Potential Metabolic Biomarkers in Adult Asthmatics
Abstract
:1. Introduction
2. Risk Factors in Asthma Pathogenesis
2.1. Genetic and Epigenetic Factors
2.2. Environmental Factors
3. Identification of “Omics” Markers in Asthma
3.1. Genomics
3.2. Transcriptomics
3.3. Proteomics
3.4. Metabolomics
3.5. Limitation of “Omics” in Biomaker Identification for Asthma
4. Metabolic Pathways Involved in Asthma
4.1. Amino Acid Metabolism
4.2. Lipid Metabolism
5. Changes in Metabolite Profiles According to the Phenotype of Asthma
5.1. Mild-to-Moderate Asthma
5.2. Severe Asthma
5.3. Obese Asthma
6. Clinical Implications and Perspectives of Various Metabolites
Author Contributions
Funding
Conflicts of Interest
References
- Kuruvilla, M.E.; Lee, F.E.; Lee, G.B. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin. Rev. Allergy Immunol. 2019, 56, 219–233. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.L.; Ho, S.M. Environmental epigenetics and asthma: Current concepts and call for studies. Am. J. Respir. Crit. Care Med. 2008, 177, 567–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, T.F.; Zeki, A.A.; Kraft, M. Eosinophilic and Noneosinophilic Asthma. Am. J. Respir. Crit. Care Med. 2018, 197, 22–37. [Google Scholar] [CrossRef] [PubMed]
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. [Google Scholar] [CrossRef]
- Zhang, A.; Sun, H.; Wang, X. Saliva metabolomics opens door to biomarker discovery, disease diagnosis, and treatment. Appl. Biochem. Biotechnol. 2012, 168, 1718–1727. [Google Scholar] [CrossRef]
- Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Sun, H.; Yan, G.; Wang, P.; Wang, X. Metabolomics for Biomarker Discovery: Moving to the Clinic. BioMed Res. Int. 2015, 2015, 354671. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Snyder, M.P. Integrative omics for health and disease. Nat. Rev. Genet. 2018, 19, 299–310. [Google Scholar] [CrossRef]
- Kelly, R.S.; Dahlin, A.; McGeachie, M.J.; Qiu, W.; Sordillo, J.; Wan, E.S.; Wu, A.C.; Lasky-Su, J. Asthma Metabolomics and the Potential for Integrative Omics in Research and the Clinic. Chest 2017, 151, 262–277. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, S.F.; van der Sluis, S.; Kyvik, K.O.; Skytthe, A.; Backer, V. Estimates of asthma heritability in a large twin sample. Clin. Exp. Allergy 2010, 40, 1054–1061. [Google Scholar] [CrossRef]
- Dold, S.; Wjst, M.; von Mutius, E.; Reitmeir, P.; Stiepel, E. Genetic risk for asthma, allergic rhinitis, and atopic dermatitis. Arch. Dis. Child. 1992, 67, 1018–1022. [Google Scholar] [CrossRef] [Green Version]
- El-Husseini, Z.W.; Gosens, R.; Dekker, F.; Koppelman, G.H. The genetics of asthma and the promise of genomics-guided drug target discovery. Lancet Respir. Med. 2020, 8, 1045–1056. [Google Scholar] [CrossRef]
- Bush, W.S.; Moore, J.H. Chapter 11: Genome-wide association studies. PLoS Comput. Biol. 2012, 8, e1002822. [Google Scholar] [CrossRef] [Green Version]
- Willis-Owen, S.A.G.; Cookson, W.O.C.; Moffatt, M.F. The Genetics and Genomics of Asthma. Annu. Rev. Genom. Hum. Genet. 2018, 19, 223–246. [Google Scholar] [CrossRef]
- Weinhold, B. Epigenetics: The science of change. Environ. Health Perspect 2006, 114, A160–A167. [Google Scholar] [CrossRef] [Green Version]
- Brand, S.; Kesper, D.A.; Teich, R.; Kilic-Niebergall, E.; Pinkenburg, O.; Bothur, E.; Lohoff, M.; Garn, H.; Pfefferle, P.I.; Renz, H. DNA methylation of TH1/TH2 cytokine genes affects sensitization and progress of experimental asthma. J. Allergy Clin. Immunol. 2012, 129, 1602–1610.e6. [Google Scholar] [CrossRef]
- Gunawardhana, L.P.; Gibson, P.G.; Simpson, J.L.; Benton, M.C.; Lea, R.A.; Baines, K.J. Characteristic DNA methylation profiles in peripheral blood monocytes are associated with inflammatory phenotypes of asthma. Epigenetics 2014, 9, 1302–1316. [Google Scholar] [CrossRef] [Green Version]
- Deaton, A.M.; Webb, S.; Kerr, A.R.; Illingworth, R.S.; Guy, J.; Andrews, R.; Bird, A. Cell type-specific DNA methylation at intragenic CpG islands in the immune system. Genome Res. 2011, 21, 1074–1086. [Google Scholar] [CrossRef] [Green Version]
- Baxi, S.N.; Phipatanakul, W. The role of allergen exposure and avoidance in asthma. Adolesc Med. State Art Rev. 2010, 21, 57–71, viii–ix. [Google Scholar]
- Platts-Mills, T.; Leung, D.Y.; Schatz, M. The role of allergens in asthma. Am. Fam. Physician 2007, 76, 675–680. [Google Scholar]
- Holt, P.G.; Macaubas, C.; Stumbles, P.A.; Sly, P.D. The role of allergy in the development of asthma. Nature 1999, 402, B12–B17. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, S.E. Asthma phenotypes: The evolution from clinical to molecular approaches. Nat. Med. 2012, 18, 716–725. [Google Scholar] [CrossRef] [PubMed]
- Guarnieri, M.; Balmes, J.R. Outdoor air pollution and asthma. Lancet 2014, 383, 1581–1592. [Google Scholar] [CrossRef] [Green Version]
- Orellano, P.; Quaranta, N.; Reynoso, J.; Balbi, B.; Vasquez, J. Effect of outdoor air pollution on asthma exacerbations in children and adults: Systematic review and multilevel meta-analysis. PLoS ONE 2017, 12, e0174050. [Google Scholar] [CrossRef]
- Van Eerdewegh, P.; Little, R.D.; Dupuis, J.; Del Mastro, R.G.; Falls, K.; Simon, J.; Torrey, D.; Pandit, S.; McKenny, J.; Braunschweiger, K.; et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 2002, 418, 426–430. [Google Scholar] [CrossRef]
- Allen, M.; Heinzmann, A.; Noguchi, E.; Abecasis, G.; Broxholme, J.; Ponting, C.P.; Bhattacharyya, S.; Tinsley, J.; Zhang, Y.; Holt, R.; et al. Positional cloning of a novel gene influencing asthma from chromosome 2q14. Nat. Genet. 2003, 35, 258–263. [Google Scholar] [CrossRef]
- Zhang, Y.; Leaves, N.I.; Anderson, G.G.; Ponting, C.P.; Broxholme, J.; Holt, R.; Edser, P.; Bhattacharyya, S.; Dunham, A.; Adcock, I.M.; et al. Positional cloning of a quantitative trait locus on chromosome 13q14 that influences immunoglobulin E levels and asthma. Nat. Genet. 2003, 34, 181–186. [Google Scholar] [CrossRef]
- Laitinen, T.; Polvi, A.; Rydman, P.; Vendelin, J.; Pulkkinen, V.; Salmikangas, P.; Makela, S.; Rehn, M.; Pirskanen, A.; Rautanen, A.; et al. Characterization of a common susceptibility locus for asthma-related traits. Science 2004, 304, 300–304. [Google Scholar] [CrossRef]
- Nicolae, D.; Cox, N.J.; Lester, L.A.; Schneider, D.; Tan, Z.; Billstrand, C.; Kuldanek, S.; Donfack, J.; Kogut, P.; Patel, N.M.; et al. Fine mapping and positional candidate studies identify HLA-G as an asthma susceptibility gene on chromosome 6p21. Am. J. Hum. Genet. 2005, 76, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, E.; Yokouchi, Y.; Zhang, J.; Shibuya, K.; Shibuya, A.; Bannai, M.; Tokunaga, K.; Doi, H.; Tamari, M.; Shimizu, M.; et al. Positional identification of an asthma susceptibility gene on human chromosome 5q33. Am. J. Respir. Crit. Care Med. 2005, 172, 183–188. [Google Scholar] [CrossRef]
- Balaci, L.; Spada, M.C.; Olla, N.; Sole, G.; Loddo, L.; Anedda, F.; Naitza, S.; Zuncheddu, M.A.; Maschio, A.; Altea, D.; et al. IRAK-M is involved in the pathogenesis of early-onset persistent asthma. Am. J. Hum. Genet. 2007, 80, 1103–1114. [Google Scholar] [CrossRef] [Green Version]
- White, J.H.; Chiano, M.; Wigglesworth, M.; Geske, R.; Riley, J.; White, N.; Hall, S.; Zhu, G.; Maurio, F.; Savage, T.; et al. Identification of a novel asthma susceptibility gene on chromosome 1qter and its functional evaluation. Hum. Mol. Genet. 2008, 17, 1890–1903. [Google Scholar] [CrossRef] [Green Version]
- Hoffjan, S.; Nicolae, D.; Ober, C. Association studies for asthma and atopic diseases: A comprehensive review of the literature. Respir. Res. 2003, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Moffatt, M.F.; Gut, I.G.; Demenais, F.; Strachan, D.P.; Bouzigon, E.; Heath, S.; von Mutius, E.; Farrall, M.; Lathrop, M.; Cookson, W.; et al. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 2010, 363, 1211–1221. [Google Scholar] [CrossRef] [Green Version]
- Torgerson, D.G.; Ampleford, E.J.; Chiu, G.Y.; Gauderman, W.J.; Gignoux, C.R.; Graves, P.E.; Himes, B.E.; Levin, A.M.; Mathias, R.A.; Hancock, D.B.; et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. Nat. Genet. 2011, 43, 887–892. [Google Scholar] [CrossRef]
- Kim, K.W.; Ober, C. Lessons Learned From GWAS of Asthma. Allergy Asthma Immunol. Res. 2019, 11, 170–187. [Google Scholar] [CrossRef]
- Bourgain, C.; Hoffjan, S.; Nicolae, R.; Newman, D.; Steiner, L.; Walker, K.; Reynolds, R.; Ober, C.; McPeek, M.S. Novel case-control test in a founder population identifies P-selectin as an atopy-susceptibility locus. Am. J. Hum. Genet. 2003, 73, 612–626. [Google Scholar] [CrossRef] [Green Version]
- Mao, X.Q.; Kawai, M.; Yamashita, T.; Enomoto, T.; Dake, Y.; Sasaki, S.; Kataoka, Y.; Fukuzumi, T.; Endo, K.; Sano, H.; et al. Imbalance production between interleukin-1beta (IL-1beta) and IL-1 receptor antagonist (IL-1Ra) in bronchial asthma. Biochem. Biophys. Res. Commun. 2000, 276, 607–612. [Google Scholar] [CrossRef]
- Karjalainen, J.; Nieminen, M.M.; Aromaa, A.; Klaukka, T.; Hurme, M. The IL-1beta genotype carries asthma susceptibility only in men. J. Allergy Clin. Immunol. 2002, 109, 514–516. [Google Scholar] [CrossRef]
- Yan, L.; Galinsky, R.E.; Bernstein, J.A.; Liggett, S.B.; Weinshilboum, R.M. Histamine N-methyltransferase pharmacogenetics: Association of a common functional polymorphism with asthma. Pharmacogenetics 2000, 10, 261–266. [Google Scholar] [CrossRef]
- Howard, T.D.; Postma, D.S.; Hawkins, G.A.; Koppelman, G.H.; Zheng, S.L.; Wysong, A.K.; Xu, J.; Meyers, D.A.; Bleecker, E.R. Fine mapping of an IgE-controlling gene on chromosome 2q: Analysis of CTLA4 and CD28. J. Allergy Clin. Immunol. 2002, 110, 743–751. [Google Scholar] [CrossRef]
- Fukunaga, K.; Asano, K.; Mao, X.Q.; Gao, P.S.; Roberts, M.H.; Oguma, T.; Shiomi, T.; Kanazawa, M.; Adra, C.N.; Shirakawa, T.; et al. Genetic polymorphisms of CC chemokine receptor 3 in Japanese and British asthmatics. Eur. Respir. J. 2001, 17, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Hall, I.P.; Wheatley, A.; Christie, G.; McDougall, C.; Hubbard, R.; Helms, P.J. Association of CCR5 ▵32 with reduced risk of asthma. Lancet 1999, 354, 1264–1265. [Google Scholar] [CrossRef]
- McGinnis, R.; Child, F.; Clayton, S.; Davies, S.; Lenney, W.; Illig, T.; Wjst, M.; Spurr, N.; Debouck, C.; Hajeer, A.H.; et al. Further support for the association of CCR5 allelic variants with asthma susceptibility. Eur. J. Immunogenet. 2002, 29, 525–528. [Google Scholar] [CrossRef]
- Lazarus, R.; Klimecki, W.T.; Raby, B.A.; Vercelli, D.; Palmer, L.J.; Kwiatkowski, D.J.; Silverman, E.K.; Martinez, F.; Weiss, S.T. Single-nucleotide polymorphisms in the Toll-like receptor 9 gene (TLR9): Frequencies, pairwise linkage disequilibrium, and haplotypes in three U.S. ethnic groups and exploratory case–control disease association studies. Genomics 2003, 81, 85–91. [Google Scholar] [CrossRef]
- Kirkbride, H.J.; Bolscher, J.G.; Nazmi, K.; Vinall, L.E.; Nash, M.W.; Moss, F.M.; Mitchell, D.M.; Swallow, D.M. Genetic polymorphism of MUC7: Allele frequencies and association with asthma. Eur. J. Hum. Genet. 2001, 9, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, E.; Shibasaki, M.; Kamioka, M.; Yokouchi, Y.; Yamakawa-Kobayashi, K.; Hamaguchi, H.; Matsui, A.; Arinami, T. New polymorphisms of haematopoietic prostaglandin D synthase and human prostanoid DP receptor genes. Clin. Exp. Allergy 2002, 32, 93–96. [Google Scholar] [CrossRef]
