of wine grapes reduces water stress. Postharvest Biol. Technol. 2017, 134, 11–16. [Google Scholar]
- Nicoletti, I.; Bellincontro, A.; De Rossi, A.; De Sanctis, F.; Tiberi, D.; Pietromarchi, P.; Botondi, R.; Corradini, D.; Mencarelli, F. Postharvest dehydration of Nebbiolo grapes grown at altitude is affected by time of defoliation. Aust. J. Grape Wine Res. 2013. [Google Scholar] [CrossRef]
- Mencarelli, F.; Bellincontro, A. Recent advances in postharvest technology of the wine grape to improve the wine aroma. J. Sci. Food Agric. 2018, 100, 5046–5055. [Google Scholar] [PubMed]
- Zenoni, S.; Fasoli, M.; Guzzo, F.; Dal Santo, S.; Amato, A.; Anesi, A.; Commisso, M.; Herderich, M.; Ceoldo, S.; Avesani, L.; et al. Disclosing the Molecular Basis of the Postharvest Life of Berry in Different Grapevine Genotypes. Plant Physiol. 2016, 172, 1821–1843. [Google Scholar] [CrossRef] [Green Version]
- Bonghi, C.; Tonutti, P. Biochemistry and Physiology of Dehydrating Berries. In Sweet, Reinforced and Fortified Wines: Grape Biochemistry, Technology and Vinification; Mencarelli, F., Tonutti, P., Eds.; Wiley Blackwell: Chichester, UK, 2013; pp. 77–90. [Google Scholar]
- Panceri, C.P.; Burin, V.M.; Caliari, V.; Amboni, R.D.M.C.; Bordignon-Luiz, M.T. Aromatic character of Cabernet Sauvignon and Merlot wines produced with grapes dried under controlled conditions. Eur. Food Res. Technol. 2017, 243, 609–618. [Google Scholar] [CrossRef]
- Zamboni, A.; Minoia, L.; Ferrarini, A.; Tornielli, G.B.; Zago, E.; Delledonne, M.; Pezzotti, M. Molecular analysis of post-harvest withering in grape by AFLP transcriptional profiling. J. Exp. Bot. 2008, 59, 4145–4159. [Google Scholar] [CrossRef] [Green Version]
- D’Onofrio, C.; Bellincontro, A.; Accordini, D.; Mencarelli, F. Malic Acid as a Potential Marker for the Aroma Compounds of Amarone Winegrape Varieties in Withering. Am. J. Enol. Vitic. 2019, 70, 259–266. [Google Scholar] [CrossRef]
- Bellincontro, A.; Matarese, F.; D’Onofrio, C.; Accordini, D.; Tosi, E.; Mencarelli, F. Management of postharvest grape withering to optimise the aroma of the final wine: A case study on Amarone. Food Chem. 2016, 213, 378–387. [Google Scholar] [CrossRef]
- Ferrarini, R. L’effetto “Appassimento” su Corvina, Corvinone e Rondinella. L’Enologo 2014, 4, 26–34. [Google Scholar]
- Matera, A.; Genovese, F.; Altieri, G.; Tauriello, A.; Di Renzo, G.C. Effects on must quality produced from sangiovese and cabernet grape frozen/withered using a forced air plant. Chem. Eng. Trans. 2017, 58, 343–348. [Google Scholar]
- Domizio, P.; Lencioni, L. Vin Santo. Adv. Food Nutr. Res. 2011, 63, 41–100. [Google Scholar] [PubMed]
- Costantini, V.; Bellincontro, A.; De Santis, D.; Botondi, R.; Mencarelli, F. Metabolic Changes of Malvasia Grapes for Wine Production during Postharvest Drying. J. Agric. Food Chem. 2006, 54, 3334–3340. [Google Scholar] [CrossRef]
- Frangipane, M.T.; Ceccarelli, A.; Mencarelli, F.; Anelli, G. Study of phenolic compounds in aleatico grapes dried. Ital. J. Food Sci. 2007, 19, 203–208. [Google Scholar]
- Serratosa, M.P.; Lopez-Toledano, A.; Merida, J.; Medina, M. Changes in Color and Phenolic Compounds during the Raisining of Grape Cv. Pedro Ximenez. J. Agric. Food Chem. 2008, 56, 2810–2816. [Google Scholar] [CrossRef] [PubMed]
- Bellincontro, A.; Nicoletti, I.; Valentini, M.; Tomas, A.; De Santis, D.; Corradini, D.; Mencarelli, F. Integration of nondestructive techniques with destructive analyses to study postharvest water stress of winegrapes. Am. J. Enol. Vitic. 2009, 60, 57–65. [Google Scholar]
- Ruiz, M.J.; Zea, L.; Moyano, L.; Medina, M. Aroma active compounds during the drying of grapes cv. Pedro Ximenez destined to the production of sweet Sherry wine. Eur. Food Res. Technol. 2010, 230, 429–435. [Google Scholar] [CrossRef]
- Centioni, L.; Tiberi, D.; Pietromarchi, P.; Bellincontro, A.; Mencarelli, F. Effect of Postharvest Dehydration on Content of Volatile Organic Compounds in the Epicarp of Cesanese Grape Berry. Am. J. Enol. Vitic. 2014, 65, 333–340. [Google Scholar] [CrossRef]
