Next Article in Journal
Hierarchical Harmonization of Atom-Resolved Metabolic Reactions across Metabolic Databases
Next Article in Special Issue
Metabolic Phenotypes in Asthmatic Adults: Relationship with Inflammatory and Clinical Phenotypes and Prognostic Implications
Previous Article in Journal
Fibromyalgia and Depression in Women: An 1H-NMR Metabolomic Study
Previous Article in Special Issue
Metabolomics in the Identification of Biomarkers of Asthma
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Potential Metabolic Biomarkers in Adult Asthmatics

Department of Allergy and Clinical Immunology, Ajou University School of Medicine, 164, Worldcup-ro, Yeongtong-gu, Suwon 16499, Korea
*
Author to whom correspondence should be addressed.
Metabolites 2021, 11(7), 430; https://doi.org/10.3390/metabo11070430
Submission received: 25 May 2021 / Revised: 25 June 2021 / Accepted: 25 June 2021 / Published: 30 June 2021
(This article belongs to the Special Issue Metabolomics in the Identification of Biomarkers of Asthma)

Abstract

:
Asthma is the most common chronic airway inflammation, with multiple phenotypes caused by complicated interactions of genetic, epigenetic, and environmental factors. To date, various determinants have been suggested for asthma pathogenesis by a new technology termed omics, including genomics, transcriptomics, proteomics, and metabolomics. In particular, the systematic analysis of all metabolites in a biological system, such as carbohydrates, amino acids, and lipids, has helped identify a novel pathway related to complex diseases. These metabolites are involved in the regulation of hypermethylation, response to hypoxia, and immune reactions in the pathogenesis of asthma. Among them, lipid metabolism has been suggested to be related to lung dysfunction in mild-to-moderate asthma. Sphingolipid metabolites are an important mediator contributing to airway inflammation in obese asthma and aspirin-exacerbated respiratory disease. Although how these molecular variants impact the disease has not been completely determined, identification of new causative factors may possibly lead to more-personalized and precise pathway-specific approaches for better diagnosis and treatment of asthma. In this review, perspectives of metabolites related to asthma and clinical implications have been highlighted according to various phenotypes.

1. Introduction

Asthma is characterized by chronic airway inflammation with complex interactions among genetic, epigenetic, and environmental factors [1,2], resulting in constant attempts to understand asthma pathogenesis underlying each phenotype. Although the classification of asthma phenotypes as eosinophilic, non-eosinophilic, or paucigranulocytic phenotypes has enabled intensive treatment and improved clinical outcomes [3], attempts to develop novel approaches are needed to unveil the pathogenic mechanisms of asthma. Since the emergence of new technologies, “omics,” their application in medical research has been rapidly growing [4]. In particular, metabolomics is one of the latest approaches to detect metabolites for phenotype categorization and biomarker discovery in diverse diseases [5]. Metabolites are the intermediate or end products of cellular metabolism required for the maintenance of biological homeostasis and normal cell function [6]. Therefore, alteration in metabolites reflects physiological or pathological states [7]. With the integration of multiple omics, metabolomics is becoming a more powerful tool in clinical application for early diagnosis, prognosis, and treatment of diseases [8]. Despite an increase in metabolomic studies on asthma, it is not clear how metabolites act as key determinants for each phenotype [9]. This review highlights recent progress in the genomic, transcriptomic, proteomic, and metabolomic signatures involved in the pathogenesis of asthma, suggesting the potential for applying this approach in precision medicine.

2. Risk Factors in Asthma Pathogenesis

2.1. Genetic and Epigenetic Factors

Asthma pathogenesis is still poorly understood, as the airways are influenced by multiple environmental and genetic factors. Accumulating evidence has supported the genetic traits of asthma [10,11], suggesting specific genes involved in some phenotypes of asthma. The conventional studies on asthma-related genes were performed with linkage analysis and positional cloning. More recently, since the first introduction of genomic-wide association studies (GWAS) in asthma [12], multiple genetic variants were validated to explore disease-related regions showing differences in DNA sequences between normal and asthma groups [13]. These findings brought a huge improvement to asthma genetics by identifying novel genetic factors for asthma. However, the gene-gene interaction still remains a problem to solve in genomic analysis [14]. In addition, epigenetic studies have been highlighted focusing on genomic adaption to environmental stimuli, such as DNA methylation, histone modification, or non-coding RNAs, which are not caused by alterations in DNA sequences [15]. With the application of epigenome-wide association studies (EWAS) in asthma, DNA methylation has been suggested to mediate gene expression in immune cells, including T cell polarization [16] or monocyte differentiation [17]. In particular, methylation of cytosine at the carbon-5 position in CpG dinucleotides is regarded as a key factor for initiating a transcription and regulating cell-specific genes in inflammatory diseases [18].