- Noguchi, E.; Shibasaki, M.; Arinami, T.; Takeda, K.; Yokouchi, Y.; Kawashima, T.; Yanagi, H.; Matsui, A.; Hamaguchi, H. Association of asthma and the interleukin-4 promoter gene in Japanese. Clin. Exp. Allergy 1998, 28, 449–453. [Google Scholar] [CrossRef]
- Noguchi, E.; Nukaga-Nishio, Y.; Jian, Z.; Yokouchi, Y.; Kamioka, M.; Yamakawa-Kobayashi, K.; Hamaguchi, H.; Matsui, A.; Shibasaki, M.; Arinami, T. Haplotypes of the 5’ region of the IL-4 gene and SNPs in the intergene sequence between the IL-4 and IL-13 genes are associated with atopic asthma. Hum. Immunol. 2001, 62, 1251–1257. [Google Scholar] [CrossRef]
- Howard, T.D.; Whittaker, P.A.; Zaiman, A.L.; Koppelman, G.H.; Xu, J.; Hanley, M.T.; Meyers, D.A.; Postma, D.S.; Bleecker, E.R. Identification and association of polymorphisms in the interleukin-13 gene with asthma and atopy in a Dutch population. Am. J. Respir. Cell Mol. Biol. 2001, 25, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Heinzmann, A.; Mao, X.Q.; Akaiwa, M.; Kreomer, R.T.; Gao, P.S.; Ohshima, K.; Umeshita, R.; Abe, Y.; Braun, S.; Yamashita, T.; et al. Genetic variants of IL-13 signalling and human asthma and atopy. Hum. Mol. Genet. 2000, 9, 549–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Pouw Kraan, T.C.; van Veen, A.; Boeije, L.C.; van Tuyl, S.A.; de Groot, E.R.; Stapel, S.O.; Bakker, A.; Verweij, C.L.; Aarden, L.A.; van der Zee, J.S. An IL-13 promoter polymorphism associated with increased risk of allergic asthma. Genes Immun. 1999, 1, 61–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niimi, T.; Munakata, M.; Keck-Waggoner, C.L.; Popescu, N.C.; Levitt, R.C.; Hisada, M.; Kimura, S. A polymorphism in the human UGRP1 gene promoter that regulates transcription is associated with an increased risk of asthma. Am. J. Hum. Genet. 2002, 70, 718–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotani, Y.; Nishimura, Y.; Maeda, H.; Yokoyama, M. Beta2-adrenergic receptor polymorphisms affect airway responsiveness to salbutamol in asthmatics. J. Asthma 1999, 36, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Reihsaus, E.; Innis, M.; MacIntyre, N.; Liggett, S.B. Mutations in the gene encoding for the beta 2-adrenergic receptor in normal and asthmatic subjects. Am. J. Respir. Cell Mol. Biol. 1993, 8, 334–339. [Google Scholar] [CrossRef]
- Sanak, M.; Pierzchalska, M.; Bazan-Socha, S.; Szczeklik, A. Enhanced expression of the leukotriene C(4) synthase due to overactive transcription of an allelic variant associated with aspirin-intolerant asthma. Am. J. Respir. Cell Mol. Biol. 2000, 23, 290–296. [Google Scholar] [CrossRef]
- Kawagishi, Y.; Mita, H.; Taniguchi, M.; Maruyama, M.; Oosaki, R.; Higashi, N.; Kashii, T.; Kobayashi, M.; Akiyama, K. Leukotriene C4 synthase promoter polymorphism in Japanese patients with aspirin-induced asthma. J. Allergy Clin. Immunol. 2002, 109, 936–942. [Google Scholar] [CrossRef]
- Moffatt, M.F.; James, A.; Ryan, G.; Musk, A.W.; Cookson, W.O. Extended tumour necrosis factor/HLA-DR haplotypes and asthma in an Australian population sample. Thorax 1999, 54, 757–761. [Google Scholar] [CrossRef] [Green Version]
- Kronqvist, M.; Johansson, E.; Pershagen, G.; Johansson, S.G.; van Hage-Hamsten, M. Increasing prevalence of asthma over 12 years among dairy farmers on Gotland, Sweden: Storage mites remain dominant allergens. Clin. Exp. Allergy 1999, 29, 35–41. [Google Scholar] [CrossRef]
- Lara-Marquez, M.L.; Yunis, J.J.; Layrisse, Z.; Ortega, F.; Carvallo-Gil, E.; Montagnani, S.; Makhatadze, N.J.; Pocino, M.; Granja, C.; Yunis, E. Immunogenetics of atopic asthma: Association of DRB1*1101 DQA1*0501 DQB1*0301 haplotype with Dermatophagoides spp.-sensitive asthma in a sample of the Venezuelan population. Clin. Exp. Allergy 1999, 29, 60–71. [Google Scholar] [CrossRef]
- Dekker, J.W.; Nizankowska, E.; Schmitz-Schumann, M.; Pile, K.; Bochenek, G.; Dyczek, A.; Cookson, W.O.; Szczeklik, A. Aspirin-induced asthma and HLA-DRB1 and HLA-DPB1 genotypes. Clin. Exp. Allergy 1997, 27, 574–577. [Google Scholar] [CrossRef]
- Wilson, A.G.; Symons, J.A.; McDowell, T.L.; McDevitt, H.O.; Duff, G.W. Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc. Natl. Acad. Sci. USA 1997, 94, 3195–3199. [Google Scholar] [CrossRef] [Green Version]
- Chagani, T.; Pare, P.D.; Zhu, S.; Weir, T.D.; Bai, T.R.; Behbehani, N.A.; Fitzgerald, J.M.; Sandford, A.J. Prevalence of tumor necrosis factor-alpha and angiotensin converting enzyme polymorphisms in mild/moderate and fatal/near-fatal asthma. Am. J. Respir. Crit. Care Med. 1999, 160, 278–282. [Google Scholar] [CrossRef]
- Witte, J.S.; Palmer, L.J.; O’Connor, R.D.; Hopkins, P.J.; Hall, J.M. Relation between tumour necrosis factor polymorphism TNFalpha-308 and risk of asthma. Eur. J. Hum. Genet. 2002, 10, 82–85. [Google Scholar] [CrossRef]
- Noguchi, E.; Yokouchi, Y.; Shibasaki, M.; Inudou, M.; Nakahara, S.; Nogami, T.; Kamioka, M.; Yamakawa-Kobayashi, K.; Ichikawa, K.; Matsui, A.; et al. Association between TNFA polymorphism and the development of asthma in the Japanese population. Am. J. Respir. Crit. Care Med. 2002, 166, 43–46. [Google Scholar] [CrossRef]
- Moffatt, M.F.; Cookson, W.O. Tumour necrosis factor haplotypes and asthma. Hum. Mol. Genet. 1997, 6, 551–554. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.C.; Lu, C.C.; Su, H.J.; Shen, C.Y.; Lei, H.Y.; Guo, Y.L. The association between tumor necrosis factor, HLA-DR alleles, and IgE-mediated asthma in Taiwanese adolescents. Allergy 2002, 57, 831–834. [Google Scholar] [CrossRef]
- Ismail, A.; Bousaffara, R.; Kaziz, J.; Zili, J.; el Kamel, A.; Tahar Sfar, M.; Remadi, S.; Chouchane, L. Polymorphism in transporter antigen peptides gene (TAP1) associated with atopy in Tunisians. J. Allergy Clin. Immunol. 1997, 99, 216–223. [Google Scholar] [CrossRef]
- Hang, L.W.; Hsia, T.C.; Chen, W.C.; Chen, H.Y.; Tsai, F.J. TAP1 gene AccI polymorphism is associated with atopic bronchial asthma. J. Clin. Lab. Anal. 2003, 17, 57–60. [Google Scholar] [CrossRef]
- Stafforini, D.M.; Numao, T.; Tsodikov, A.; Vaitkus, D.; Fukuda, T.; Watanabe, N.; Fueki, N.; McIntyre, T.M.; Zimmerman, G.A.; Makino, S.; et al. Deficiency of platelet-activating factor acetylhydrolase is a severity factor for asthma. J. Clin. Investig. 1999, 103, 989–997. [Google Scholar] [CrossRef] [Green Version]
- Kruse, S.; Mao, X.Q.; Heinzmann, A.; Blattmann, S.; Roberts, M.H.; Braun, S.; Gao, P.S.; Forster, J.; Kuehr, J.; Hopkin, J.M.; et al. The Ile198Thr and Ala379Val variants of plasmatic PAF-acetylhydrolase impair catalytical activities and are associated with atopy and asthma. Am. J. Hum. Genet. 2000, 66, 1522–1530. [Google Scholar] [CrossRef] [Green Version]
- Ito, S.; Noguchi, E.; Shibasaki, M.; Yamakawa-Kobayashi, K.; Watanabe, H.; Arinami, T. Evidence for an association between plasma platelet-activating factor acetylhydrolase deficiency and increased risk of childhood atopic asthma. J. Hum. Genet. 2002, 47, 99–101. [Google Scholar] [CrossRef] [Green Version]
- Immervoll, T.; Loesgen, S.; Dutsch, G.; Gohlke, H.; Herbon, N.; Klugbauer, S.; Dempfle, A.; Bickeboller, H.; Becker-Follmann, J.; Ruschendorf, F.; et al. Fine mapping and single nucleotide polymorphism association results of candidate genes for asthma and related phenotypes. Hum. Mutat. 2001, 18, 327–336. [Google Scholar] [CrossRef]
- Shin, H.D.; Kim, L.H.; Park, B.L.; Jung, J.H.; Kim, J.Y.; Chung, I.Y.; Kim, J.S.; Lee, J.H.; Chung, S.H.; Kim, Y.H.; et al. Association of Eotaxin gene family with asthma and serum total IgE. Hum. Mol. Genet. 2003, 12, 1279–1285. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, S.A.; Gaughan, D.M.; Swift, M. Protection against bronchial asthma by CFTR delta F508 mutation: A heterozygote advantage in cystic fibrosis. Nat. Med. 1995, 1, 703–705. [Google Scholar] [CrossRef]
- Dahl, M.; Tybærg-Hansen, A.; Lange, P.; Nordestgaard, B.G. ΔF508 heterozygosity in cystic fibrosis and susceptibility to asthma. Lancet 1998, 351, 1911–1913. [Google Scholar] [CrossRef]
- Lazaro, C.; de Cid, R.; Sunyer, J.; Soriano, J.; Gimenez, J.; Alvarez, M.; Casals, T.; Anto, J.M.; Estivill, X. Missense mutations in the cystic fibrosis gene in adult patients with asthma. Hum. Mutat. 1999, 14, 510–519. [Google Scholar] [CrossRef]
- Tzetis, M.; Efthymiadou, A.; Strofalis, S.; Psychou, P.; Dimakou, A.; Pouliou, E.; Doudounakis, S.; Kanavakis, E. CFTR gene mutations--including three novel nucleotide substitutions—And haplotype background in patients with asthma, disseminated bronchiectasis and chronic obstructive pulmonary disease. Hum. Genet. 2001, 108, 216–221. [Google Scholar] [CrossRef]
- Lee, Y.C.; Cheon, K.T.; Lee, H.B.; Kim, W.; Rhee, Y.K.; Kim, D.S. Gene polymorphisms of endothelial nitric oxide synthase and angiotensin-converting enzyme in patients with asthma. Allergy 2000, 55, 959–963. [Google Scholar] [CrossRef]
- Laing, I.A.; Goldblatt, J.; Eber, E.; Hayden, C.M.; Rye, P.J.; Gibson, N.A.; Palmer, L.J.; Burton, P.R.; Le Souef, P.N. A polymorphism of the CC16 gene is associated with an increased risk of asthma. J. Med. Genet. 1998, 35, 463–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laing, I.A.; Hermans, C.; Bernard, A.; Burton, P.R.; Goldblatt, J.; Le Souef, P.N. Association between plasma CC16 levels, the A38G polymorphism, and asthma. Am. J. Respir. Crit. Care Med. 2000, 161, 124–127. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.; Zhang, Z.; Ten Kate, L.P.; Collee, J.M.; Gerritsen, J.; Mukherjee, A.B. Human uteroglobin gene polymorphisms and genetic susceptibility to asthma. Ann. N. Y. Acad. Sci. 2000, 923, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Green, S.L.; Gaillard, M.C.; Song, E.; Dewar, J.B.; Halkas, A. Polymorphisms of the beta chain of the high-affinity immunoglobulin E receptor (Fcepsilon RI-beta) in South African black and white asthmatic and nonasthmatic individuals. Am. J. Respir. Crit. Care Med. 1998, 158, 1487–1492. [Google Scholar] [CrossRef] [PubMed]
- Hijazi, Z.; Haider, M.Z.; Khan, M.R.; Al-Dowaisan, A.A. High frequency of IgE receptor Fc epsilonRIbeta variant (Leu181/Leu183) in Kuwaiti Arabs and its association with asthma. Clin. Genet. 1998, 53, 149–152. [Google Scholar] [CrossRef]
- Palmer, L.J.; Rye, P.J.; Gibson, N.A.; Moffatt, M.F.; Goldblatt, J.; Burton, P.R.; Cookson, W.O.; Lesouef, P.N. Association of FcepsilonR1-beta polymorphisms with asthma and associated traits in Australian asthmatic families. Clin. Exp. Allergy 1999, 29, 1555–1562. [Google Scholar] [CrossRef]
- Cox, H.E.; Moffatt, M.F.; Faux, J.A.; Walley, A.J.; Coleman, R.; Trembath, R.C.; Cookson, W.O.; Harper, J.I. Association of atopic dermatitis to the beta subunit of the high affinity immunoglobulin E receptor. Br. J. Dermatol. 1998, 138, 182–187. [Google Scholar] [CrossRef]
- van Hage-Hamsten, M.; Johansson, E.; Kronqvist, M.; Loughry, A.; Cookson, W.O.; Moffatt, M.F. Associations of Fc epsilon R1-beta polymorphisms with immunoglobin E antibody responses to common inhalant allergens in a rural population. Clin. Exp. Allergy 2002, 32, 838–842. [Google Scholar] [CrossRef]
- Hizawa, N.; Yamaguchi, E.; Jinushi, E.; Kawakami, Y. A common FCER1B gene promoter polymorphism influences total serum IgE levels in a Japanese population. Am. J. Respir. Crit. Care Med. 2000, 161, 906–909. [Google Scholar] [CrossRef]
- Shirakawa, T.; Mao, X.Q.; Sasaki, S.; Enomoto, T.; Kawai, M.; Morimoto, K.; Hopkin, J. Association between atopic asthma and a coding variant of Fc epsilon RI beta in a Japanese population. Hum. Mol. Genet. 1996, 5, 1129–1130. [Google Scholar] [CrossRef] [Green Version]