- De Rosso, M.; Soligo, S.; Panighel, A.; Carraro, R.; Vedova, A.D.; Maoz, I.; Tomasi, D.; Flamini, R. Changes in grape polyphenols (V. vinifera L.) as a consequence of post-harvest withering by high-resolution mass spectrometry: Raboso Piave versus Corvina. J. Mass Spectrom. 2016, 51, 750–760. [Google Scholar] [CrossRef] [PubMed]
- Zenoni, S.; Amato, A.; D’Incà, E.; Guzzo, F.; Tornielli, G.B. Rapid dehydration of grape berries dampens the post-ripening transcriptomic program and the metabolite profile evolution. Hortic. Res. 2020, 7, 141. [Google Scholar] [CrossRef] [PubMed]
- Constantinou, S.; Gómez-Caravaca, A.M.; Goulas, V.; Segura-Carretero, A.; Koundouras, S.; Manganaris, G.A. The impact of postharvest dehydration methods on qualitative attributes and chemical composition of ‘Xynisteri’ grape (Vitis vinifera) must. Postharvest Biol. Technol. 2018, 135, 114–122. [Google Scholar]
- Urcan, D.E.; Giacosa, S.; Torchio, F.; Río Segade, S.; Raimondi, S.; Bertolino, M.; Gerbi, V.; Pop, N.; Rolle, L. ‘Fortified’ wines volatile composition: Effect of different postharvest dehydration conditions of wine grapes cv. Malvasia moscata (Vitis vinifera L.). Food Chem. 2017, 219, 346–356. [Google Scholar] [PubMed]
- Bellincontro, A.; De Santis, D.; Botondi, R.; Villa, I.; Mencarelli, F. Different postharvest dehydration rates affect quality characteristics and volatile compounds of Malvasia, Trebbiano and Sangiovese grapes for wine production. J. Sci. Food Agric. 2004, 84, 1791–1800. [Google Scholar] [CrossRef]
- Rolle, L.; Giordano, M.; Giacosa, S.; Vincenzi, S.; Río Segade, S.; Torchio, F.; Perrone, B.; Gerbi, V. CIEL*a*b* parameters of white dehydrated grapes as quality markers according to chemical composition, volatile profile and mechanical properties. Anal. Chim. Acta 2012, 732, 105–113. [Google Scholar]
- Moreno, J.J.; Cerpa-Calderón, F.; Cohen, S.D.; Fang, Y.; Qian, M.; Kennedy, J.A. Effect of postharvest dehydration on the composition of pinot noir grapes (Vitis vinifera L.) and wine. Food Chem. 2008, 109, 755–762. [Google Scholar] [PubMed]
- Serratosa, M.P.; Marquez, A.; Moyano, L.; Zea, L.; Merida, J. Chemical and morphological characterization of Chardonnay and Gewürztraminer grapes and changes during chamber-drying under controlled conditions. Food Chem. 2014, 159, 128–136. [Google Scholar]
- Lichter, A.; Kaplunov, T.; Zutahy, Y.; Daus, A.; Alchanatis, V.; Ostrovsky, V.; Lurie, S. Physical and visual properties of grape rachis as affected by water vapor pressure deficit. Postharvest Biol. Technol. 2011, 59, 25–33. [Google Scholar]
- Franco, M.; Peinado, R.A.; Medina, M.; Moreno, J. Off-Vine Grape Drying Effect on Volatile Compounds and Aromatic Series in Must from Pedro Ximénez Grape Variety. J. Agric. Food Chem. 2004, 52, 3905–3910. [Google Scholar] [CrossRef]
- Cirilli, M.; Bellincontro, A.; De Santis, D.; Botondi, R.; Colao, M.C.; Muleo, R.; Mencarelli, F. Temperature and water loss affect ADH activity and gene expression in grape berry during postharvest dehydration. Food Chem. 2012, 132, 447–454. [Google Scholar]
- Noguerol-Pato, R.; González-Álvarez, M.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Evolution of the aromatic profile in Garnacha Tintorera grapes during raisining and comparison with that of the naturally sweet wine obtained. Food Chem. 2013, 139, 1052–1061. [Google Scholar] [PubMed]
- Rapp, A.; Marais, J. The shelf life of wine: Changes in aroma substances during storage and ageing of white wines. In Shelf Life Studies of Food and Beverages Chemical, Biological, Physical and Nutritional Aspects; Charalambous, G., Ed.; Elsevier Science Publishers: Amsterdam, The Netherlands, 1993; pp. 891–921. [Google Scholar]
- Oliveira, C.; Silva Ferreira, A.C.; Mendes Pinto, M.; Hogg, T.; Alves, F.; Guedes de Pinho, P. Carotenoid Compounds in Grapes and Their Relationship to Plant Water Status. J. Agric. Food Chem. 2003, 51, 5967–5971. [Google Scholar] [CrossRef]
- Liu, B.; Kaurilind, E.; Jiang, Y.; Niinemets, Ü. Methyl salicylate differently affects benzenoid and terpenoid volatile emissions in Betula pendula. Tree Physiol. 2018, 38, 1513–1525. [Google Scholar] [PubMed]