2.2. Environmental Factors

Environmental exposure could impact a rapid increase in the prevalence of asthma in populations with a similar genetic background where allergen exposure is a crucial risk factor for asthma [19]. Sensitization to allergens, such as dust mites and animal dander, is related to Th2 immune response with IgE production and eosinophilia, contributing to the development and exacerbation of allergic asthma [20,21]. Other environmental factors, including smoking, air or occupational pollutants, and virus or bacterial infection, are involved in innate immunity and trigger asthma exacerbation [22]. Air pollutants, including particulate matter, nitrogen dioxide, and sulfur dioxide, are known to aggravate inflammatory response related to oxidative stress and injury in the airways, driving enhanced risk of sensitization to inhaled allergens and symptom exacerbation [23,24].

3. Identification of “Omics” Markers in Asthma

3.1. Genomics

Numerous genetic studies have revealed that multiple genes are involved in the development and progress of asthma by linkage analysis and association studies. In particular, linkage analysis with positional cloning identified diverse genetic markers related to asthma in chromosomal loci [25,26,27,28,29,30,31,32]. In addition, candidate genes association studies identified asthma-related traits, focusing on different allele frequencies of a single nucleotide polymorphism in case-control studies [33]. Since the application of GWAS to asthma, large meta-analyses in European [34] and American cohorts [35] have identified variable genetic determinants (Table 1). Nevertheless, GWAS have the limitations of a small sample population and lack of significant associations [36]. Moreover, the susceptibility of genetic variants for asthma was not replicated across all relevant studies [34].

3.2. Transcriptomics

Transcriptomics quantifies transcripts in organisms to identify differentially expressed genes under specific conditions. The main analyzing tools for transcriptomics include microarrays and RNA sequencing [147]. Transcriptomics is usually carried out in blood because of its great efficiency and convenience for analyzing gene expression [148]. Some studies have performed transcriptomic analysis in blood [149,150], bronchial tissue [151,152,153,154], sputum [155,156,157,158,159], nasal brushings [160], bronchoalveolar lavage fluid (BALF) [161], and mixed samples [162], facilitating differential phenotypes in asthma. Finally, recent studies found 90 novel genetic classifiers for asthma, which could be utilized as potential biomarkers [160]. In addition, several studies have investigated distinct gene profiles to determine the severity of asthma (Table 2).

3.3. Proteomics

Proteomic studies include protein identification, quantification or localization, post-translational modification, and protein-protein interactions [163]. Liquid chromatography is a typical analyzing tool for proteomics with coupling of mass spectrometry (MS) [164]. Several studies have performed proteomic analysis and identified different protein profiles of asthmatics in serum [165], sputum [166,167], BALF [168,169,170,171], or bronchial biopsy [172] (Table 3). Commonly, these proteins have been found to be involved in multiple biological processes, such as immune response, defense response, lipid metabolism, molecular transport, cell adhesion, and complement activation [166,168,172].

3.4. Metabolomics

Metabolomics is an analysis of low molecular compounds involved in biological processes [6]. For metabolic profiling, MS has been widely employed because of its simplicity and sensitivity [173]. Through its combination with chromatography, MS has become a more powerful tool with high resolution and accuracy, extending its application across biological and medical fields [174]. In addition, nuclear magnetic resonance (NMR) spectroscopy was introduced for an alternative analytic tool, using the differences in the direction and speed of nuclear spin on the magnetic field [175]. Metabolic profiling could be performed in various biospecimens according to its purpose (Table 4). Most studies have used blood [176,177,178,179,180,181,182,183,184], urine [185,186,187], or sputum samples [184], since they are easy to collect and are reflective of whole body metabolism [188]. A few studies have analyzed exhaled breath condensate [189,190,191,192,193] and BALF because of their relevance to the airway physiology [194].