- Fryer, A.A.; Bianco, A.; Hepple, M.; Jones, P.W.; Strange, R.C.; Spiteri, M.A. Polymorphism at the glutathione S-transferase GSTP1 locus. A new marker for bronchial hyperresponsiveness and asthma. Am. J. Respir. Crit. Care Med. 2000, 161, 1437–1442. [Google Scholar] [CrossRef]
- Noguchi, E.; Shibasaki, M.; Inudou, M.; Kamioka, M.; Yokouchi, Y.; Yamakawa-Kobayashi, K.; Hamaguchi, H.; Matsui, A.; Arinami, T. Association between a new polymorphism in the activation-induced cytidine deaminase gene and atopic asthma and the regulation of total serum IgE levels. J. Allergy Clin. Immunol. 2001, 108, 382–386. [Google Scholar] [CrossRef]
- Tamura, K.; Arakawa, H.; Suzuki, M.; Kobayashi, Y.; Mochizuki, H.; Kato, M.; Tokuyama, K.; Morikawa, A. Novel dinucleotide repeat polymorphism in the first exon of the STAT-6 gene is associated with allergic diseases. Clin. Exp. Allergy 2001, 31, 1509–1514. [Google Scholar] [CrossRef]
- Grasemann, H.; Yandava, C.N.; Storm van’s Gravesande, K.; Deykin, A.; Pillari, A.; Ma, J.; Sonna, L.A.; Lilly, C.; Stampfer, M.J.; Israel, E.; et al. A neuronal NO synthase (NOS1) gene polymorphism is associated with asthma. Biochem. Biophys. Res. Commun. 2000, 272, 391–394. [Google Scholar] [CrossRef]
- Gao, P.S.; Kawada, H.; Kasamatsu, T.; Mao, X.Q.; Roberts, M.H.; Miyamoto, Y.; Yoshimura, M.; Saitoh, Y.; Yasue, H.; Nakao, K.; et al. Variants of NOS1, NOS2, and NOS3 genes in asthmatics. Biochem. Biophys. Res. Commun. 2000, 267, 761–763. [Google Scholar] [CrossRef]
- Malerba, G.; Patuzzo, C.; Trabetti, E.; Lauciello, M.C.; Galavotti, R.; Pescollderungg, L.; Whalen, M.B.; Zanoni, G.; Martinati, L.C.; Boner, A.L.; et al. Chromosome 14 linkage analysis and mutation study of 2 serpin genes in allergic asthmatic families. J. Allergy Clin. Immunol. 2001, 107, 654–658. [Google Scholar] [CrossRef]
- Howard, T.D.; Koppelman, G.H.; Xu, J.; Zheng, S.L.; Postma, D.S.; Meyers, D.A.; Bleecker, E.R. Gene-gene interaction in asthma: IL4RA and IL13 in a Dutch population with asthma. Am. J. Hum. Genet. 2002, 70, 230–236. [Google Scholar] [CrossRef] [Green Version]
- Ober, C.; Leavitt, S.A.; Tsalenko, A.; Howard, T.D.; Hoki, D.M.; Daniel, R.; Newman, D.L.; Wu, X.; Parry, R.; Lester, L.A.; et al. Variation in the interleukin 4-receptor alpha gene confers susceptibility to asthma and atopy in ethnically diverse populations. Am. J. Hum. Genet. 2000, 66, 517–526. [Google Scholar] [CrossRef] [Green Version]
- Rosa-Rosa, L.; Zimmermann, N.; Bernstein, J.A.; Rothenberg, M.E.; Khurana Hershey, G.K. The R576 IL-4 receptor alpha allele correlates with asthma severity. J. Allergy Clin. Immunol. 1999, 104, 1008–1014. [Google Scholar] [CrossRef]
- Risma, K.A.; Wang, N.; Andrews, R.P.; Cunningham, C.M.; Ericksen, M.B.; Bernstein, J.A.; Chakraborty, R.; Hershey, G.K. V75R576 IL-4 receptor alpha is associated with allergic asthma and enhanced IL-4 receptor function. J. Immunol. 2002, 169, 1604–1610. [Google Scholar] [CrossRef] [Green Version]
- Mitsuyasu, H.; Izuhara, K.; Mao, X.Q.; Gao, P.S.; Arinobu, Y.; Enomoto, T.; Kawai, M.; Sasaki, S.; Dake, Y.; Hamasaki, N.; et al. Ile50Val variant of IL4R alpha upregulates IgE synthesis and associates with atopic asthma. Nat. Genet. 1998, 19, 119–120. [Google Scholar] [CrossRef]
- Hizawa, N.; Yamaguchi, E.; Konno, S.; Tanino, Y.; Jinushi, E.; Nishimura, M. A functional polymorphism in the RANTES gene promoter is associated with the development of late-onset asthma. Am. J. Respir. Crit. Care Med. 2002, 166, 686–690. [Google Scholar] [CrossRef] [Green Version]
- Fryer, A.A.; Spiteri, M.A.; Bianco, A.; Hepple, M.; Jones, P.W.; Strange, R.C.; Makki, R.; Tavernier, G.; Smilie, F.I.; Custovic, A.; et al. The -403 G-->A promoter polymorphism in the RANTES gene is associated with atopy and asthma. Genes Immun. 2000, 1, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Benessiano, J.; Crestani, B.; Mestari, F.; Klouche, W.; Neukirch, F.; Hacein-Bey, S.; Durand, G.; Aubier, M. High frequency of a deletion polymorphism of the angiotensin-converting enzyme gene in asthma. J. Allergy Clin. Immunol. 1997, 99, 53–57. [Google Scholar] [CrossRef]
- Holla, L.; Vasku, A.; Znojil, V.; Siskova, L.; Vacha, J. Association of 3 gene polymorphisms with atopic diseases. J. Allergy Clin. Immunol. 1999, 103, 702–708. [Google Scholar] [CrossRef]
- Unoki, M.; Furuta, S.; Onouchi, Y.; Watanabe, O.; Doi, S.; Fujiwara, H.; Miyatake, A.; Fujita, K.; Tamari, M.; Nakamura, Y. Association studies of 33 single nucleotide polymorphisms (SNPs) in 29 candidate genes for bronchial asthma: Positive association a T924C polymorphism in the thromboxane A2 receptor gene. Hum. Genet. 2000, 106, 440–446. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, Y.H.; Shin, C.; Shim, J.J.; Kang, K.H.; Yoo, S.H.; In, K.H. Association of asthma severity and bronchial hyperresponsiveness with a polymorphism in the cytotoxic T-lymphocyte antigen-4 gene. Chest 2002, 122, 171–176. [Google Scholar] [CrossRef] [Green Version]
- Sandford, A.J.; Chagani, T.; Zhu, S.; Weir, T.D.; Bai, T.R.; Spinelli, J.J.; Fitzgerald, J.M.; Behbehani, N.A.; Tan, W.C.; Pare, P.D. Polymorphisms in the IL4, IL4RA, and FCERIB genes and asthma severity. J. Allergy Clin. Immunol. 2000, 106, 135–140. [Google Scholar] [CrossRef]
- Holloway, J.W.; Dunbar, P.R.; Riley, G.A.; Sawyer, G.M.; Fitzharris, P.F.; Pearce, N.; Le Gros, G.S.; Beasley, R. Association of beta2-adrenergic receptor polymorphisms with severe asthma. Clin. Exp. Allergy 2000, 30, 1097–1103. [Google Scholar] [CrossRef]
- Pulleyn, L.J.; Newton, R.; Adcock, I.M.; Barnes, P.J. TGFbeta1 allele association with asthma severity. Hum. Genet. 2001, 109, 623–627. [Google Scholar] [CrossRef]
- Duetsch, G.; Illig, T.; Loesgen, S.; Rohde, K.; Klopp, N.; Herbon, N.; Gohlke, H.; Altmueller, J.; Wjst, M. STAT6 as an asthma candidate gene: Polymorphism-screening, association and haplotype analysis in a Caucasian sib-pair study. Hum. Mol. Genet. 2002, 11, 613–621. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, H.; Luster, A.D.; Nakamura, T.; In, K.H.; Sonna, L.A.; Deykin, A.; Israel, E.; Drazen, J.M.; Lilly, C.M. Variant eotaxin: Its effects on the asthma phenotype. J. Allergy Clin. Immunol. 2001, 108, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Rosenwasser, L.J.; Klemm, D.J.; Dresback, J.K.; Inamura, H.; Mascali, J.J.; Klinnert, M.; Borish, L. Promoter polymorphisms in the chromosome 5 gene cluster in asthma and atopy. Clin. Exp. Allergy 1995, 25 (Suppl. 2), 74–78, discussion 95–76. [Google Scholar] [CrossRef] [PubMed]
- Baldini, M.; Lohman, I.C.; Halonen, M.; Erickson, R.P.; Holt, P.G.; Martinez, F.D. A Polymorphism* in the 5’ flanking region of the CD14 gene is associated with circulating soluble CD14 levels and with total serum immunoglobulin E. Am. J. Respir. Cell Mol. Biol. 1999, 20, 976–983. [Google Scholar] [CrossRef] [PubMed]
- Koppelman, G.H.; Reijmerink, N.E.; Colin Stine, O.; Howard, T.D.; Whittaker, P.A.; Meyers, D.A.; Postma, D.S.; Bleecker, E.R. Association of a promoter polymorphism of the CD14 gene and atopy. Am. J. Respir. Crit. Care Med. 2001, 163, 965–969. [Google Scholar] [CrossRef] [PubMed]
- Moffatt, M.F.; Schou, C.; Faux, J.A.; Abecasis, G.R.; James, A.; Musk, A.W.; Cookson, W.O. Association between quantitative traits underlying asthma and the HLA-DRB1 locus in a family-based population sample. Eur. J. Hum. Genet. 2001, 9, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Moffatt, M.F.; Faux, J.A.; Lester, S.; Pare, P.; McCluskey, J.; Spargo, R.; James, A.; Musk, A.W.; Cookson, W.O. Atopy, respiratory function and HLA-DR in Aboriginal Australians. Hum. Mol. Genet. 2003, 12, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Spielman, R.S.; Ewens, W.J. The TDT and other family-based tests for linkage disequilibrium and association. Am. J. Hum. Genet. 1996, 59, 983–989. [Google Scholar]
- Gao, P.S.; Mao, X.Q.; Jouanguy, E.; Pallier, A.; Doffinger, R.; Tanaka, Y.; Nakashima, H.; Otsuka, T.; Roberts, M.H.; Enomoto, T.; et al. Nonpathogenic common variants of IFNGR1 and IFNGR2 in association with total serum IgE levels. Biochem. Biophys. Res. Commun. 1999, 263, 425–429. [Google Scholar] [CrossRef]
- Nagarkatti, R.; Rao, C.B.; Rishi, J.P.; Chetiwal, R.; Shandilya, V.; Vijayan, V.; Kumar, R.; Pemde, H.K.; Sharma, S.K.; Sharma, S.; et al. Association of IFNG gene polymorphism with asthma in the Indian population. J. Allergy Clin. Immunol. 2002, 110, 410–412. [Google Scholar] [CrossRef] [Green Version]
- Kauppi, P.; Lindblad-Toh, K.; Sevon, P.; Toivonen, H.T.; Rioux, J.D.; Villapakkam, A.; Laitinen, L.A.; Hudson, T.J.; Kere, J.; Laitinen, T. A second-generation association study of the 5q31 cytokine gene cluster and the interleukin-4 receptor in asthma. Genomics 2001, 77, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Bottini, N.; Borgiani, P.; Otsu, A.; Saccucci, P.; Stefanini, L.; Greco, E.; Fontana, L.; Hopkin, J.M.; Mao, X.Q.; Shirakawa, T. IL-4 receptor alpha chain genetic polymorphism and total IgE levels in the English population: Two-locus haplotypes are more informative than individual SNPs. Clin. Genet. 2002, 61, 288–292. [Google Scholar] [CrossRef]
- Hobbs, K.; Negri, J.; Klinnert, M.; Rosenwasser, L.J.; Borish, L. Interleukin-10 and transforming growth factor-beta promoter polymorphisms in allergies and asthma. Am. J. Respir. Crit. Care Med. 1998, 158, 1958–1962. [Google Scholar] [CrossRef]
- Karjalainen, J.; Hulkkonen, J.; Nieminen, M.M.; Huhtala, H.; Aromaa, A.; Klaukka, T.; Hurme, M. Interleukin-10 gene promoter region polymorphism is associated with eosinophil count and circulating immunoglobulin E in adult asthma. Clin. Exp. Allergy 2003, 33, 78–83. [Google Scholar] [CrossRef]
- Hizawa, N.; Yamaguchi, E.; Jinushi, E.; Konno, S.; Kawakami, Y.; Nishimura, M. Increased total serum IgE levels in patients with asthma and promoter polymorphisms at CTLA4 and FCER1B. J. Allergy Clin. Immunol. 2001, 108, 74–79. [Google Scholar] [CrossRef]
- Suzuki, I.; Hizawa, N.; Yamaguchi, E.; Kawakami, Y. Association between a C+33T polymorphism in the IL-4 promoter region and total serum IgE levels. Clin. Exp. Allergy 2000, 30, 1746–1749. [Google Scholar] [CrossRef]
- Holla, L.I.; Buckova, D.; Kuhrova, V.; Stejskalova, A.; Francova, H.; Znojil, V.; Vacha, J. Prevalence of endothelial nitric oxide synthase gene polymorphisms in patients with atopic asthma. Clin. Exp. Allergy 2002, 32, 1193–1198. [Google Scholar] [CrossRef]
- Walley, A.J.; Cookson, W.O. Investigation of an interleukin-4 promoter polymorphism for associations with asthma and atopy. J. Med. Genet. 1996, 33, 689–692. [Google Scholar] [CrossRef] [Green Version]
- Stephan, V.; Kuehr, J.; Seibt, A.; Saueressig, H.; Zingsem, S.; Dinh, T.D.; Moseler, M.; Wahn, V.; Deichmann, K.A. Genetic linkage of HLA-class II locus to mite-specific IgE immune responsiveness. Clin. Exp. Allergy 1999, 29, 1049–1054. [Google Scholar] [CrossRef]
- Hu, C.; Hsu, P.N.; Lin, R.H.; Hsieh, K.H.; Chua, K.Y. HLA DPB1*0201 allele is negatively associated with immunoglobulin E responsiveness specific for house dust mite allergens in Taiwan. Clin. Exp. Allergy 2000, 30, 538–545. [Google Scholar] [CrossRef]
- Hill, M.R.; Cookson, W.O. A new variant of the beta subunit of the high-affinity receptor for immunoglobulin E (Fc epsilon RI-beta E237G): Associations with measures of atopy and bronchial hyper-responsiveness. Hum. Mol. Genet. 1996, 5, 959–962. [Google Scholar] [CrossRef] [Green Version]