- Ganga, A.; Piñaga, F.; Querol, A.; Vallés, S.; Ramón, D. Cell-Wall Degrading Enzymes in the Release of Grape Aroma Precursors. Food Sci. Technol. Int. 2001, 7, 83–87. [Google Scholar] [CrossRef]
- Flanzy, C.; Flanzy, M.; Bernard, P. La Vinificación por Maceracioón Carbónica, 2nd ed.; AMV: Madrid, Spain, 2010; 144p. [Google Scholar]
- López de Lerma, N.; Moreno, J.; Peinado, R.A. Determination of the Optimum Sun-Drying Time for Vitis vinifera L. cv. Tempranillo Grapes by E-nose Analysis and Characterization of Their Volatile Composition. Food Bioprocess. Technol. 2014, 7, 732–740. [Google Scholar] [CrossRef]
- Sefton, M.A.; Francis, I.L.; Williams, P.J. The volatile composition of Chardonnay juices: A study by flavour precursor analysis. Am. J. Enol. Vitic. 1993, 44, 359–370. [Google Scholar]
- Santonico, M.; Bellincontro, A.; De Santis, D.; Di Natale, C.; Mencarelli, F. Electronic nose to study postharvest dehydration of wine grapes. Food Chem. 2010, 121, 789–796. [Google Scholar]
- Santiago Hurtado, J.I.; Lopez de Lerma, N.; Moreno, J.; Peinado, R.A. Effect of thermal treatment and oak chips on the volatile composition of Pedro Ximénez sweet wines. Am. J. Enol. Vitic. 2010, 61, 91–95. [Google Scholar]
- López de Lerma, N.; Peinado, J.; Moreno, J.; Peinado, R.A. Antioxidant activity, browning and volatile Maillard compounds in Pedro Ximénez sweet wines under accelerated oxidative aging. LWT-Food Sci. Technol. 2010, 43, 1557–1563. [Google Scholar]
- Lopez de Lerma, N.; Bellincontro, A.; Mencarelli, F.; Moreno, J.; Peinado, R.A. Use of electronic nose, validated by GC–MS, to establish the optimum off-vine dehydration time of wine grapes. Food Chem. 2012, 130, 447–452. [Google Scholar]
- Bellincontro, A.; Marotta, A.; Accordini, D.; Palliotti A, F.M. Impiego della spettroscopia NIR-AOTF per il monitoraggio in vigneto della maturazione e l’identificazione della corretta epoca di raccolta delle uve dell’Amarone. In SOI (Società di Ortoflorofrutticoltura Italiana); Acta Italus Hortus: Florence, Italy, 2014; pp. 138–139. [Google Scholar]
- Rösti, J.; Schumann, M.; Cleroux, M.; Lorenzini, F.; Zufferey, V.; Rienth, M. Effect of drying on tartaric acid and malic acid in Shiraz and Merlot berries. Aust. J. Grape Wine Res. 2018, 24, 421–429. [Google Scholar] [CrossRef]
- Reščič, J.; Mikulič-Petkovšek, M.; Rusjan, D. The impact of partial dehydration on grape and wine chemical composition of white grapevine (Vitis vinifera L.) varieties. Eur. J. Hortic. Sci. 2016, 81, 310–320. [Google Scholar]
- Bonghi, C.; Rizzini, F.M.; Gambuti, A.; Moio, L.; Chkaiban, L.; Tonutti, P. Phenol compound metabolism and gene expression in the skin of wine grape (Vitis vinifera L.) berries subjected to partial postharvest dehydration. Postharvest Biol. Technol. 2012, 67, 102–109. [Google Scholar]
- Mencarelli, F.; Bellincontro, A.; Nicoletti, I.; Cirilli, M.; Muleo, R.; Corradini, D. Chemical and Biochemical Change of Healthy Phenolic Fractions in Winegrape by Means of Postharvest Dehydration. J. Agric. Food Chem. 2010, 58, 7557–7564. [Google Scholar] [CrossRef] [PubMed]
- Antelmi, G.; Bellincontro, A.; Mencarelli, F.; Nicoletti, I.; Corradini, D. How dehydration temperature and weight loss affect the biosynthesis of nutritional compounds in irrigated “Aleatico” grape. Acta Hortic. 2010, 693–698. [Google Scholar] [CrossRef]
- Ojeda, H.; Andary, C.; Kraeva, E.; Carbonneau, A.; Deloire, A. Influence of Pre- and Postveraison Water Deficit on Synthesis and Concentration of Skin Phenolic Compounds during Berry Growth of Vitis vinifera cv. Shiraz. Am. J. Enol. Vitic. 2002, 53, 261–267. [Google Scholar]
- El-Kereamy, A.; Chervin, C.; Roustan, J.-P.; Cheynier, V.; Souquet, J.-M.; Moutounet, M.; Raynal, J.; Ford, C.; Latché, A.; Pech, J.-C.; et al. Exogenous ethylene stimulates the long-term expression of genes related to anthocyanin biosynthesis in grape berries. Physiol. Plant. 2003, 119, 175–182. [Google Scholar] [CrossRef]
- Cargnello, G.; Pezza, L.; Gallo, G.; Camatta, T.; Coccato, S.; Pascarella, G.; Di Gaetano, R.; Casadei, G.; La Torre, A.; Spera, G.; et al. D.M.R. (“Double Reasoned Maturing”): Innovative technique of agronomic ecologic control of grey mould on grapevine. trials and various considerations. Commun Agric. Appl. Biol. Sci. 2006, 71 Pt B, 1055–1061. [Google Scholar]