3.5. Limitation of “Omics” in Biomaker Identification for Asthma

“Omics” enabled the comprehensive evaluation of holistic molecules in an organism. This advantage leads to the advances in biomarker discovery in medical fields [195]. Genomics is the first study of the omics and aims to search for genetic variants associated with specific diseases [4]. Although it has provided a comprehensive understanding for asthma, it could not explain a mild to moderate asthmatic state [196]. Moreover, the number of samples or replication tests was not sufficient [33]. In contrast, transcriptomics focuses on the differential gene expression and activity of functional genes in patients [197]. Nevertheless, DNA or mRNA expression may not represent the biological function of genes at the protein levels due to translational regulation or post-translational modification [198]. Proteomics reflects pathological changes at the time because cytokines or chemokines are important protein related to the severity of inflammatory diseases [199]. In asthma, transcriptomics and proteomics could be applicable to a wide range of cell types and biological samples including blood, BALF, sputum, and bronchial or nasal brushings [200]. However, they could not provide overall information underlying diseases due to a large variability in sample types or disease states [201]. To overcome these limitations, metabolomics was suggested as one of the latest omics technologies. In particular, its application is rapidly increasing in asthma for the detection of volatile organic compounds in EBC with a noninvasive way [202]. However, the lack of replication or standards of metabolic profiling in different biospecimens is still challenging [9]. Despite the outstanding achievements of omics studies, they are still considered insufficient to mainly be utilized in clinical practices. Therefore, the integration of multiple omics could complement the limitation of each technology.

4. Metabolic Pathways Involved in Asthma

4.1. Amino Acid Metabolism

Amino acids are involved in multiple biological functions including growth, maintenance or development, regulation of gene expression/cell signaling, and synthesis of nitrogen/protein/energy substrates for homeostasis in organisms [203]. Moreover, they are known as crucial regulators of metabolic pathways for immune responses and anti-oxidant activities [204]. In particular, arginine has been suggested to affect the development of asthma. It synthesizes nitric oxide (NO) by NO synthase (NOS) composed of 3 isoforms, neuronal NOS (nNOS), inducible NOS (iNOS), and endothelial NOS (eNOS) [205]. In asthmatic patients, expression of iNOS and arginase-1/2 were upregulated in the serum or epithelium and immune cells of the airways, leading to higher levels of exhaled NO and more severe symptoms [206,207,208]. Furthermore, arginase metabolism is involved in the regulation of T-cell function, driving Th2 airway inflammation [208]. However, suppressive roles of arginase-2 have been reported in severe eosinophilic and neutrophilic inflammation in asthma [209]. In addition to arginine, higher levels of β-alanine [185] and lysine [190] were detected in patients with severe asthma. However, another study showed conflicting results with decreased levels of arginine, alanine, leucine, valine, and histidine in asthmatics [177]. Therefore, further studies on various phenotypes of asthma are needed to clarify with this pathway.

4.2. Lipid Metabolism

The importance of lipid mediators in respiratory diseases is highlighted due to their involvement in various biological functions, such as cell structural components, energy sources/metabolism, signal transduction, and material transport [210]. Among several types of lipids, fatty acids are known to be relevant to diverse mechanisms of inflammatory response in chronic airway diseases [211]. Moreover, arachidonic acids have been identified to contribute to asthma pathogenesis as precursors of eicosanoids including leukotrienes, prostaglandins, thromboxane, lipoxins, and hydroxyeicosatetraenoic acids [212]. In particular, urinary leukotriene E4 (LTE4) has been widely used for a diagnosis of a distinct phenotype of severe eosinophilic asthma, referred as aspirin-exacerbated respiratory disease (AERD) [213]. In addition to fatty acids, several studies reported that sphingosine-1-phosphate (S1P) levels were increased in asthmatics and correlated with asthma severity [214,215,216]. Furthermore, increased levels of S1P (derived from various inflammatory cells) were found in patients with AERD [217]. Despite the controversial functions of lipids, it is certain that they are key mediators in asthma pathogenesis. Therefore, lipids might be potent biomarkers for specific phenotypes of asthma and promising candidates for new therapeutic targets.