- D’Amato, M.; Vitiani, L.R.; Petrelli, G.; Ferrigno, L.; di Pietro, A.; Trezza, R.; Matricardi, P.M. Association of persistent bronchial hyperresponsiveness with beta2-adrenoceptor (ADRB2) haplotypes. A population study. Am. J. Respir. Crit. Care Med. 1998, 158, 1968–1973. [Google Scholar] [CrossRef]
- Ulbrecht, M.; Hergeth, M.T.; Wjst, M.; Heinrich, J.; Bickeboller, H.; Wichmann, H.E.; Weiss, E.H. Association of beta(2)-adrenoreceptor variants with bronchial hyperresponsiveness. Am. J. Respir. Crit. Care Med. 2000, 161, 469–474. [Google Scholar] [CrossRef]
- Li Kam Wa, T.C.; Mansur, A.H.; Britton, J.; Williams, G.; Pavord, I.; Richards, K.; Campbell, D.A.; Morton, N.; Holgate, S.T.; Morrison, J.F. Association between—308 tumour necrosis factor promoter polymorphism and bronchial hyperreactivity in asthma. Clin. Exp. Allergy 1999, 29, 1204–1208. [Google Scholar] [CrossRef]
- Burchard, E.G.; Silverman, E.K.; Rosenwasser, L.J.; Borish, L.; Yandava, C.; Pillari, A.; Weiss, S.T.; Hasday, J.; Lilly, C.M.; Ford, J.G.; et al. Association between a sequence variant in the IL-4 gene promoter and FEV(1) in asthma. Am. J. Respir. Crit. Care Med. 1999, 160, 919–922. [Google Scholar] [CrossRef]
- Summerhill, E.; Leavitt, S.A.; Gidley, H.; Parry, R.; Solway, J.; Ober, C. beta(2)-adrenergic receptor Arg16/Arg16 genotype is associated with reduced lung function, but not with asthma, in the Hutterites. Am. J. Respir. Crit. Care Med. 2000, 162, 599–602. [Google Scholar] [CrossRef] [PubMed]
- Sayers, I.; Barton, S.; Rorke, S.; Beghe, B.; Hayward, B.; Van Eerdewegh, P.; Keith, T.; Clough, J.B.; Ye, S.; Holloway, J.W.; et al. Allelic association and functional studies of promoter polymorphism in the leukotriene C4 synthase gene (LTC4S) in asthma. Thorax 2003, 58, 417–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickrell, J.K.; Berisa, T.; Liu, J.Z.; Segurel, L.; Tung, J.Y.; Hinds, D.A. Detection and interpretation of shared genetic influences on 42 human traits. Nat. Genet. 2016, 48, 709–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, M.A.; Matheson, M.C.; Duffy, D.L.; Marks, G.B.; Hui, J.; Le Souef, P.; Danoy, P.; Baltic, S.; Nyholt, D.R.; Jenkins, M.; et al. Identification of IL6R and chromosome 11q13.5 as risk loci for asthma. Lancet 2011, 378, 1006–1014. [Google Scholar] [CrossRef] [Green Version]
- Yan, Q.; Brehm, J.; Pino-Yanes, M.; Forno, E.; Lin, J.; Oh, S.S.; Acosta-Perez, E.; Laurie, C.C.; Cloutier, M.M.; Raby, B.A.; et al. A meta-analysis of genome-wide association studies of asthma in Puerto Ricans. Eur. Respir. J. 2017, 49. [Google Scholar] [CrossRef] [Green Version]
- Mathias, R.A.; Grant, A.V.; Rafaels, N.; Hand, T.; Gao, L.; Vergara, C.; Tsai, Y.J.; Yang, M.; Campbell, M.; Foster, C.; et al. A genome-wide association study on African-ancestry populations for asthma. J. Allergy Clin. Immunol. 2010, 125, 336–346.e4. [Google Scholar] [CrossRef] [Green Version]
- Hirota, T.; Takahashi, A.; Kubo, M.; Tsunoda, T.; Tomita, K.; Doi, S.; Fujita, K.; Miyatake, A.; Enomoto, T.; Miyagawa, T.; et al. Genome-wide association study identifies three new susceptibility loci for adult asthma in the Japanese population. Nat. Genet. 2011, 43, 893–896. [Google Scholar] [CrossRef]
- Himes, B.E.; Hunninghake, G.M.; Baurley, J.W.; Rafaels, N.M.; Sleiman, P.; Strachan, D.P.; Wilk, J.B.; Willis-Owen, S.A.; Klanderman, B.; Lasky-Su, J.; et al. Genome-wide association analysis identifies PDE4D as an asthma-susceptibility gene. Am. J. Hum. Genet. 2009, 84, 581–593. [Google Scholar] [CrossRef] [Green Version]
- Almoguera, B.; Vazquez, L.; Mentch, F.; Connolly, J.; Pacheco, J.A.; Sundaresan, A.S.; Peissig, P.L.; Linneman, J.G.; McCarty, C.A.; Crosslin, D.; et al. Identification of Four Novel Loci in Asthma in European American and African American Populations. Am. J. Respir. Crit. Care Med. 2017, 195, 456–463. [Google Scholar] [CrossRef]
- Li, X.; Howard, T.D.; Zheng, S.L.; Haselkorn, T.; Peters, S.P.; Meyers, D.A.; Bleecker, E.R. Genome-wide association study of asthma identifies RAD50-IL13 and HLA-DR/DQ regions. J. Allergy Clin. Immunol. 2010, 125, 328–335.e311. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, E.; Sakamoto, H.; Hirota, T.; Ochiai, K.; Imoto, Y.; Sakashita, M.; Kurosaka, F.; Akasawa, A.; Yoshihara, S.; Kanno, N.; et al. Genome-wide association study identifies HLA-DP as a susceptibility gene for pediatric asthma in Asian populations. PLoS Genet. 2011, 7, e1002170. [Google Scholar] [CrossRef] [Green Version]
- Lasky-Su, J.; Himes, B.E.; Raby, B.A.; Klanderman, B.J.; Sylvia, J.S.; Lange, C.; Melen, E.; Martinez, F.D.; Israel, E.; Gauderman, J.; et al. HLA-DQ strikes again: Genome-wide association study further confirms HLA-DQ in the diagnosis of asthma among adults. Clin. Exp. Allergy 2012, 42, 1724–1733. [Google Scholar] [CrossRef]
- Lowe, R.; Shirley, N.; Bleackley, M.; Dolan, S.; Shafee, T. Transcriptomics technologies. PLoS Comput. Biol. 2017, 13, e1005457. [Google Scholar] [CrossRef] [Green Version]
- Liew, C.C.; Ma, J.; Tang, H.C.; Zheng, R.; Dempsey, A.A. The peripheral blood transcriptome dynamically reflects system wide biology: A potential diagnostic tool. J. Lab. Clin. Med. 2006, 147, 126–132. [Google Scholar] [CrossRef]
- Bjornsdottir, U.S.; Holgate, S.T.; Reddy, P.S.; Hill, A.A.; McKee, C.M.; Csimma, C.I.; Weaver, A.A.; Legault, H.M.; Small, C.G.; Ramsey, R.C.; et al. Pathways activated during human asthma exacerbation as revealed by gene expression patterns in blood. PLoS ONE 2011, 6, e21902. [Google Scholar] [CrossRef] [Green Version]
- Bigler, J.; Boedigheimer, M.; Schofield, J.P.R.; Skipp, P.J.; Corfield, J.; Rowe, A.; Sousa, A.R.; Timour, M.; Twehues, L.; Hu, X.; et al. A Severe Asthma Disease Signature from Gene Expression Profiling of Peripheral Blood from U-BIOPRED Cohorts. Am. J. Respir. Crit. Care Med. 2017, 195, 1311–1320. [Google Scholar] [CrossRef]
- Woodruff, P.G.; Boushey, H.A.; Dolganov, G.M.; Barker, C.S.; Yang, Y.H.; Donnelly, S.; Ellwanger, A.; Sidhu, S.S.; Dao-Pick, T.P.; Pantoja, C.; et al. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc. Natl. Acad. Sci. USA 2007, 104, 15858–15863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodruff, P.G.; Modrek, B.; Choy, D.F.; Jia, G.; Abbas, A.R.; Ellwanger, A.; Koth, L.L.; Arron, J.R.; Fahy, J.V. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am. J. Respir. Crit. Care Med. 2009, 180, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.J.; Ward, J.A.; Sousa, A.R.; Corfield, J.; Bansal, A.T.; De Meulder, B.; Lefaudeux, D.; Auffray, C.; Loza, M.J.; Baribaud, F.; et al. Severe asthma exists despite suppressed tissue inflammation: Findings of the U-BIOPRED study. Eur. Respir. J. 2016, 48, 1307–1319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Modena, B.D.; Bleecker, E.R.; Busse, W.W.; Erzurum, S.C.; Gaston, B.M.; Jarjour, N.N.; Meyers, D.A.; Milosevic, J.; Tedrow, J.R.; Wu, W.; et al. Gene Expression Correlated with Severe Asthma Characteristics Reveals Heterogeneous Mechanisms of Severe Disease. Am. J. Respir. Crit. Care Med. 2017, 195, 1449–1463. [Google Scholar] [CrossRef] [PubMed]
- Baines, K.J.; Simpson, J.L.; Wood, L.G.; Scott, R.J.; Gibson, P.G. Transcriptional phenotypes of asthma defined by gene expression profiling of induced sputum samples. J. Allergy Clin. Immunol. 2011, 127, 153–160.e9. [Google Scholar] [CrossRef]
- Peters, M.C.; Mekonnen, Z.K.; Yuan, S.; Bhakta, N.R.; Woodruff, P.G.; Fahy, J.V. Measures of gene expression in sputum cells can identify TH2-high and TH2-low subtypes of asthma. J. Allergy Clin. Immunol. 2014, 133, 388–394. [Google Scholar] [CrossRef] [Green Version]
- Baines, K.J.; Simpson, J.L.; Wood, L.G.; Scott, R.J.; Fibbens, N.L.; Powell, H.; Cowan, D.C.; Taylor, D.R.; Cowan, J.O.; Gibson, P.G. Sputum gene expression signature of 6 biomarkers discriminates asthma inflammatory phenotypes. J. Allergy Clin. Immunol. 2014, 133, 997–1007. [Google Scholar] [CrossRef]
- Peters, M.C.; Ringel, L.; Dyjack, N.; Herrin, R.; Woodruff, P.G.; Rios, C.; O’Connor, B.; Fahy, J.V.; Seibold, M.A. A Transcriptomic Method to Determine Airway Immune Dysfunction in T2-High and T2-Low Asthma. Am. J. Respir. Crit. Care Med. 2019, 199, 465–477. [Google Scholar] [CrossRef]
- Kim, B.K.; Lee, H.S.; Sohn, K.H.; Lee, S.Y.; Cho, S.H.; Park, H.W. Different Biological Pathways Are Up-regulated in the Elderly With Asthma: Sputum Transcriptomic Analysis. Allergy Asthma Immunol. Res. 2019, 11, 104–115. [Google Scholar] [CrossRef]
- Pandey, G.; Pandey, O.P.; Rogers, A.J.; Ahsen, M.E.; Hoffman, G.E.; Raby, B.A.; Weiss, S.T.; Schadt, E.E.; Bunyavanich, S. A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal RNA Sequence Data. Sci. Rep. 2018, 8, 8826. [Google Scholar] [CrossRef] [Green Version]
- Weathington, N.; O’Brien, M.E.; Radder, J.; Whisenant, T.C.; Bleecker, E.R.; Busse, W.W.; Erzurum, S.C.; Gaston, B.; Hastie, A.T.; Jarjour, N.N.; et al. BAL Cell Gene Expression in Severe Asthma Reveals Mechanisms of Severe Disease and Influences of Medications. Am. J. Respir. Crit. Care Med. 2019, 200, 837–856. [Google Scholar] [CrossRef]
- Hekking, P.P.; Loza, M.J.; Pavlidis, S.; de Meulder, B.; Lefaudeux, D.; Baribaud, F.; Auffray, C.; Wagener, A.H.; Brinkman, P.I.; Lutter, R.I.; et al. Pathway discovery using transcriptomic profiles in adult-onset severe asthma. J. Allergy Clin. Immunol. 2018, 141, 1280–1290. [Google Scholar] [CrossRef] [Green Version]
- Aslam, B.; Basit, M.; Nisar, M.A.; Khurshid, M.; Rasool, M.H. Proteomics: Technologies and Their Applications. J. Chromatogr. Sci. 2017, 55, 182–196. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, E.B.; Vidotto, A.; Polachini, G.M.; Henrique, T.; Marqui, A.B.; Tajara, E.H. Proteomics: Methodologies and applications to the study of human diseases. Rev. Assoc. Med. Bras. 2012, 58, 366–375. [Google Scholar]
- Lee, S.H.; Rhim, T.; Choi, Y.S.; Min, J.W.; Kim, S.H.; Cho, S.Y.; Paik, Y.K.; Park, C.S. Complement C3a and C4a increased in plasma of patients with aspirin-induced asthma. Am. J. Respir. Crit. Care Med. 2006, 173, 370–378. [Google Scholar] [CrossRef]
- Gharib, S.A.; Nguyen, E.V.; Lai, Y.; Plampin, J.D.; Goodlett, D.R.; Hallstrand, T.S. Induced sputum proteome in healthy subjects and asthmatic patients. J. Allergy Clin. Immunol. 2011, 128, 1176–1184.e1176. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.H.; Jang, A.S.; Park, J.S.; Kim, T.H.; Choi, Y.S.; Shin, H.R.; Park, S.W.; Uh, S.T.; Choi, J.S.; Kim, Y.H.; et al. Elevation of S100 calcium binding protein A9 in sputum of neutrophilic inflammation in severe uncontrolled asthma. Ann. Allergy Asthma Immunol. 2013, 111, 268–275.e1. [Google Scholar] [CrossRef]
- Wu, J.; Kobayashi, M.; Sousa, E.A.; Liu, W.; Cai, J.; Goldman, S.J.; Dorner, A.J.; Projan, S.J.; Kavuru, M.S.; Qiu, Y.; et al. Differential proteomic analysis of bronchoalveolar lavage fluid in asthmatics following segmental antigen challenge. Mol. Cell Proteomics 2005, 4, 1251–1264. [Google Scholar] [CrossRef] [Green Version]
- Candiano, G.; Bruschi, M.; Pedemonte, N.; Caci, E.; Liberatori, S.; Bini, L.; Pellegrini, C.; Vigano, M.; O’Connor, B.J.; Lee, T.H.; et al. Gelsolin secretion in interleukin-4-treated bronchial epithelia and in asthmatic airways. Am. J. Respir. Crit. Care Med. 2005, 172, 1090–1096. [Google Scholar] [CrossRef]
- Ghosh, S.; Janocha, A.J.; Aronica, M.A.; Swaidani, S.; Comhair, S.A.; Xu, W.; Zheng, L.; Kaveti, S.; Kinter, M.; Hazen, S.L.; et al. Nitrotyrosine proteome survey in asthma identifies oxidative mechanism of catalase inactivation. J. Immunol. 2006, 176, 5587–5597. [Google Scholar] [CrossRef] [Green Version]