- Corso, M.; Ziliotto, F.; Rizzini, F.M.; Teo, G.; Cargnello, G.; Bonghi, C. Sensorial, biochemical and molecular changes in Raboso Piave grape berries applying “Double Maturation Raisonnée” and late harvest techniques. Plant. Sci. 2013, 208, 50–57. [Google Scholar]
- Bautista-Castaño, I.; Serra-Majem, L. Relationship between bread consumption, body weight, and abdominal fat distribution: Evidence from epidemiological studies. Nutr. Rev. 2012, 70, 218–233. [Google Scholar] [PubMed]
- Panceri, C.P.; Gomes, T.M.; De Gois, J.S.; Borges, D.L.G.; Bordignon-Luiz, M.T. Effect of dehydration process on mineral content, phenolic compounds and antioxidant activity of Cabernet Sauvignon and Merlot grapes. Food Res. Int. 2013, 54, 1343–1350. [Google Scholar]
- Constantinou, S.; Gómez-Caravaca, A.M.; Goulas, V.; Segura-Carretero, A.; Manganaris, G.A. Metabolic fingerprinting of must obtained from sun-dried grapes of two indigenous Cypriot cultivars destined for the production of ‘Commandaria’: A protected destignation of origin product. Food Res. Int. 2017, 100, 469–476. [Google Scholar]
- Wang, R.; Ding, S.; Zhao, D.; Wang, Z.; Wu, J.; Hu, X. Effect of dehydration methods on antioxidant activities, phenolic contents, cyclic nucleotides, and volatiles of jujube fruits. Food Sci. Biotechnol. 2016, 25, 137–143. [Google Scholar] [CrossRef]
- Rolle, L.; Torchio, F.; Giacosa, S.; Gerbi, V. Modifications of mechanical characteristics and phenolic composition in berry skins and seeds of Mondeuse winegrapes throughout the on-vine drying process. J. Sci. Food Agric. 2009, 89, 1973–1980. [Google Scholar] [CrossRef]
- Río Segade, S.; Soto Vázquez, E.; Díaz Losada, E. Influence of ripeness grade on accumulation and extractability of grape skin anthocyanins in different cultivars. J. Food Compos. Anal. 2008, 21, 599–607. [Google Scholar]
- Hernández-Hierro, J.M.; Quijada-Morín, N.; Martínez-Lapuente, L.; Guadalupe, Z.; Ayestarán, B.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Relationship between skin cell wall composition and anthocyanin extractability of Vitis vinifera L. cv. Tempranillo at different grape ripeness degree. Food Chem. 2014, 146, 41–47. [Google Scholar]
- Figueiredo-González, M.; Cancho-Grande, B.; Simal-Gándara, J. Garnacha Tintorera-based sweet wines: Chromatic properties and global phenolic composition by means of UV–Vis spectrophotometry. Food Chem. 2013, 140, 217–224. [Google Scholar]
- Jackson, R.S. Wine Science: Principles and Applications, 3rd ed.; Academic Press: Burlington, VT, USA, 2008; pp. 287–295. [Google Scholar]
- Toffali, K.; Zamboni, A.; Anesi, A.; Stocchero, M.; Pezzotti, M.; Levi, M.; Guzzo, F. Novel aspects of grape berry ripening and post-harvest withering revealed by untargeted LC-ESI-MS metabolomics analysis. Metabolomics 2011, 7, 424–436. [Google Scholar] [CrossRef]
- De Rosso, M.; Panighel, A.; Carraro, R.; Padoan, E.; Favaro, A.; Dalla Vedova, A.; Flamini, R. Chemical Characterization and Enological Potential of Raboso Varieties by Study of Secondary Grape Metabolites. J. Agric. Food Chem. 2010, 58, 11364–11371. [Google Scholar] [CrossRef]
- Peinado, J.; López de Lerma, N.; Peinado, R.A. Synergistic antioxidant interaction between sugars and phenolics from a sweet wine. Eur. Food Res. Technol. 2010, 231, 363–370. [Google Scholar] [CrossRef]
- Marquez, A.; Serratosa, M.P.; Lopez-Toledano, A.; Merida, J. Colour and phenolic compounds in sweet red wines from Merlot and Tempranillo grapes chamber-dried under controlled conditions. Food Chem. 2012, 130, 111–120. [Google Scholar]
- Serratosa, M.P.; Lopez-Toledano, A.; Medina, M.; Merida, J. Characterisation of the Colour Fraction of Pedro Ximenez Andalusian Sweet Wines. S. Afr. J. Enol. Vitic. 2011, 32. [Google Scholar] [CrossRef] [Green Version]
- Lorrain, B.; Ky, I.; Pechamat, L.; Teissedre, P.-L. Evolution of Analysis of Polyhenols from Grapes, Wines, and Extracts. Molecules 2013, 18, 1076–1100. [Google Scholar] [PubMed]