5. Changes in Metabolite Profiles According to the Phenotype of Asthma

5.1. Mild-to-Moderate Asthma

Asthma has been classified as mild, moderate, or severe types according to the severity of symptoms and frequency of asthma exacerbation. Mild-to-moderate asthma can be defined as a controlled one by step 1-4 treatments [218]. Several studies have performed metabolic analyses to identify metabolic determinants related to the severity of asthma. As a result, increased 8 (α-linolenic acid, linoleic acid, oleic acid, linoleoyl ethanolamide, dodecanedioic acid, linoleates, methylcysteine, and theobromine) and decreased 6 metabolites (indole-3-acetate, lysine, lyso-platelet activating factor C16:0, methionine, phenylalanine, and phenylacetyl glutamine) were identified in metabolic profiles of mild asthmatics compared to healthy controls [179]. In addition, lipidomic analysis found lipid metabolism dysregulation in moderate asthma positively correlated with asthma severity, but not in mild asthma when compared to healthy controls [183].

5.2. Severe Asthma

According to the GINA guidelines, severe asthma (SA) is characterized by uncontrolled or partially controlled symptoms, despite consistent demands for high-dose inhaled corticosteroids (ICSs) with an additional controller or oral corticosteroids (OCSs) [218]. Metabolic analysis in SA found significant differences of metabolites, especially in amino acid metabolism with higher levels of β-alanine [182] or lysine [190]. Moreover, a lipidomic analysis revealed that 22 metabolites are changed in SA. Several lipid mediators, including sphingolipids (sphingomyelin, ceramide, and S1P), free fatty acids, and eicosanoids (LTE4) are positively correlated with asthma severity [179,186]. In addition, the resistance to steroids is one of the clinical characteristics in SA [219]. In particular, distinct metabolic profiles are noted in severe asthmatics using ICSs or OCSs with decreased steroid metabolites. Moreover, linoleic acids from polyunsaturated fatty acids drive steroid refractory response and contribute to asthma severity with airway epithelial injury [220,221].

5.3. Obese Asthma

Obese asthma is classified as a distinct phenotype of asthma with persistent symptoms and resistance to conventional medication [222]. With the increasing of the obese population, obesity now accounts for 11% of adult asthmatics [223]. Although obesity is one of the risk factors for asthma, the mechanisms are poorly understood and needed to be clarified [224]. Several studies have suggested that the metabolic dysregulation is related to development and progress of asthma [225,226]. With omics technologies, distinct metabolic changes have been identified in obese subjects [227]. In particular, high-fat diets tend to increase the concentrations of ceramide, sphingomyelin, and S1P in multiple tissue and organs [228]. Among them, ceramide could contribute to airway hyperresponsiveness, suggesting a possible correlation with asthma severity [229]. Moreover, elevated levels of C18:0 and C:20 were found in the sera of obese asthmatics [230]. Although the exact mechanisms are not comprehended yet, clinical and experimental research have suggested the specific metabolic changes in obese asthma.

6. Clinical Implications and Perspectives of Various Metabolites

Due to the sensitivity to biological alterations, metabolites can serve to search for novel biomarkers and pathological mechanisms for asthma phenotypes (Table 5). The application of metabolomic analysis provides new insights into the classification of asthma phenotypes in terms of the dynamic network between genetic and environmental factors [6]. In addition, the integrated omics has been used from early diagnosis to monitoring treatment response in diseases [231]. Therefore, metabolomics may lead to a precise discrimination of asthmatic patients, but also improvement in a search for new therapeutic targets in asthma as well [232]. Furthermore, the metabolic therapy is a novel concept comprising restrictive diet control or nutritional supplements with relatively easy and safe interventions. Although metabolomics is highlighted for biomarker identification for asthma, the efficacy and safety of metabolic signatures should be validated for their practical uses in clinical courses. Based on integrative omics studies in asthma, metabolites may realize the implementation of personalized medication and expand treatment options for asthmatics in a combination with current medications.

Author Contributions

S.S. wrote the paper and created the tables. Y.C. revised the manuscript. H.-S.P. provided overall supervision for the entire study. All authors have read and agreed to the published version of the manuscript.

Funding

The work was supported by the Korean Health Technology R & D Project through the Korea Health Industry Development Institute (KHIDI) grant funded by the Ministry of Health and Welfare, Republic of Korea (HR16C0001). This research received no external funding.

Conflicts of Interest

The authors declare no competing financial interest.