- Cederfur, C.; Malmstrom, J.; Nihlberg, K.; Block, M.; Breimer, M.E.; Bjermer, L.; Westergren-Thorsson, G.; Leffler, H. Glycoproteomic identification of galectin-3 and -8 ligands in bronchoalveolar lavage of mild asthmatics and healthy subjects. Biochim. Biophys. Acta 2012, 1820, 1429–1436. [Google Scholar] [CrossRef]
- O’Neil, S.E.; Sitkauskiene, B.; Babusyte, A.; Krisiukeniene, A.; Stravinskaite-Bieksiene, K.; Sakalauskas, R.; Sihlbom, C.; Ekerljung, L.; Carlsohn, E.; Lotvall, J. Network analysis of quantitative proteomics on asthmatic bronchi: Effects of inhaled glucocorticoid treatment. Respir. Res. 2011, 12, 124. [Google Scholar] [CrossRef] [Green Version]
- Dunn, W.B.; Bailey, N.J.; Johnson, H.E. Measuring the metabolome: Current analytical technologies. Analyst 2005, 130, 606–625. [Google Scholar] [CrossRef]
- Lei, Z.; Huhman, D.V.; Sumner, L.W. Mass spectrometry strategies in metabolomics. J. Biol. Chem. 2011, 286, 25435–25442. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, N.; Tejaswini, G.; Sahu, M.; Muralikrishna, K. An overview on NMR spectroscopy based metabolomics. Int. J. Pharm. Sci. Dev. Res. 2020, 6, 016–020. [Google Scholar] [CrossRef]
- Ried, J.S.; Baurecht, H.; Stuckler, F.; Krumsiek, J.; Gieger, C.; Heinrich, J.; Kabesch, M.; Prehn, C.; Peters, A.; Rodriguez, E.; et al. Integrative genetic and metabolite profiling analysis suggests altered phosphatidylcholine metabolism in asthma. Allergy 2013, 68, 629–636. [Google Scholar] [CrossRef]
- Jung, J.; Kim, S.H.; Lee, H.S.; Choi, G.S.; Jung, Y.S.; Ryu, D.H.; Park, H.S.; Hwang, G.S. Serum metabolomics reveals pathways and biomarkers associated with asthma pathogenesis. Clin. Exp. Allergy 2013, 43, 425–433. [Google Scholar] [CrossRef]
- Chang, C.; Guo, Z.G.; He, B.; Yao, W.Z. Metabolic alterations in the sera of Chinese patients with mild persistent asthma: A GC-MS-based metabolomics analysis. Acta Pharmacol. Sin. 2015, 36, 1356–1366. [Google Scholar] [CrossRef] [Green Version]
- Reinke, S.N.; Gallart-Ayala, H.; Gomez, C.; Checa, A.; Fauland, A.; Naz, S.; Kamleh, M.A.; Djukanovic, R.; Hinks, T.S.; Wheelock, C.E. Metabolomics analysis identifies different metabotypes of asthma severity. Eur. Respir. J. 2017, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, Z.; Wang, G.; Wang, C.; Zhang, W.; Liu, J.; Wang, F. Serum Metabolomics Analysis of Asthma in Different Inflammatory Phenotypes: A Cross-Sectional Study in Northeast China. BioMed Res. Int. 2018, 2018, 2860521. [Google Scholar] [CrossRef] [PubMed]
- Bochenek, G.; Nizankowska, E.; Gielicz, A.; Swierczynska, M.; Szczeklik, A. Plasma 9alpha,11beta-PGF2, a PGD2 metabolite, as a sensitive marker of mast cell activation by allergen in bronchial asthma. Thorax 2004, 59, 459–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comhair, S.A.; McDunn, J.; Bennett, C.; Fettig, J.; Erzurum, S.C.; Kalhan, S.C. Metabolomic Endotype of Asthma. J. Immunol. 2015, 195, 643–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, T.; Dai, L.; Li, P.; Zhao, J.; Wang, X.; An, L.; Liu, M.; Wu, S.; Wang, Y.; Peng, Y.; et al. Lipid metabolism and identification of biomarkers in asthma by lipidomic analysis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2021, 1866, 158853. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zheng, J.; Zhang, H.P.; Zhang, X.; Wang, L.; Wood, L.; Wang, G. Obesity-Associated Metabolic Signatures Correlate to Clinical and Inflammatory Profiles of Asthma: A Pilot Study. Allergy Asthma Immunol. Res. 2018, 10, 628–647. [Google Scholar] [CrossRef]
- Loureiro, C.C.; Duarte, I.F.; Gomes, J.; Carrola, J.; Barros, A.S.; Gil, A.M.; Bousquet, J.; Bom, A.T.; Rocha, S.M. Urinary metabolomic changes as a predictive biomarker of asthma exacerbation. J. Allergy Clin. Immunol. 2014, 133, 261–263.e5. [Google Scholar] [CrossRef]
- Loureiro, C.C.; Oliveira, A.S.; Santos, M.; Rudnitskaya, A.; Todo-Bom, A.; Bousquet, J.; Rocha, S.M. Urinary metabolomic profiling of asthmatics can be related to clinical characteristics. Allergy 2016, 71, 1362–1365. [Google Scholar] [CrossRef]
- Kolmert, J.; Gomez, C.; Balgoma, D.; Sjodin, M.; Bood, J.; Konradsen, J.R.; Ericsson, M.; Thorngren, J.O.; James, A.; Mikus, M.; et al. Urinary Leukotriene E4 and Prostaglandin D2 Metabolites Increase in Adult and Childhood Severe Asthma Characterized by Type 2 Inflammation. A Clinical Observational Study. Am. J. Respir. Crit. Care Med. 2021, 203, 37–53. [Google Scholar] [CrossRef]
- Wheelock, C.E.; Goss, V.M.; Balgoma, D.; Nicholas, B.; Brandsma, J.; Skipp, P.J.; Snowden, S.; Burg, D.; D’Amico, A.; Horvath, I.; et al. Application of ‘omics technologies to biomarker discovery in inflammatory lung diseases. Eur. Respir. J. 2013, 42, 802–825. [Google Scholar] [CrossRef]
- Ibrahim, B.; Marsden, P.; Smith, J.A.; Custovic, A.; Nilsson, M.; Fowler, S.J. Breath metabolomic profiling by nuclear magnetic resonance spectroscopy in asthma. Allergy 2013, 68, 1050–1056. [Google Scholar] [CrossRef]
- Ntontsi, P.; Ntzoumanika, V.; Loukides, S.; Benaki, D.; Gkikas, E.; Mikros, E.; Bakakos, P. EBC metabolomics for asthma severity. J. Breath Res. 2020, 14, 036007. [Google Scholar] [CrossRef]
- Motta, A.; Paris, D.; D’Amato, M.; Melck, D.; Calabrese, C.; Vitale, C.; Stanziola, A.A.; Corso, G.; Sofia, M.; Maniscalco, M. NMR metabolomic analysis of exhaled breath condensate of asthmatic patients at two different temperatures. J. Proteome Res. 2014, 13, 6107–6120. [Google Scholar] [CrossRef]
- Sinha, A.; Desiraju, K.; Aggarwal, K.; Kutum, R.; Roy, S.; Lodha, R.; Kabra, S.K.; Ghosh, B.; Sethi, T.; Agrawal, A. Exhaled breath condensate metabolome clusters for endotype discovery in asthma. J. Transl. Med. 2017, 15, 262. [Google Scholar] [CrossRef] [Green Version]
- Maniscalco, M.; Paris, D.; Melck, D.J.; D’Amato, M.; Zedda, A.; Sofia, M.; Stellato, C.; Motta, A. Coexistence of obesity and asthma determines a distinct respiratory metabolic phenotype. J. Allergy Clin. Immunol. 2017, 139, 1536–1547.e5. [Google Scholar] [CrossRef] [Green Version]
- Snowden, S.; Dahlen, S.E.; Wheelock, C.E. Application of metabolomics approaches to the study of respiratory diseases. Bioanalysis 2012, 4, 2265–2290. [Google Scholar] [CrossRef] [Green Version]
- Horgan, R.P.; Kenny, L.C. Omic technologies: Genomics, transcriptomics, proteomics and metabolomics. Obestetrician Gynaecol. 2011, 13, 189–195. [Google Scholar] [CrossRef]
- Hodge, S.E. Linkage analysis versus association analysis: Distinguishing between two models that explain disease-marker associations. Am. J. Hum. Genet. 1993, 53, 367–384. [Google Scholar]
- Donovan, B.M.; Bastarache, L.; Turi, K.N.; Zutter, M.M.; Hartert, T.V. The current state of omics technologies in the clinical management of asthma and allergic diseases. Ann. Allergy Asthma Immunol. 2019, 123, 550–557. [Google Scholar] [CrossRef] [Green Version]
- Hegde, P.S.; White, I.R.; Debouck, C. Interplay of transcriptomics and proteomics. Curr. Opin. Biotechnol. 2003, 14, 647–651. [Google Scholar] [CrossRef]
- Ivanova, O.; Richards, L.B.; Vijverberg, S.J.; Neerincx, A.H.; Sinha, A.; Sterk, P.J.; Maitland-van der Zee, A.H. What did we learn from multiple omics studies in asthma? Allergy 2019, 74, 2129–2145. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Aziz, M.I.; Neerincx, A.H.; Vijverberg, S.J.; Kraneveld, A.D.; Maitland-van der Zee, A.H. Omics for the future in asthma. Semin. Immunopathol. 2020, 42, 111–126. [Google Scholar] [CrossRef]
- Teran, L.M.; Montes-Vizuet, R.; Li, X.; Franz, T. Respiratory proteomics: From descriptive studies to personalized medicine. J. Proteome Res. 2015, 14, 38–50. [Google Scholar] [CrossRef]
- Neerincx, A.H.; Vijverberg, S.J.H.; Bos, L.D.J.; Brinkman, P.; van der Schee, M.P.; de Vries, R.; Sterk, P.J.; Maitland-van der Zee, A.H. Breathomics from exhaled volatile organic compounds in pediatric asthma. Pediatr. Pulmonol. 2017, 52, 1616–1627. [Google Scholar] [CrossRef]
- Wu, G. Functional amino acids in growth, reproduction, and health. Adv. Nutr. 2010, 1, 31–37. [Google Scholar] [CrossRef]
- Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef]
- Ricciardolo, F.L.; Sterk, P.J.; Gaston, B.; Folkerts, G. Nitric oxide in health and disease of the respiratory system. Physiol. Rev. 2004, 84, 731–765. [Google Scholar] [CrossRef]
- Folkerts, G.; Kloek, J.; Muijsers, R.B.; Nijkamp, F.P. Reactive nitrogen and oxygen species in airway inflammation. Eur. J. Pharmacol. 2001, 429, 251–262. [Google Scholar] [CrossRef]
- Xu, W.; Comhair, S.A.A.; Janocha, A.J.; Lara, A.; Mavrakis, L.A.; Bennett, C.D.; Kalhan, S.C.; Erzurum, S.C. Arginine metabolic endotypes related to asthma severity. PLoS ONE 2017, 12, e0183066. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Ghosh, S.; Comhair, S.A.; Asosingh, K.; Janocha, A.J.; Mavrakis, D.A.; Bennett, C.D.; Gruca, L.L.; Graham, B.B.; Queisser, K.A.; et al. Increased mitochondrial arginine metabolism supports bioenergetics in asthma. J. Clin. Investig. 2016, 126, 2465–2481. [Google Scholar] [CrossRef] [Green Version]
- Asosingh, K.; Lauruschkat, C.D.; Alemagno, M.; Frimel, M.; Wanner, N.; Weiss, K.; Kessler, S.; Meyers, D.A.; Bennett, C.; Xu, W.; et al. Arginine metabolic control of airway inflammation. JCI Insight 2020, 5. [Google Scholar] [CrossRef]
- Zehethofer, N.; Bermbach, S.; Hagner, S.; Garn, H.; Muller, J.; Goldmann, T.; Lindner, B.; Schwudke, D.; Konig, P. Lipid Analysis of Airway Epithelial Cells for Studying Respiratory Diseases. Chromatographia 2015, 78, 403–413. [Google Scholar] [CrossRef] [Green Version]
- Wendell, S.G.; Baffi, C.; Holguin, F. Fatty acids, inflammation, and asthma. J. Allergy Clin. Immunol. 2014, 133, 1255–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyata, J.; Arita, M. Role of omega-3 fatty acids and their metabolites in asthma and allergic diseases. Allergol. Int. 2015, 64, 27–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.; Choi, Y.; Jung, C.G.; Park, H.S. Potential Biomarkers for NSAID-Exacerbated Respiratory Disease. Mediat. Inflamm. 2017, 2017, 8160148. [Google Scholar] [CrossRef] [PubMed]
- Ammit, A.J.; Hastie, A.T.; Edsall, L.C.; Hoffman, R.K.; Amrani, Y.; Krymskaya, V.P.; Kane, S.A.; Peters, S.P.; Penn, R.B.; Spiegel, S.; et al. Sphingosine 1-phosphate modulates human airway smooth muscle cell functions that promote inflammation and airway remodeling in asthma. FASEB J. 2001, 15, 1212–1214. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Jung, H.W.; Kim, M.; Moon, J.Y.; Ban, G.Y.; Kim, S.J.; Yoo, H.J.; Park, H.S. Ceramide/sphingosine-1-phosphate imbalance is associated with distinct inflammatory phenotypes of uncontrolled asthma. Allergy 2020, 75, 1991–2004. [Google Scholar] [CrossRef] [PubMed]
- Bahlas, S.; Damiati, L.A.; Al-Hazmi, A.S.; Pushparaj, P.N. Decoding the Role of Sphingosine-1-Phosphate in Asthma and Other Respiratory System Diseases Using Next Generation Knowledge Discovery Platforms Coupled With Luminex Multiple Analyte Profiling Technology. Front. Cell Dev. Biol. 2020, 8, 444. [Google Scholar] [CrossRef]
- Trinh, H.K.; Kim, S.C.; Cho, K.; Kim, S.J.; Ban, G.Y.; Yoo, H.J.; Cho, J.Y.; Park, H.S.; Kim, S.H. Exploration of the Sphingolipid Metabolite, Sphingosine-1-phosphate and Sphingosine, as Novel Biomarkers for Aspirin-exacerbated Respiratory Disease. Sci. Rep. 2016, 6, 36599. [Google Scholar] [CrossRef]
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2021. Available online: www.ginasthma.org (accessed on 15 May 2021).