- Corradini, D.; Nicoletti, I. Changes in Phenolic Compounds. In Sweet, Reinforced and Fortified Wines; John Wiley & Sons, Ltd.: Oxford, UK, 2013; pp. 105–118. [Google Scholar] [CrossRef]
- Nurmi, T.; Heinonen, S.; Mazur, W.; Deyama, T.; Nishibe, S.; Adlercreutz, H. Lignans in selected wines. Food Chem. 2003, 83, 303–309. [Google Scholar]
- Bavaresco, L.; Mattivi, F.; De Rosso, M.; Flamini, R. Effects of Elicitors, Viticultural Factors, and Enological Practices on Resveratrol and Stilbenes in Grapevine and Wine. Mini-Rev. Med. Chem. 2012, 12, 1366–1381. [Google Scholar] [PubMed]
- Jeandet, P.; Delaunois, B.; Conreux, A.; Donnez, D.; Nuzzo, V.; Cordelier, S.; Clément, C.; Courot, E. Biosynthesis, metabolism, molecular engineering, and biological functions of stilbene phytoalexins in plants. BioFactors 2010, 36, 331–341. [Google Scholar] [CrossRef]
- Flamini, R.; Zanzotto, A.; de Rosso, M.; Lucchetta, G.; Vedova, A.D.; Bavaresco, L. Stilbene oligomer phytoalexins in grape as a response to Aspergillus carbonarius infection. Physiol. Mol. Plant. Pathol. 2016, 93, 112–118. [Google Scholar]
- Zoccatelli, G.; Zenoni, S.; Savoi, S.; Dal Santo, S.; Tononi, P.; Zandonà, V.; Dal Cin, A.; Guantieri, V.; Pezzotti, M.; Tornielli, G.B. Skin pectin metabolism during the postharvest dehydration of berries from three distinct grapevine cultivars. Aust. J. Grape Wine Res. 2013, 19, 171–179. [Google Scholar] [CrossRef]
- Guerrini, L.; Calamai, L.; Angeloni, G.; Masella, P.; Parenti, A. Qualitative effects of the addition of withered grapes to a freshly produced red wine: The traditional governo all’uso toscano practice. Aust. J. Grape Wine Res. 2020, 26, 271–278. [Google Scholar]
- Ferrarini, R. Nuova tecnologia per la surmaturazione delle uve. Vignevini 1982, 4, 37. [Google Scholar]
- Venturi, F.; Taglieri, I.; Sanmartin, C.; Ferroni, G.; Scalabrelli, G.; Ini, G.F.; Macaluso, M.; Coscetti, R.; Andrich, G.; Zinnai, A. Predicatore: An innovative sweet red wine as a tool for the economic enhancement of grape wastes derived by cluster thinning. Agrochimica 2019, 63, 291–304. [Google Scholar]
- Marquez, A.; Dueñas, M.; Serratosa, M.P.; Merida, J. Formation of Vitisins and Anthocyanin–Flavanol Adducts during Red Grape Drying. J. Agric. Food Chem. 2012, 60, 6866–6874. [Google Scholar] [CrossRef]
- Perestrelo, R.; Rodriguez, E.; Câmara, J.S. Impact of storage time and temperature on furanic derivatives formation in wines using microextraction by packed sorbent tandem with ultrahigh pressure liquid chromatography. LWT-Food Sci. Technol. 2017, 76, 40–47. [Google Scholar]
- Figueiredo-González, M.; Cancho-Grande, B.; Simal-Gándara, J. Effects on colour and phenolic composition of sugar concentration processes in dried-on- or dried-off-vine grapes and their aged or not natural sweet wines. Trends Food Sci. Technol. 2013, 31, 36–54. [Google Scholar]
- Rolle, L.; Giacosa, S.; Gerbi, V.; Bertolino, M.; Novello, V. Varietal Comparison of The Chemical, Physical, and Mechanical Properties of Five Colored Table Grapes. Int. J. Food Prop. 2013, 16, 598–612. [Google Scholar] [CrossRef] [Green Version]
- Slaghenaufi, D.; Boscaini, A.; Prandi, A.; Dal Cin, A.; Zandonà, V.; Luzzini, G.; Ugliano, M. Influence of Different Modalities of Grape Withering on Volatile Compounds of Young and Aged Corvina Wines. Molecules 2020, 25, 2141. [Google Scholar]
- Constantinou, S.; Gómez-Caravaca, A.M.; Goulas, V.; Fernandez-Gutierrez, A.; Koundouras, S.; Manganaris, G.A. Leaf removal at veraison stage differentially affects qualitative attributes and bioactive composition of fresh and dehydrated grapes of two indigenous Cypriot cultivars. J. Sci. Food Agric. 2019, 99, 1342–1350. [Google Scholar] [PubMed]
- Torchio, F.; Urcan, D.E.; Lin, L.; Gerbi, V.; Giacosa, S.; Río Segade, S.; Pop, N.; Lambri, M.; Rolle, L. Influence of different withering conditions on phenolic composition of Avanà, Chatus and Nebbiolo grapes for the production of “Reinforced” wines. Food Chem. 2016, 194, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Peinado, J.; Lopez de Lerma, N.; Moreno, J.; Peinado, R.A. Antioxidant activity of different phenolics fractions isolated in must from Pedro Ximenez grapes at different stages of the off-vine drying process. Food Chem. 2009, 114, 1050–1055. [Google Scholar]