References

  1. Kuruvilla, M.E.; Lee, F.E.; Lee, G.B. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin. Rev. Allergy Immunol. 2019, 56, 219–233. [Google Scholar] [CrossRef] [PubMed]
  2. Miller, R.L.; Ho, S.M. Environmental epigenetics and asthma: Current concepts and call for studies. Am. J. Respir. Crit. Care Med. 2008, 177, 567–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  3. Carr, T.F.; Zeki, A.A.; Kraft, M. Eosinophilic and Noneosinophilic Asthma. Am. J. Respir. Crit. Care Med. 2018, 197, 22–37. [Google Scholar] [CrossRef] [PubMed]
  4. Hasin, Y.; Seldin, M.; Lusis, A. Multi-omics approaches to disease. Genome Biol. 2017, 18, 83. [Google Scholar] [CrossRef]
  5. Zhang, A.; Sun, H.; Wang, X. Saliva metabolomics opens door to biomarker discovery, disease diagnosis, and treatment. Appl. Biochem. Biotechnol. 2012, 168, 1718–1727. [Google Scholar] [CrossRef]
  6. Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459. [Google Scholar] [CrossRef] [Green Version]
  7. Zhang, A.; Sun, H.; Yan, G.; Wang, P.; Wang, X. Metabolomics for Biomarker Discovery: Moving to the Clinic. BioMed Res. Int. 2015, 2015, 354671. [Google Scholar] [CrossRef]
  8. Karczewski, K.J.; Snyder, M.P. Integrative omics for health and disease. Nat. Rev. Genet. 2018, 19, 299–310. [Google Scholar] [CrossRef]
  9. Kelly, R.S.; Dahlin, A.; McGeachie, M.J.; Qiu, W.; Sordillo, J.; Wan, E.S.; Wu, A.C.; Lasky-Su, J. Asthma Metabolomics and the Potential for Integrative Omics in Research and the Clinic. Chest 2017, 151, 262–277. [Google Scholar] [CrossRef] [Green Version]
  10. Thomsen, S.F.; van der Sluis, S.; Kyvik, K.O.; Skytthe, A.; Backer, V. Estimates of asthma heritability in a large twin sample. Clin. Exp. Allergy 2010, 40, 1054–1061. [Google Scholar] [CrossRef]
  11. Dold, S.; Wjst, M.; von Mutius, E.; Reitmeir, P.; Stiepel, E. Genetic risk for asthma, allergic rhinitis, and atopic dermatitis. Arch. Dis. Child. 1992, 67, 1018–1022. [Google Scholar] [CrossRef] [Green Version]
  12. El-Husseini, Z.W.; Gosens, R.; Dekker, F.; Koppelman, G.H. The genetics of asthma and the promise of genomics-guided drug target discovery. Lancet Respir. Med. 2020, 8, 1045–1056. [Google Scholar] [CrossRef]
  13. Bush, W.S.; Moore, J.H. Chapter 11: Genome-wide association studies. PLoS Comput. Biol. 2012, 8, e1002822. [Google Scholar] [CrossRef] [Green Version]
  14. Willis-Owen, S.A.G.; Cookson, W.O.C.; Moffatt, M.F. The Genetics and Genomics of Asthma. Annu. Rev. Genom. Hum. Genet. 2018, 19, 223–246. [Google Scholar] [CrossRef]
  15. Weinhold, B. Epigenetics: The science of change. Environ. Health Perspect 2006, 114, A160–A167. [Google Scholar] [CrossRef] [Green Version]
  16. Brand, S.; Kesper, D.A.; Teich, R.; Kilic-Niebergall, E.; Pinkenburg, O.; Bothur, E.; Lohoff, M.; Garn, H.; Pfefferle, P.I.; Renz, H. DNA methylation of TH1/TH2 cytokine genes affects sensitization and progress of experimental asthma. J. Allergy Clin. Immunol. 2012, 129, 1602–1610.e6. [Google Scholar] [CrossRef]
  17. Gunawardhana, L.P.; Gibson, P.G.; Simpson, J.L.; Benton, M.C.; Lea, R.A.; Baines, K.J. Characteristic DNA methylation profiles in peripheral blood monocytes are associated with inflammatory phenotypes of asthma. Epigenetics 2014, 9, 1302–1316. [Google Scholar] [CrossRef] [Green Version]