- Pite, H.; Morais-Almeida, M.; Rocha, S.M. Metabolomics in asthma: Where do we stand? Curr. Opin. Pulm. Med. 2018, 24, 94–103. [Google Scholar] [CrossRef]
- Panda, L.; Gheware, A.; Rehman, R.; Yadav, M.K.; Jayaraj, B.S.; Madhunapantula, S.V.; Mahesh, P.A.; Ghosh, B.; Agrawal, A.; Mabalirajan, U. Linoleic acid metabolite leads to steroid resistant asthma features partially through NF-kappaB. Sci. Rep. 2017, 7, 9565. [Google Scholar] [CrossRef] [Green Version]
- Mabalirajan, U.; Rehman, R.; Ahmad, T.; Kumar, S.; Singh, S.; Leishangthem, G.D.; Aich, J.; Kumar, M.; Khanna, K.; Singh, V.P.; et al. Linoleic acid metabolite drives severe asthma by causing airway epithelial injury. Sci. Rep. 2013, 3, 1349. [Google Scholar] [CrossRef] [Green Version]
- Lessard, A.; Turcotte, H.; Cormier, Y.; Boulet, L.P. Obesity and asthma: A specific phenotype? Chest 2008, 134, 317–323. [Google Scholar] [CrossRef]
- Peters, U.; Dixon, A.E.; Forno, E. Obesity and asthma. J. Allergy Clin. Immunol. 2018, 141, 1169–1179. [Google Scholar] [CrossRef] [Green Version]
- Leiria, L.O.; Martins, M.A.; Saad, M.J. Obesity and asthma: Beyond T(H)2 inflammation. Metabolism 2015, 64, 172–181. [Google Scholar] [CrossRef]
- Periyalil, H.A.; Gibson, P.G.; Wood, L.G. Immunometabolism in obese asthmatics: Are we there yet? Nutrients 2013, 5, 3506–3530. [Google Scholar] [CrossRef]
- Rastogi, D.; Fraser, S.; Oh, J.; Huber, A.M.; Schulman, Y.; Bhagtani, R.H.; Khan, Z.S.; Tesfa, L.; Hall, C.B.; Macian, F. Inflammation, metabolic dysregulation, and pulmonary function among obese urban adolescents with asthma. Am. J. Respir. Crit. Care Med. 2015, 191, 149–160. [Google Scholar] [CrossRef] [Green Version]
- Xie, B.; Waters, M.J.; Schirra, H.J. Investigating potential mechanisms of obesity by metabolomics. J. BioMed Biotechnol. 2012, 2012, 805683. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Snider, A.J. Sphingolipids in High Fat Diet and Obesity-Related Diseases. Mediat. Inflamm 2015, 2015, 520618. [Google Scholar] [CrossRef] [Green Version]
- Sturgill, J.L.; Khosravi, M.; Allegood, J.; 2, S.S. Ceramide as a Key Player in Obesity Exacerbated Asthma. Am. J. Respir. Crit. Care Med. 2019, 199. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, M.; Kim, S.J.; Yoo, H.J.; Kim, S.H.; Park, H.S. Metabolic shift favoring C18:0 ceramide accumulation in obese asthma. Allergy 2020, 75, 2858–2866. [Google Scholar] [CrossRef]
- Gowda, G.A.; Zhang, S.; Gu, H.; Asiago, V.; Shanaiah, N.; Raftery, D. Metabolomics-based methods for early disease diagnostics. Expert Rev. Mol. Diagn. 2008, 8, 617–633. [Google Scholar] [CrossRef] [Green Version]
- Checkley, W.; Deza, M.P.; Klawitter, J.; Romero, K.M.; Klawitter, J.; Pollard, S.L.; Wise, R.A.; Christians, U.; Hansel, N.N. Identifying biomarkers for asthma diagnosis using targeted metabolomics approaches. Respir. Med. 2016, 121, 59–66. [Google Scholar] [CrossRef] [Green Version]
Linkage Studies with Positional Cloning | |||
ADAM33 | 20p13 | [25] | |
DPP10 | 2q14 | [26] | |
PHF11 | 13q14 | [27] | |
GPRA | 7p14 | [28] | |
HLA-G | 6p21 | [29] | |
CYFIP2 | 5q33 | [30] | |
IRAK3 | 12q14 | [31] | |
OPN3 | 1q | [32] | |
Candidate gene association studies | |||
Asthma | IL10 | 1q31 | [37] |
IL1RN | 2q14 | [38] | |
IL1B | 2q14 | [39] | |
HNMT | 2q22 | [40] | |
CTLA4 | 2q33 | [41] | |
CCR3 | 3p21 | [42] | |
CCR5 | 3p21 | [43,44] | |
TLR9 | 3p21.3 | [45] | |
MUC7 | 4q13-21 | [46] | |
PGDS | 4q21-22 | [47] | |
CSF2 | 5q31 | [37] | |
IL4 | 5q31 | [48,49] | |
IL13 | 5q31 | [50,51,52] | |
UGRP1 | 5q31-34 | [53] | |
ADRB2 | 5q32-34 | [54,55] | |
LTC4S | 5q35 | [56,57] | |
HLA-DRB1 | 6p21 | [58,59,60,61] | |
HLA-DPB1 | 6p21 | [62] | |
TNF | 6p21 | [58,63,64,65,66] | |
LTA | 6p21 | [58,65] | |
TAP1 | 6p21 | [67,68] | |
PAFAH | 6p21 | [69,70,71] | |
EDN1 | 6p21 | [72] | |
EOTAXIN2 | 7q11 | [73] | |
CFTR | 7q31 | [74,75,76,77] | |
NOS3 | 7q36 | [37,78] | |
C5 | 9q34 | [37] | |
SDF1 | 10q11 | [37] | |
CC16/CC10 | 11q12-13 | [79,80,81] | |
FCER1B | 11q12-13 | [82,83,84,85,86,87,88] | |
GSTP1 | 11q13 | [89] | |
AICDA | 12p13 | [90] | |
STAT6 | 12q13 | [91] | |
NOS1 | 12q24 | [92,93] | |
ACT | 14q32 | [94] | |
IL4RA | 16p12 | [95,96,97,98,99] | |
RANTES | 17q11-12 | [100,101] | |
ACE | 17q23 | [102,103] | |
TBXA2R | 19p13 | [104] | |
Asthma severity | CTLA4 | 2q33 | [105] |
IL4 | 5q31 | [106] | |
ADRB2 | 5q32-34 | [107] | |
PAFAH | 6p21 | [69] | |
IL4RA | 16p12 | [97] | |
TGFB1 | 19q13 | [108] | |
Eosinophil counts | IL10 | 1q31 | [72] |
STAT6 | 12q13 | [109] | |
NOS1 | 12q24 | [72] | |
EOTAXIN1 | 17q21 | [110] | |
Total IgE in general population | CTLA4 | 2q33 | [41] |
IL4 | 5q31 | [111] | |
CD14 | 5q31 | [112,113] | |
HLA-DRB1 | 6p21 | [114,115,116] | |
PAFAH | 6p21 | [70] | |
IFNGR1 | 6q23 | [117] | |
FCER1B | 11q13 | [84] | |
AICDA | 12p13 | [90] | |
IFNG | 12q21 | [118] | |
NOS1 | 12q24 | [72] | |
IL4RA | 16p12 | [95,99,119,120] | |
TGFB1 | 19q13 | [121] | |
IFNGR2 | 21q22 | [117] | |
IL13RA1 | Xq13 | [51] | |
Total IgE in asthmatics | IL10 | 1q31 | [121,122] |
CTLA4 | 2q33 | [123] | |
IL4 | 5q31 | [124] | |
NOS3 | 7q36 | [125] | |
FCER1B | 11q13 | [87] | |
EOTAXIN1 | 17q21 | [73] | |
Specific IgE | IL4 | 5q31 | [126] |
HLA-DPB1 | 6p21 | [127,128] | |
PAFAH | 6p21 | [70] | |
NOS3 | 7q36 | [125] | |
FCER1B | 11q13 | [129] | |
AHR/BHR | IL10 | 1q31 | [37] |
CTLA4 | 2q33 | [41,105] | |
CSF2 | 5q31 | [37] | |
IL13 | 5q31 | [50] | |
ADRB2 | 5q32-34 | [130,131] | |
LTC4S | 5q35 | [37] | |
TNF | 6p21 | [37,132,133] | |
LTA | 6p21 | [132] | |
NOS3 | 7q36 | [37] | |
FCER1B | 11q13 | [129] | |
ACT | 14q32 | [94] | |
IL4RA | 16p12 | [95] | |
NOS2A | 17cen-q11 | [37] | |
FEV1/FVC | IL4 | 5q31 | [134] |
ADRB2 | 5q32-34 | [135] | |
LTC4S | 5q35 | [136] | |
IL4RA | 16p12 | [106] | |
EOTAXIN1 | 17q21 | [110] | |
Genome-wide association studies | |||
CRCT1 | 1q21 | [137] | |
IL6R | 1q21 | [137,138] | |
PYHIN1 | 1q23 | [35,137] | |
DENND1B/CRB1 | 1q31 | [137] | |
IL18R1/IL1RL1/IL1RL2 | 2q12 | [34,35,137,138,139] | |
DPP10 | 2q12.3-q14.2 | [140] | |
D2HGDH | 2q37 | [137] | |
USP38/GAB1 | 4q31 | [137,141] | |
PDE4D | 5q12 | [142] | |
TSLP/SLC22A5 | 5q22 | [34,137,139,141,143] | |
RAD50/NDFIP1 | 5q31 | [137,144] | |
ADRA1B | 5q33 | [140] | |
IL13 | 5q | [34,144] | |
HLA-DP/DQ/DR | 6p21 | [34,137,143,144,145,146] | |
BTNL2 | 6p21 | [137] | |
CDHR3 | 8q24 | [137] | |
TEK | 9p21 | [143] | |
IL-33 | 9p24 | [34,138] | |
PTGES | 9q34 | [143] | |
GATA3 | 10p14 | [141] | |
JMJDIC/REEP3 | 10q21 | [143] | |
CDK2/IKZF4 | 12q13 | [137] | |
RORA | 15q22 | [34,35,137] | |
SMAD3 | 15q22 | [34,137] | |
ORMDL3/GSMDB/IKZF3 | 17q21 | [34,35,137,138,139] | |
PRNP | 20pter-p12 | [140] | |
IL2RB | 22q12.3 | [34,35,137,138] |
Population | Methods | Purpose | Findings | Ref. |
---|---|---|---|---|
Blood | ||||
Exacerbation sample in adult asthmatics (n = 118) | Microarray and qPCR with pathway analysis | To identify the exacerbation-associated gene expression patterns in PBMC | TLR activation pathway with elevations in type 1 interferon and IL-15 genes is associated with asthma exacerbation. | [149] |
Nonsmoking SA/smoking SA/nonsmoking mild to moderate asthma/nonsmoking controls (n = 246/88/77/87) | Microarray with WGCNA | To find the transcriptional differences between subgroups of asthmatics and non-asthmatics in whole blood | Differentially expressed genes in immune cells of severe asthmatics. Gene sets related to chemotaxis, mobilization, migration, and infiltration of myeloid cells contribute to asthma severity. | [150] |
Airway epithelial cell | ||||
nonsmoking asthma/nonsmoking HCs/smoking controls (n = 42/28/16) | Microarray and qPCR | To explore the distinct gene expression related to airway dysfunction and corticosteroid treatment in epithelial cells of asthmatics | Identification of 22 differentially expressed genes in asthmatics. IL-13-derived asthma-associated genes (CLCA1, periostin, and serpinB2) are decreased by corticosteroid treatment with an improvement in lung function. | [151] |
Asthmatics/HCs (n = 42/28) | Microarray and qPCR | To define the molecular phenotypes based on type 2 cytokines-induced gene expression in epithelial brushings of asthmatics | Phenotyping of asthma as Th2-high and Th2-low based on CLCA1, periostin, and sepinB2 gene expression. Th2-high asthma has worse clinical outcomes (lower lung function, higher serum IgE, and blood/airway eosinophilia) and inflammatory features (subepithelial fibrosis and increase of mucin stores). | [152] |
Nonsmoking SA/smoking SA/mild-to-moderate asthma/HCs (n = 46/16/34/41) | Microarray | To investigate the pathogenesis of severe asthma and the influences of blood, sputum, and submucosal eosinophils or neutrophils on the gene expression in bronchial brushing | 7 genes (COX-2, ADAM-7, SLCO1A2, TMEFF2, TRPM-1, and 2 unnamed genes) are positively correlated with blood and submucosal eosinophilia with thick lamina reticularis and elevated FENO. | [153] |
SA/moderate asthma with ICS/mild asthma with ICS/mild-to-moderate asthma with no ICS/HCs (n = 51/19/22/37/26) | Microarray with WGCNA, LIMMA, and pathway analysis | To identify specific genetic networks to be associated with asthma severity | Asthma severity has a positive correlation with a network related to mitosis/cell division and T2 inflammation, but a negative correlation with a network related to epithelial growth/repair, cell integrity/remodeling, and neuronal function/development. | [154] |
Sputum | ||||
Asthmatics/HCs (n = 59/13) | Microarray and qPCR with GO and pathway analysis | To establish 3 distinct transcriptional asthma phenotypes (TAPs) considering clinical status and gene expression in the sputum of asthmatics | Classification of asthma phenotypes as eosinophilic, neutrophilic, or paucigranulocytic asthma based on the predominance of immune cells in sputum. IL-1 and TNF-α/NF-κB pathways are involved in the pathogenesis of neutrophilic asthma. | [155] |
Asthmatics/HCs (n = 37/15) | qPCR | To determine genetic profiling related to Th2 cytokines in the sputum cells of asthmatics for the categorization of asthma phenotypes | Standardization of IL-4, IL-5, and IL-13 gene expression for classification as Th2-high and Th2-low subtypes (Th2 gene mean). Th2-high asthma has poor clinical outcomes (low lung function and blood eosinophilia) with elevation in mast cell/eosinophil-related genes. | [156] |
Asthmatics/HCs (n = 106/20) | Microarray and qPCR | To validate genetic biomarkers for inflammatory phenotypes of asthma and prediction of ICS treatment response | Identification of 23 differentially expressed genes across eosinophilic, neutrophilic, and paucigranulocytic phenotypes. The 3 genes for eosinophilic asthma (CLC, CPA3, and DNASE1L3) and 3 for neutrophilic asthma (IL1B, ALPL, and CXCR2) are validated with distinct alterations after ICS treatments. | [157] |