- Panceri, C.P.; De Gois, J.S.; Borges, D.L.G.; Bordignon-Luiz, M.T. Effect of grape dehydration under controlled conditions on chemical composition and sensory characteristics of Cabernet Sauvignon and Merlot wines. LWT-Food Sci. Technol. 2015, 63, 228–235. [Google Scholar] [CrossRef]
- Cheynier, V.; Souquet, J.-M.; Kontek, A.; Moutounet, M. Anthocyanin degradation in oxidising grape musts. J. Sci. Food Agric. 1994, 66, 283–288. [Google Scholar] [CrossRef]
- Zironi, R.; Ferrarini, R. La surmaturazione delle uve destinate alla vinificazione. Vignevini 1987, 14, 31–45. [Google Scholar]
- Zinnai, A.; Venturi, F.; Sanmartin, C.; Quartacci, M.F.; Andrich, G. Kinetics of d-glucose and d-fructose conversion during the alcoholic fermentation promoted by Saccharomyces cerevisiae. J. Biosci. Bioeng. 2013, 115, 43–49. [Google Scholar] [PubMed]
- Zinnai, A.; Venturi, F.; Sanmartin, C.; Quartacci, M.F.F.; Andrich, G. A mathematical model to evaluate the kinetics of D-glucose and D-fructose fermentations by saccharomyces bayanus at increasing ethanol concentrations. S. Afr. J. Enol. Vitic. 2014, 35, 114–124. [Google Scholar]
- Barata, A.; Malfeito-Ferreira, M.; Loureiro, V. The microbial ecology of wine grape berries. Int. J. Food Microbiol. 2012, 153, 243–259. [Google Scholar] [CrossRef] [PubMed]
- López de Lerma, N.; Peinado, R.A. Use of two osmoethanol tolerant yeast strain to ferment must from Tempranillo dried grapes. Effect on wine composition. Int. J. Food Microbiol. 2011, 145, 342–348. [Google Scholar] [CrossRef]
- Reboredo-Rodríguez, P.; González-Barreiro, C.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gándara, J. Effects of Sugar Concentration Processes in Grapes and Wine Aging on Aroma Compounds of Sweet Wines—A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1053–1073. [Google Scholar]
- Leng, L.; Yang, P.; Mao, Y.; Wu, Z.; Zhang, T.; Lee, P.-H. Thermodynamic and physiological study of caproate and 1,3-propanediol co-production through glycerol fermentation and fatty acids chain elongation. Water Res. 2017, 114, 200–209. [Google Scholar]
- Bisson, L.F. Bisson L Stuck and Sluggish Fermentations Www.Infowine.Com Internet Journal of Viticulture and Enology 2005 9 Stuck and Sluggish Fermentations. Am. J. Enol. Vitic. 1999, 50, 107–119. [Google Scholar]
- Lorenzinim, M.; Mainente, F.; Zapparoli, G.; Cecconi, D.; Simonato, B. Post-harvest proteomics of grapes infected by Penicillium during withering to produce Amarone wine. Food Chem. 2016, 199, 639–647. [Google Scholar]
- Zinnai, A.; Venturi, F.; Sanmartin, C.; Quartacci, M.F.; Andrich, G. Chemical and Laccase catalysed oxidation of gallic acid: Determination of kinetic parameters. Res. J. Biotechnol. 2013, 8, 62–65. [Google Scholar]
- Venturi, F.; Andrich, G.; Quartacci, M.F.; Sanmartin, C.; Andrich, L.; Zinnai, A. A kinetic method to identify the optimum temperature for β-glucanase activity. S. Afr. J. Enol. Vitic. 2013, 34, 281–286. [Google Scholar]
- Moio, L.; Piombino, P. Management of Vinification and Stabilization to Preserve the Aroma Characteristic of Dehydrated Grape. In Sweet, Reinforced and Fortified Wines; John Wiley & Sons, Ltd.: Oxford, UK, 2013; pp. 131–144. [Google Scholar] [CrossRef]
- Ferreira, V. Volatile aroma compounds and wine sensory attributes. In Managing Wine Quality; Elsevier: Amsterdam, The Netherlands, 2010; pp. 3–28. [Google Scholar]
- López de Lerma, N.; García Martínez, T.; Moreno, J.; Mauricio, J.C.; Peinado, R.A. Sweet wines with great aromatic complexity obtained by partial fermentation of must from Tempranillo dried grapes. Eur. Food Res. Technol. 2012, 234, 695–701. [Google Scholar] [CrossRef]
- Genovese, A.; Gambuti, A.; Piombino, P.; Moio, L. Sensory properties and aroma compounds of sweet Fiano wine. Food Chem. 2007, 103, 1228–1236. [Google Scholar]
- Avizcuri-Inac, J.M.; González-Hernández, M.; Rosáenz-Oroz, D.; MartínezRuiz, R.; Vaquero-Fernández, L. Chemical and sensory characterisation of sweet wines obtained by different techniques. Cienc e Tec Vitivinic 2018, 33, 15–30. [Google Scholar]