  18. Deaton, A.M.; Webb, S.; Kerr, A.R.; Illingworth, R.S.; Guy, J.; Andrews, R.; Bird, A. Cell type-specific DNA methylation at intragenic CpG islands in the immune system. Genome Res. 2011, 21, 1074–1086. [Google Scholar] [CrossRef] [Green Version]
  19. Baxi, S.N.; Phipatanakul, W. The role of allergen exposure and avoidance in asthma. Adolesc Med. State Art Rev. 2010, 21, 57–71, viii–ix. [Google Scholar]
  20. Platts-Mills, T.; Leung, D.Y.; Schatz, M. The role of allergens in asthma. Am. Fam. Physician 2007, 76, 675–680. [Google Scholar]
  21. Holt, P.G.; Macaubas, C.; Stumbles, P.A.; Sly, P.D. The role of allergy in the development of asthma. Nature 1999, 402, B12–B17. [Google Scholar] [CrossRef] [PubMed]
  22. Wenzel, S.E. Asthma phenotypes: The evolution from clinical to molecular approaches. Nat. Med. 2012, 18, 716–725. [Google Scholar] [CrossRef] [PubMed]
  23. Guarnieri, M.; Balmes, J.R. Outdoor air pollution and asthma. Lancet 2014, 383, 1581–1592. [Google Scholar] [CrossRef] [Green Version]
  24. Orellano, P.; Quaranta, N.; Reynoso, J.; Balbi, B.; Vasquez, J. Effect of outdoor air pollution on asthma exacerbations in children and adults: Systematic review and multilevel meta-analysis. PLoS ONE 2017, 12, e0174050. [Google Scholar] [CrossRef]
  25. Van Eerdewegh, P.; Little, R.D.; Dupuis, J.; Del Mastro, R.G.; Falls, K.; Simon, J.; Torrey, D.; Pandit, S.; McKenny, J.; Braunschweiger, K.; et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 2002, 418, 426–430. [Google Scholar] [CrossRef]
  26. Allen, M.; Heinzmann, A.; Noguchi, E.; Abecasis, G.; Broxholme, J.; Ponting, C.P.; Bhattacharyya, S.; Tinsley, J.; Zhang, Y.; Holt, R.; et al. Positional cloning of a novel gene influencing asthma from chromosome 2q14. Nat. Genet. 2003, 35, 258–263. [Google Scholar] [CrossRef]
  27. Zhang, Y.; Leaves, N.I.; Anderson, G.G.; Ponting, C.P.; Broxholme, J.; Holt, R.; Edser, P.; Bhattacharyya, S.; Dunham, A.; Adcock, I.M.; et al. Positional cloning of a quantitative trait locus on chromosome 13q14 that influences immunoglobulin E levels and asthma. Nat. Genet. 2003, 34, 181–186. [Google Scholar] [CrossRef]
  28. Laitinen, T.; Polvi, A.; Rydman, P.; Vendelin, J.; Pulkkinen, V.; Salmikangas, P.; Makela, S.; Rehn, M.; Pirskanen, A.; Rautanen, A.; et al. Characterization of a common susceptibility locus for asthma-related traits. Science 2004, 304, 300–304. [Google Scholar] [CrossRef]
  29. Nicolae, D.; Cox, N.J.; Lester, L.A.; Schneider, D.; Tan, Z.; Billstrand, C.; Kuldanek, S.; Donfack, J.; Kogut, P.; Patel, N.M.; et al. Fine mapping and positional candidate studies identify HLA-G as an asthma susceptibility gene on chromosome 6p21. Am. J. Hum. Genet. 2005, 76, 349–357. [Google Scholar] [CrossRef] [Green Version]
  30. Noguchi, E.; Yokouchi, Y.; Zhang, J.; Shibuya, K.; Shibuya, A.; Bannai, M.; Tokunaga, K.; Doi, H.; Tamari, M.; Shimizu, M.; et al. Positional identification of an asthma susceptibility gene on human chromosome 5q33. Am. J. Respir. Crit. Care Med. 2005, 172, 183–188. [Google Scholar] [CrossRef]
  31. Balaci, L.; Spada, M.C.; Olla, N.; Sole, G.; Loddo, L.; Anedda, F.; Naitza, S.; Zuncheddu, M.A.; Maschio, A.; Altea, D.; et al. IRAK-M is involved in the pathogenesis of early-onset persistent asthma. Am. J. Hum. Genet. 2007, 80, 1103–1114. [Google Scholar] [CrossRef] [Green Version]