Asthmatics/HCs (n = 84/27) | RNA seq with WGCNA and pathway analysis | To identify genetic networks in sputum immune cells of asthmatics for clustering them into T2-high and T2-low subgroups | High T2-network gene expression in the T2-high asthma comes from the interaction of various immune cells (eosinophils, mast cells, basophils, and dendritic cells), leading to severe airway dysfunction. CD8+T cell network gene expression is lower in T2-low asthma and negatively correlated with body mass index. | [158] |
Elderly asthmatics/HCs (n = 55/10) | Microarray with GSEA and cluster analysis | To find distinct biological mechanisms with genetic profiling in sputum cells for clustering of elderly asthmatics | Identification of 2 molecular clusters in elderly asthmatics with increased OXPHOS and EMT gene sets, respectively. The OXPHOS/UPR system related to oxidative stress leads to inflammatory response and immune function dysregulation in the airways of elderly asthmatics. The EMT gene sets contribute to airway remodeling with lower lung function in elderly asthmatics. | [159] |
Nasal brushings | ||||
Mild-to-moderate asthmatics/HCs (n = 66/124) | Microarray and RNA seq with pathway and classification analysis | To validate nasal brush-based classifier genes for the diagnosis of asthma | Identification of 90 genes as a nasal classifier for mild-to-moderate asthma | [160] |
BALF | ||||
SA/moderate asthma with ICS/mild asthma with ICS/mild-to-moderate asthma with no ICS/HCs (n = 44/15/18/40/37) | LIMMA, WGCNA, GO and pathway analysis | To determine severity-related genes and influence of β-agonist use on gene expression in BAL immune cells | Higher BAL neutrophils with increased gene expression related to TNF-α and type 1 interferon pathway in SA. Several severity-related genes are within or close to asthma susceptibility loci (5q, 17q, 1p). A specific gene network related to cAMP signaling is associated with asthma severity and β-agonist exposure. | [161] |
Mixed | ||||
Adult/childhood-onset SA (n = 253/158) | Microarray with GSVA | To identify gene signatures in adult-onset compared to childhood-onset SA using diverse samples (nasal brushings, bronchial brushings, and sputum) | Identification of 5 differentially expressed gene signatures in nasal brushings, 6 in bronchial brushings, and 3 in sputum. Specific genes related to immune cells (eosinophils, mast cell, ILC3) and type 2 inflammation are up-regulated in adult-onset SA. | [162] |
Population | Methods | Purpose | Findings | Ref. |
---|---|---|---|---|
Serum | ||||
AIA/ATA/HCs (n = 30/24/21) | 2D-PAGE, MALDI-TOF MS, and ELISA | To investigate differentially expressed proteins in AIA | Identification of distinct protein expression in AIA as complement components, modified albumin, apolipoprotein, PRO2619, hypothetical protein, and SPOCD1 protein. C3a and C4a levels are higher in AIA and correlated with FEV1, suggesting the pathogenic role of complements in AIA. | [165] |
Sputum | ||||
Asthmatics with EIB/those without EIB/HCs (n = 5/5/5) | LC-MS/MS with GO and network analysis | To determine the contribution of specific proteins to asthma and susceptibility for EIB | 10 up-regulated (SERPINA1) and 7 down-regulated proteins (S100A9, S100A8, SMR3B, and SCGB1A1) in asthmatics are related to defense response, inflammation, and protease inhibitory activity. 9 proteins including C3 and HPX are susceptible to EIB in asthmatics. | [166] |
UA/PC/CA/COPD/HCs (n = 20/35/21/21/8) | 2D-PAGE, MALDI-TOF MS, and ELISA | To identify biomarkers for severe UA with neutrophilic inflammation | 6 increased and 7 decreased proteins in severe uncontrolled asthma with neutrophilic inflammation are related to inflammatory/immunity/enzyme activity, cysteine protease inhibitor, signaling, and cytoskeleton functions. S100A9 is suggested as a UA biomarker contributing to neutrophilic airway inflammation and steroid resistance. | [167] |
BALF | ||||
Asthmatics/HCs (n = 4/3) | SDS-PAGE, nano-HPLC-MS/MS, and ELISA with GO analysis | To verify protein expression changes before and after segmental allergen challenge in asthmatics | Alterations in protein expression related to diverse biological functions after segmental allergen challenge in asthmatics. Several signature proteins released from immune cells (CLC, MBP, EDN, ECP, CRISP-3, and MMP-9) are elevated after challenge. Differentially expressed proteins are involved in various molecular functions (hydrolase activity, protein binding, and calcium ion binding) and biological process (immune response, lipid metabolism, transport, and signal transduction). | [168] |
Atopic asthmatics/HCs (n = 6/6) | 2D-PAGE, MALDI-TOF MS, and ELISA with functional analysis | To demonstrate the influences of IL-4 stimulation on gelsolin secretion in BALF of asthmatics | Higher concentrations of IL-4 and gelsolin in BALF of asthmatics. IL-4 treatment induces gelsolin expression in airway epithelial cells of asthmatics for mucus viscosity control and innate antimicrobial activity. | [169] |
Asthmatics/HCs (n = 11/19) | 2D-PAGE, SDS-PAGE, and MS/MS | To investigate the oxidative mechanisms in asthmatic airways and allergen-induced mouse models | Lower activity of catalase function in asthmatics contributes to increased oxidative stress, driving chronic and severe airway inflammation. | [170] |
Mild asthmatics/HCs (n = 4/4) | Affinity chromatography and ESI LC-MS/MS with functional analysis | To identify the function of galectins in asthmatic airways | Differential airway localization of galectin-3 in epithelium, endothelium, smooth muscle cells, and fibroblasts, as well as galectin-8 in plasma cells. Distinct profiles of galectin-bound proteins in asthmatics suggest its linkage with eosinophilic inflammation and airway remodeling. | [171] |
Bronchial biopsy | ||||
Asthmatics/HCs (n = 12/3) | iTRAQ LC-MS/MS with functional and pathway analysis | To determine distinct proteins and related biological pathways related to asthmatics and their alterations by ICS treatment. | Identification of 7 significantly different proteins between asthmatics and HCs related to multiple biological functions (hematological system development/function, lipid metabolism, molecular transport, signaling, and tissue development). ICS treatment alters protein expression related to immune cell trafficking, tissue development, and hematological systems development/function. | [172] |
Population | Methods | Purpose | Findings | Ref. |
---|---|---|---|---|
Blood | ||||
Asthmatics/HCs (n = 147/2778) | ESI-MS/MS | To investigate lipid metabolic biomarkers associated with asthma candidate genes by genomic and metabolomic analysis in the sera of asthmatics | 151 different metabolites between asthmatics and HCs. 2 significant metabolites (PC.ae.C42:1 and PC.ae.C42:5) are associated with current asthma. 6 SNPs exert effects on the production of asthma-associated metabolites: 2 SNPs at 17q21 (PSMD3, MED24) on PC.ae.C42:4, PC.ae.C42:5, PC.ae.C44:5, PC.ae.C44:6, and 1 SNP at TSLP gene on PC.aa.C34:4, SM.C20:2 and IL1RL1 gene on SM.C20:2. | [176] |
Asthmatics/HCs (n = 39/26) | 1H-NMR | To demonstrate distinct metabolic profiling in the sera of asthmatics and identify the potential biomarkers for asthma | 10 significant metabolites in asthmatics: increase of methionine and glutamine and decrease of formate, choline, histidine, acetate, glucose, phosphocholine, arginine, and methanol. FEV1 has a positive correlation with choline and arginine, but a negative correlation with acetone. | [177] |
Asthmatics/HCs (n = 17/17) | GC-TOF-MS | To explore metabolic changes and related mechanisms in the sera of mild asthmatics for novel prognostic markers | 14 significant metabolites in asthmatics and 8 potential clinical indicators for asthma: succinic acid, 3,4-dihydroxybenzoic acid, inosine, 5-aminovaleric acid, phenylalanine, ascorbate, dehydroascorbic acid, and 2-ketovateric acid. Specific metabolic pathways (TCA cycle, hypoxia metabolism, and urea cycle) are associated with asthma. | [178] |
Mild/moderate/severe asthmatics/HCs (n = 12/20/22/22) | LC-HRMS, MS/MS | To determine distinct serum metabolic profiles related to asthma severity and steroid treatment | 15 significant metabolites across mild/moderate/severe asthma and HCs. 6 significant metabolites are correlated with ICS doses: DHEA-S, cortisone, ProHyp, pipecolate, N-palmitoyltaurine, and cortisol. 2 primary metabolic clusters are correlated with asthma severity: decrease of DHEA-S and increase of OEA, S1P, N-palmitoltaurine, 22-hydroxycholesterol, and xanthine. Targeted analysis for lipid metabolites reveals increases in specific ceramides, sphingomyelins, eicosanoids, and fatty acids and their correlation with asthma severity and ICS doses. | [179] |
EA/NEA/HCs (n = 13/16/15) | UPLC-MS/MS | To identify differential metabolic patterns and pathways in specific clinical inflammatory phenotypes | 18 potential metabolites for diagnostic biomarkers for EA and NEA. 3 significant metabolic pathways related to glycerophospholipid, retinol, and sphingolipid for asthma pathogenesis. | [180] |
Allergic asthma/HCs (n = 32/50) | GC-NICI-MS | To investigate the role of prostaglandin D2 and its metabolites in the early asthmatic response to allergens | Targeted analysis in plasma shows early increase in 9α,11β-Prostaglandin F2 after allergen challenge induced by mast cell activation. | [181] |
NSA/SA/HCs (n = 10/10/10) | UHLPC-MS/MS, GC/MS | To determine the involvement of biochemical metabolism in asthma and its severity | 25 significant metabolites for asthmatics mostly related with lipid metabolism, 16 for severe asthma with steroid/amino acid metabolism, and 13 for high FENO with amino acid/lipid/bile acid metabolism. Increased taurine, nicotinamide, AMP, and arachidonate in asthmatics. Decreased 1-steraroyylglycerol, degydroisoandrosterone sulfate, and androsterone sulfate in severe asthma. Contribution of valine, isoleucine, and ornithine to high FENO in asthmatics. | [182] |
Asthmatics/HCs (n = 35/32) | UHPLC-MS/MS | To identify the role of lipid metabolism for asthma and IgE levels by lipidomic analysis in plasma | 10 lipid species for asthma diagnosis: PE(38:1), PE(18:1p/22:6), PE(20:0/18:1), SM(d18:1/18:1), TG(17:0/18:1/18:1), TG(16:0/16:0/18:1), PI(16:0/20:4), PG(44:9), Cer(d16:0/27:2), and LPC(22:4). Correlation of PE(20:0/18:1) and TG(16:0/16:0/18:1) IgE levels in asthmatics. | [183] |
Urine | ||||
Asthmatics (n = 10) | GC×GC-TOF-MS H-NMR | To identify the urinary metabolic changes related to asthma exacerbation | Contribution of lipid peroxidation to asthma exacerbation with an increase of alkanes and aldehydes in urine. Threonine, alanine, carnitine acetylcarnitine, and trimethylamine-N-oxide are increased; acetate, citrate, malonate, Hippurate, dimethylglycine, and phenylacetylglutamine are decreased in exacerbated condition. | [185] |
Asthmatics (n = 57) | GC×GC-TOF-MS | To demonstrate the influences of metabolites related to lipid peroxidation on asthma and its clinical parameters | Increase of urine metabolites related to lipid peroxidation in asthma related to clinical characteristics (asthma severity scores, FEV1, FENO, blood eosinophils, and serum IgE). | [186] |