- Arendse, E.; Fawole, O.A.; Magwaza, L.S.; Opara, U.L. Non-destructive prediction of internal and external quality attributes of fruit with thick rind: A review. J. Food Eng. 2018, 217, 11–23. [Google Scholar]
- Cozzolino, D.; Cynkar, W.U.; Shah, N.; Smith, P. Multivariate data analysis applied to spectroscopy: Potential application to juice and fruit quality. Food Res. Int. 2011, 44, 1888–1896. [Google Scholar]
- Nicolaï, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar]
- Wang, H.; Peng, J.; Xie, C.; Bao, Y.; He, Y. Fruit Quality Evaluation Using Spectroscopy Technology: A Review. Sensors 2015, 15, 11889–11927. [Google Scholar]
- Cozzolino, D.; Dambergs, R.G.; Janik, L.; Cynkar, W.U.; Gishen, M. Analysis of grapes and wine by near infrared spectroscopy. J. Near Infrared Spectrosc. 2006, 14, 279–289. [Google Scholar]
- Bellincontro, A.; Cozzolino, D.; Mencarelli, F. Application of NIR-AOTF Spectroscopy to Monitor Aleatico Grape Dehydration for Passito Wine Production. Am. J. Enol. Vitic. 2011, 62, 256–260. [Google Scholar]
- Beghi, R.; Giovenzana, V.; Marai, S.; Guidetti, R. Rapid monitoring of grape withering using visible near-infrared spectroscopy. J. Sci. Food Agric. 2015, 95, 3144–3149. [Google Scholar] [PubMed]
- Accordini, D. Amarone. In Sweet, Reinforced and Fortified Wines; Mencarelli, F., Tonutti, P., Eds.; John Wiley & Sons, Ltd.: Oxford, UK, 2013; pp. 187–203. [Google Scholar] [CrossRef]
- Tan, J.; Xu, J. Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: A review. Artif. Intell. Agric. 2020, 4, 104–115. [Google Scholar]
- Matindoust, S.; Baghaei-Nejad, M.; Zou, Z.; Zheng, L.-R. Food quality and safety monitoring using gas sensor array in intelligent packaging. Sens. Rev. 2016, 36, 169–183. [Google Scholar] [CrossRef]
- Di Natale, C.; Paolesse, R.; D’Amico, A. Metalloporphyrins based artificial olfactory receptors. Sens. Actuators B Chem. 2007, 121, 238–246. [Google Scholar]
- Bresson, J.; Vasseur, F.; Dauzat, M.; Koch, G.; Granier, C.; Vile, D. Quantifying spatial heterogeneity of chlorophyll fluorescence during plant growth and in response to water stress. Plant. Methods 2015, 11, 23. [Google Scholar] [CrossRef] [Green Version]
- Misra, A.N. Biophysics; BoD—Books on Demand: Norderstedt, Germany; Available online: https://books.google.it/books?id=mbqZDwAAQBAJ (accessed on 11 May 2021).
- Lichtenthaler, H.K.; Hak, R.; Rinderle, U. The chlorophyll fluorescence ratio F690/F730 in leaves of different chlorophyll content. Photosynth. Res. 1990, 25, 295–298. [Google Scholar] [CrossRef]
- Nedbal, L.; Whitmarsh, J. Chlorophyll Fluorescence Imaging of Leaves and Fruits. In Chlorophyll a Fluorescence; Springer: Dordrecht, The Netherlands, 2004; pp. 389–407. [Google Scholar] [CrossRef]
- Gorbe, E.; Calatayud, A. Applications of chlorophyll fluorescence imaging technique in horticultural research: A review. Sci. Hortic. 2012, 138, 24–35. [Google Scholar]
- Yamauchi, N. Postharvest Chlorophyll Degradation and Oxidative Stress. In Abiotic Stress Biology in Horticultural Plants; Kanayama, Y., Kochetov, A., Eds.; Springer: Tokyo, Japan, 2015; pp. 101–113. [Google Scholar] [CrossRef]
- Prange, R.K.; DeLong, J.M.; Wright, A.H. Chlorophyll Fluorescence: Applications in Postharvest Horticulture. Chron. Horticult. 2010, 50, 13–16. [Google Scholar]
- Prange, R.K.; DeLong, J.M.; Wright, A.H. Improving our understanding of storage stress using chlorophyll fluorescence. Acta Hortic. 2012, 89–96. [Google Scholar] [CrossRef]
- Ramin, A.A.; Prange, R.K.; DeLong, J.M.; Harrison, P.A. Evaluation of Relationship between Moisture Loss in Grapes and Chlorophyll Fluorescence Measured as F0 (F-α) Reading. J. Agric. Sci. Technol. 2008, 10, 471–479. [Google Scholar]
- Kamal, T.; Cheng, S.; Khan, I.A.; Nawab, K.; Zhang, T.; Song, Y.; Wang, S.; Nadeem, M.; Riaz, M.; Khan, M.A.U.; et al. Potential uses of LF-NMR and MRI in the study of water dynamics and quality measurement of fruits and vegetables. J. Food Process. Preserv. 2019, 43. [Google Scholar] [CrossRef]