Smoking SA/nonsmoking SA/nonsmoking mild-to-moderate asthma/HCs (n = 109/302/86/100) | MS | To investigate urinary eicosanoid metabolism in asthma for its phenotyping and association with asthma therapeutic agents | Higher concentration of urinary metabolites related to PGD2, PGF2α, PGE2, TXA2, isoprostanes, and CysLTs pathway in SA. Lower concentration of 2,3-dinor-TXB2 and 8,12-iso-iPF2α-VI in the OCS-treated group and 2,3-dinor-11β-PGF2α, LTE4, and 11-dehydro-TXB2 in the omalizumab-treated group. Correlation of urinary LTE4 with T2 inflammation markers in asthma (low lung function, blood/sputum eosinophils, and serum IgE/periostin/IL-13). | [187] |
Exhaled breath condensate (EBC) | ||||
Asthmatics/HCs (n = 82/35) | 1H-NMR | To determine EBC metabolomic profiles for phenotype comparisons and ICS use | 5 distinct spectral regions for asthmatics (0.16-0.18, 0.78-0.84, 0.88-0.94, 7.36-7.42, and 7.44-7.52 ppm) 2 significant spectra regions for sputum eosinophilia, 7 for sputum neutrophilia, 1 for asthma control, and 8 for steroid use. | [189] |
SA/mild-to-moderate asthma (n = 15/21) | UHPLC-ESI-MS 1H-NMR | To validate discriminating metabolites of SA from mild-to-moderate asthma | Contribution of amino acid (lysine) and lipid metabolism (eicosanoids, phospholipids, and unsaturated fatty acids) to asthma severity. | [190] |
Mild asthma/HCs (n = 55/55) | NMR | To identify differential NMR profiles of asthma in different operating temperature (−27.3 and −4.8 °C) for standardization of EBC collection. | Separation of asthmatics at −27.3 °C from HCs at −4.8 °C by uracil, urocanic acid, succinate, SFA, Phe, hippurate, trimethylamine, Val, and Tyr; from HCs at −27.3 °C by propionate, 4OH-phenylacetate, Val, acetate, SFA, Pro, Tyr, Arg, trans-aconitate, and Phe. Separation of asthmatics at −4.8 °C from HCs at −27.3 °C by Phe, succinate, Val, propionate, SFA, methanol, uracil, Pro, formate, isobutyrate, and urocanic acid; from HCs at −4.8 °C by SFA, Val, adenosine, Hippurate, Ala, formate, urocanic acid, Pro, acetate, ethanol, methanol, and Ile. | [191] |
Asthmatics/HCs (n = 89/20) | NMR | To determine distinct metabolic patterns of asthma and its endotypes | NMR spectra region at 7 ppm for distinguishing asthmatics from HCs by up-regulation of isopropanol and N,N, dimethylglycine and by down-regulation of ammonia. Classifying asthmatics as 3 clusters characterized (1) by low exacerbation ratio, (2) by high exhaled nitric oxide, and (3) by low blood eosinophils but high blood neutrophils. Contribution of high acetate, acetone, formic acid, methanol, and N,N, dimethylglycine concentrations as well as low concentrations of ammonia and hydroxybutyrate to asthma severity. | [192] |
OA/LA/HCs (n = 25/30/30/25) | 1H-NMR | To investigate metabolic profiles and pathways for class-specific metabolic types | Confirmation of carbohydrate signals (3.9-3.2 ppm) in OA. 23 and 17 metabolic pathways for OA distinct from HCs and LA, respectively, mostly related to energy metabolism (methane) and carbohydrate metabolism (glyoxylate/dicarboxylate and pyruvate). Differential metabolic profiling in OA: increases in glucose, butyrate, and acetoin and decreases in formate, tyrosine, ethanol, ethylene glycol, methanol, n-valerate, acetate, SFA, and propionate compared to HCs; increases in glucose, n-valerate, acetoin, isovalerate, and 1,2-propanediol and decreases in formate, ethnol, methanol, acetone, propionate, acetate, lactate, and SFA compared to LA. | [193] |
Mixed | ||||
OA/LA (n = 11/22) | GC-TOF-MS | To identify obesity-associated metabolites for obese asthma in sputum and blood | 11 metabolic signatures in sputum for OA related to xanthine, gluconic lactone, shikimic acid, indole-3-acetate, L-glutamic acid, 4-aminobutyric acid, benzoate, and phytosphingosine pathways. Metabolic signatures in serum of OA: increase of valine, uric acid, N-Methy-DL-alanine, and β-glycerophosphoric acid as well as decrease of asparagine 1, and d-glyceric acid. 3 metabolic signatures in PBMCs of OA: increases in 3-ydroxynorvaline 2 and decreases in 3-hydroxybutyric acid, linolenic acid, and isoleucine. | [184] |
Significant Metabolic Signatures | Population or Phenotype | Sample | AUC Values | Ref. | |
---|---|---|---|---|---|
Carbohydrates | |||||
Glucose | A/H | serum, ↓ | [177] | ||
O > L/ON | EBC | [193] | |||
Monosaccharide | N > E > H | serum | [180] | ||
Maltose | A/H | plasma, ↑ | [182] | ||
Maltotriose | A/H | plasma, ↑ | [182] | ||
D-Glyceric acid | O < L | serum | [184] | ||
D-Glucoheptose 1 | O > L | sputum | [184] | ||
Amino acid Metabolism | |||||
Alanine | A/H | EBC, ↑ | [191] | ||
N-Methyl-DL-alanine | O > L | serum | [184] | ||
Arginine | A/H | serum, ↓ | [177] | ||
A/H | EBC, ↑ | [191] | |||
Glutamine | A/H | serum, ↑ | [177] | ||
L-glutamic acid | O > L | sputum | [184] | ||
β-glutamic acid 1 | O > L | sputum | [184] | ||
Histidine | A/H | serum, ↓ | [177] | ||
Isoleucine | O < L | PBMCs | [184] | ||
A/H | EBC, ↑ | [191] | |||
Methionine | A/H | serum, ↑ | [177] | ||
Phenylalanine | A/H | EBC, ↑ | [191] | ||
Proline | A/H | EBC, ↑ | [191] | ||
Tyrosine | A/H | EBC, ↓ | [191] | ||
O < L/ON | EBC | [193] | |||
Valine | O > L | serum | [184] | ||
A/H | EBC, ↓ | [191] | |||
Taurine | A/H | plasma, ↑ | [182] | ||
Gly-pro | O > L | sputum | [184] | ||
5-Aminobaleric acid | A/H | serum, ↑ | 0.948 | [178] | |
N,N-Dimethylglycine | A/H | EBC, ↑ | [192] | ||
3-Hydroxynorvaline 2 | O < L | PBMCs | [184] | ||
Lipid metabolism | |||||
Choline | A/H | serum, ↓ | [177] | ||
Glycerolipids | Phosphatidylcholine (20:4/16:1) | H > N > E | serum | [180] | |
Phosphatidylcholine (18:1/2:0) | N > E > H | serum | [180] | ||
Phosphatidylcholine (16:0/18:1) | E > N > H | serum | [180] | ||
Acyl-alkyl-phosphatidylcholine (C42:4) | A/H | serum, ↑ | [176] | ||
Acyl-alkyl-phosphatidylcholine (C42:5) | A/H | serum, ↑ | [176] | ||
Acyl-alkyl-phosphatidylcholine (C44:5) | A/H | serum, ↑ | [176] | ||
Acyl-alkyl-phosphatidylcholine (C44:6) | A/H | serum, ↑ | [176] | ||
Phosphatidylethanolamine | A/H | plasma, ↑ | [182] | ||
Phosphatidylethanolamine (38:1) | A/H | plasma, ↑ | 0.746 | [183] | |
Phosphatidylethanolamine (18:1p/22:6) | A/H | plasma, ↑ | 0.731 | [183] | |
Phosphatidylethanolamine (20:0/18:1) | A/H | plasma, ↑ | 0.710 | [183] | |
Phosphatidylethanolamine (18:3/14:0) | E > N > H | serum | [180] | ||
Phosphatidylglycerol (44:0) | A/H | plasma, ↓ | 0.675 | [183] | |
Glycerophosphorylcholine | A/H | plasma, ↑ | [182] | ||
H > N > E | serum | [180] | |||
Β-glycerophosphorate | O > L | serum | [184] | ||
Lysophosphatidylcholine (18:1) | E > N > H | serum | [180] | ||
Lysophosphatidylcholine (22:4) | A/H | plasma, ↓ | 0.689 | [183] | |
Phosphatidylinositol | A/H | plasma, ↓ | 0.723 | [183] | |
Triglyceride (17:0/18:0/18:0) | A/H | plasma, ↑ | 0.714 | [183] | |
Triglyceride (16:0/16:0/18:1) | A/H | plasma, ↑ | 0.661 | [183] | |
O-phosphocholine | A/H | serum, ↓ | [177] | ||
Fatty acids | Saturated fatty acid | A/H | EBC, ↓ | [191] | |
O < L/ON | EBC | [193] | |||
Arachidonic acid | N > E > H | serum | [180] | ||
Arachidonate (20:4n6) | A/H | plasma, ↑ | [182] | ||
Isobutyrate | A/H | EBC, ↑ | [191] | ||
Linolenic acid | O < L | PBMCs | [184] | ||
N-palmitoyltaurine | SA | serum, ↓ | [179] | ||
Oleamide | A/H | plasma, ↓ | [182] | ||
n-valerate | O > L | EBC | [193] | ||
O < ON | EBC | [193] | |||
Isovalerate | O > L | EBC | [193] | ||
Sphingolipids | Sphingosine | A/H | plasma, ↑ | [182] | |
Sphingosine-1-phosphate | SA | serum, ↑ | [179] | ||
Sphingomyelin (d18:1/18:1) | A/H | plasma, ↑ | 0.731 | [183] | |
Phytosphingosine | H > N > E | serum | [180] | ||
Phytosphingosine 2 | O > L | sputum | [184] | ||
Sphinganine | H > N > E | serum | [180] | ||
Ceramide (d16:0/27:2) | A/H | plasma, ↓ | 0.690 | [183] | |
Eicosanoids | Leukotriene E4 | SA, T2 | urine, ↑ | [187] | |
Tetranor prostaglandin D metabolites | SA, T2 | urine, ↑ | [187] | ||
2,3-dinor-11β-PGF2α | SA, T2 | urine, ↑ | [187] | ||
8-iso-PGF2α | SA | urine, ↑ | [187] | ||
2,3-dinor-8-iso-PGF2α | SA | urine, ↑ | [187] | ||
Sterol/Steroids | Androsterone sulfate | A/H | plasma, ↓ | [182] | |
Epiandrosterone sulfate | A/H | plasma, ↓ | [182] | ||
Dehydroepiandrosterone sulfate | SA | serum, ↓ | [179] | ||
Glycodeoxycholate | A/H | plasma, ↑ | [182] | ||
Taurocholate | A/H | plasma, ↑ | [182] | ||
Lathosterol | A/H | plasma, ↑ | [182] | ||
Retinol | H > N > E | serum | [180] | ||
Carboxylic acid | |||||
Acetate | A/H | serum, ↓ | [180] | ||
A/H | EBC, ↑/↓ | [180] | |||
O < L/ON | EBC | [180] | |||
Butyrate | A/H | EBC, ↑ | [180] | ||
O > ON | EBC | [180] | |||
Formate | A/H | serum, ↓ | [180] | ||
A/H | EBC, ↓ | [180] | |||
O < L/ON | EBC | [180] | |||
Propionate | A/H’ | EBC, ↑ | [180] | ||
O < L/ON | EBC | [180] | |||
TCA cycle | |||||
Succinic acid | A/H | serum, ↑ | 0.976 | [191] | |
A/H | EBC, ↑/↓ | [191] | |||
Nucleoside/Nucleotide | |||||
Inosine | A/H | serum, ↑ | 0.962 | [178] | |
Adenosine | A/H | EBC, ↓ | [191] | ||
Other organic compounds | |||||
Acetoin | O > L/ON | EBC | [193] | ||
Alcohol | Ethanol | A/H | EBC, ↑ | [191] | |
O < L/ON | EBC | [193] | |||
Ethylene glycol | O < ON | EBC | [193] | ||
Isopropanol | A/H | EBC, ↑ | [192] | ||
Methanol | A/H | serum, ↓ | [177] | ||
A/H | EBC, ↑ | [177] | |||
A/H | EBC, ↑ | [191] | |||
O < L/ON | EBC | [191] | |||
1,2-propanediol | O > L | EBC | [193] | ||
Amines | Trimethylamine | A/H | EBC, ↓ | [191] | |
Ascorbate | A/H | serum, ↑ | 0.917 | [178] | |
3-aminopropionitrile 1 | O > L | sputum | [184] | ||
Benzene | 3,4-Dihydroxybenzoic acid | A/H | serum, ↑ | 0.965 | [178] |
Hippurate | A/H | EBC, ↓ | [191] | ||
3-Hydroxybutyric acid | O > L | sputum | [184] | ||
Ketones bodies | Acetone | A/H | serum, ↓ | [177] | |
O < L | EBC | [193] | |||
2-Ketovaleric acid | A/H | serum, ↑ | 0.874 | [178] | |
Lactate | O < L | EBC | [193] | ||
Urocanic acid | A/H | EBC, ↓ | [191] | ||
Dehydroascorbic acid | A/H | serum, ↑ | 0.896 | [178] | |
Urea | A/H | plasma, ↓ | [182] | ||
A/H | EBC, ↑ | [192] | |||
Uric acid | O > L | serum, ↑ | [184] | ||
Xanthine | O > L | sputum | [184] | ||
Inorganic compounds | |||||
Ammonia | A/H | EBC, ↓ | [192] | ||
Pyrophosphate-3 | O > L | sputum | [184] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sim, S.; Choi, Y.; Park, H.-S. Potential Metabolic Biomarkers in Adult Asthmatics. Metabolites 2021, 11, 430. https://doi.org/10.3390/metabo11070430
Sim S, Choi Y, Park H-S. Potential Metabolic Biomarkers in Adult Asthmatics. Metabolites. 2021; 11(7):430. https://doi.org/10.3390/metabo11070430
Chicago/Turabian StyleSim, Soyoon, Youngwoo Choi, and Hae-Sim Park. 2021. "Potential Metabolic Biomarkers in Adult Asthmatics" Metabolites 11, no. 7: 430. https://doi.org/10.3390/metabo11070430
APA StyleSim, S., Choi, Y., & Park, H. -S. (2021). Potential Metabolic Biomarkers in Adult Asthmatics. Metabolites, 11(7), 430. https://doi.org/10.3390/metabo11070430