- Kirtil, E.; Cikrikci, S.; McCarthy, M.J.; Oztop, M.H. Recent advances in time domain NMR & MRI sensors and their food applications. Curr. Opin. Food Sci. 2017, 17, 9–15. [Google Scholar]
- Melchinger, A.E.; Munder, S.; Mauch, F.J.; Mirdita, V.; Böhm, J.; Müller, J. High-throughput platform for automated sorting and selection of single seeds based on time-domain nuclear magnetic resonance (TD-NMR) measurement of oil content. Biosyst. Eng. 2017, 164, 213–220. [Google Scholar]
- Andaur, J.E.; Guesalaga, A.R.; Agosin, E.E.; Guarini, M.W.; Irarrázaval, P. Magnetic Resonance Imaging for Nondestructive Analysis of Wine Grapes. J. Agric. Food Chem. 2004, 52, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Burdon, J.; Clark, C. Effect of postharvest water loss on ‘Hayward’ kiwifruit water status. Postharvest Biol. Technol. 2001, 22, 215–225. [Google Scholar]
Known System of Grape Berry Water Loss | Practice or Technique | Note |
---|---|---|
Sun-drying | Practice | |
Sun-drying in plastic tunnel | Practice/technique | Berry water loss |
Uncontrolled dehydration in fruttaio (close facility) | Practice/technique | |
Controlled dehydration in fruttaio | Technique | |
Withering in fruttaio with ambient control | Technique | Berry water loss and senescence |
Cane-cut/twisted on-vine | Practice/technique | Berry water loss and senescence on vine with cut or twisted bunch branch |
Late harvest | Practice | Berry water loss and senescence on vine |
Noble rot | Practice | Botrytis cinerea is the main factor responsible for water loss |
Ice wine | Practice | The water loss depends on the length of the freezing process |
VOC Chemical Class | Putative Process Markers | Cultivar | Dehydration Protocol | Reference |
---|---|---|---|---|
Carboxylic acids | octanoic acid | Pedro Ximeénez | SD | [48] |
Alcohols | ethanol, Isobutanol | Malvasia, Pedro Ximeénez, Sangiovese, Trebbiano | CC, SD | [20,43,48,49] |
Terpenes | linalool oxides | Cesanese, Malvasia moscata, Moscato nero d’Acqui | CC | [2,25,29] |
Esters | ethyl acetate, isoamyl acetate | Malvasia, Sangiovese, Tempranillo, Trebbiano | CC | [30,43] |
Lactones | γ-valerolactone, γ-butyrolactone | Pedro Ximeénez, Tempranillo | SD | [43,48] |
Phenols | vinylguaiacol, vanillin | Cesanese, Tempranillo | CC, SD | [25,43] |
Maillard reaction products | furfural, 5-methylfurfural | Montepulciano, Pedro Ximeénez, Tempranillo | SD | [43,45,48] |
Non-Volatile Chemical Class | Putative Process Markers | Cultivar | Dehydration Protocol | Reference |
---|---|---|---|---|
Organic acids | tartaric acid malic acid | Moscato nero d’Acqui, Amarone | CC | [2,15] |
Anthocyanins | peonidin-3-O-glucoside | Moscato nero d’Acqui, Raboso Piave | CC | [2,26] |
Hydroxybenzoic acid | protocatechic acid | Xynisteri | UC | [28] |
Hydroxycinnamic acids | caftaric acid | Xynisteri | UC | [28] |
Flavonols | quercetin-3-O-glucoronide | Raboso Piave, Xynisteri | CC, UC | [26,28] |
Flavan-3-ols | catechin, epicatechin | Cabernet Sauvignon, Xynisteri | UC | [28,60] |
Stilbenes | trans-resveratrol, trans-piceid | Aleatico, Cabernet Sauvignon, Corvina, Raboso Piave, Xynisteri | CC, UC | [26,28,53,60] |
Lignans | isolariciresinol-β-4′-O-glucopyranoside | Xynisteri | UC | [28] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanmartin, C.; Modesti, M.; Venturi, F.; Brizzolara, S.; Mencarelli, F.; Bellincontro, A. Postharvest Water Loss of Wine Grape: When, What and Why. Metabolites 2021, 11, 318. https://doi.org/10.3390/metabo11050318
Sanmartin C, Modesti M, Venturi F, Brizzolara S, Mencarelli F, Bellincontro A. Postharvest Water Loss of Wine Grape: When, What and Why. Metabolites. 2021; 11(5):318. https://doi.org/10.3390/metabo11050318
Chicago/Turabian StyleSanmartin, Chiara, Margherita Modesti, Francesca Venturi, Stefano Brizzolara, Fabio Mencarelli, and Andrea Bellincontro. 2021. "Postharvest Water Loss of Wine Grape: When, What and Why" Metabolites 11, no. 5: 318. https://doi.org/10.3390/metabo11050318
APA StyleSanmartin, C., Modesti, M., Venturi, F., Brizzolara, S., Mencarelli, F., & Bellincontro, A. (2021). Postharvest Water Loss of Wine Grape: When, What and Why. Metabolites, 11(5), 318. https://doi.org/10.3390/metabo11050318