  32. White, J.H.; Chiano, M.; Wigglesworth, M.; Geske, R.; Riley, J.; White, N.; Hall, S.; Zhu, G.; Maurio, F.; Savage, T.; et al. Identification of a novel asthma susceptibility gene on chromosome 1qter and its functional evaluation. Hum. Mol. Genet. 2008, 17, 1890–1903. [Google Scholar] [CrossRef] [Green Version]
  33. Hoffjan, S.; Nicolae, D.; Ober, C. Association studies for asthma and atopic diseases: A comprehensive review of the literature. Respir. Res. 2003, 4, 14. [Google Scholar] [CrossRef] [Green Version]
  34. Moffatt, M.F.; Gut, I.G.; Demenais, F.; Strachan, D.P.; Bouzigon, E.; Heath, S.; von Mutius, E.; Farrall, M.; Lathrop, M.; Cookson, W.; et al. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 2010, 363, 1211–1221. [Google Scholar] [CrossRef] [Green Version]
  35. Torgerson, D.G.; Ampleford, E.J.; Chiu, G.Y.; Gauderman, W.J.; Gignoux, C.R.; Graves, P.E.; Himes, B.E.; Levin, A.M.; Mathias, R.A.; Hancock, D.B.; et al. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. Nat. Genet. 2011, 43, 887–892. [Google Scholar] [CrossRef]
  36. Kim, K.W.; Ober, C. Lessons Learned From GWAS of Asthma. Allergy Asthma Immunol. Res. 2019, 11, 170–187. [Google Scholar] [CrossRef]
  37. Bourgain, C.; Hoffjan, S.; Nicolae, R.; Newman, D.; Steiner, L.; Walker, K.; Reynolds, R.; Ober, C.; McPeek, M.S. Novel case-control test in a founder population identifies P-selectin as an atopy-susceptibility locus. Am. J. Hum. Genet. 2003, 73, 612–626. [Google Scholar] [CrossRef] [Green Version]
  38. Mao, X.Q.; Kawai, M.; Yamashita, T.; Enomoto, T.; Dake, Y.; Sasaki, S.; Kataoka, Y.; Fukuzumi, T.; Endo, K.; Sano, H.; et al. Imbalance production between interleukin-1beta (IL-1beta) and IL-1 receptor antagonist (IL-1Ra) in bronchial asthma. Biochem. Biophys. Res. Commun. 2000, 276, 607–612. [Google Scholar] [CrossRef]
  39. Karjalainen, J.; Nieminen, M.M.; Aromaa, A.; Klaukka, T.; Hurme, M. The IL-1beta genotype carries asthma susceptibility only in men. J. Allergy Clin. Immunol. 2002, 109, 514–516. [Google Scholar] [CrossRef]
  40. Yan, L.; Galinsky, R.E.; Bernstein, J.A.; Liggett, S.B.; Weinshilboum, R.M. Histamine N-methyltransferase pharmacogenetics: Association of a common functional polymorphism with asthma. Pharmacogenetics 2000, 10, 261–266. [Google Scholar] [CrossRef]
  41. Howard, T.D.; Postma, D.S.; Hawkins, G.A.; Koppelman, G.H.; Zheng, S.L.; Wysong, A.K.; Xu, J.; Meyers, D.A.; Bleecker, E.R. Fine mapping of an IgE-controlling gene on chromosome 2q: Analysis of CTLA4 and CD28. J. Allergy Clin. Immunol. 2002, 110, 743–751. [Google Scholar] [CrossRef]
  42. Fukunaga, K.; Asano, K.; Mao, X.Q.; Gao, P.S.; Roberts, M.H.; Oguma, T.; Shiomi, T.; Kanazawa, M.; Adra, C.N.; Shirakawa, T.; et al. Genetic polymorphisms of CC chemokine receptor 3 in Japanese and British asthmatics. Eur. Respir. J. 2001, 17, 59–63. [Google Scholar] [CrossRef] [Green Version]
  43. Hall, I.P.; Wheatley, A.; Christie, G.; McDougall, C.; Hubbard, R.; Helms, P.J. Association of CCR5 ▵32 with reduced risk of asthma. Lancet 1999, 354, 1264–1265. [Google Scholar] [CrossRef]
  44. McGinnis, R.; Child, F.; Clayton, S.; Davies, S.; Lenney, W.; Illig, T.; Wjst, M.; Spurr, N.; Debouck, C.; Hajeer, A.H.; et al. Further support for the association of CCR5 allelic variants with asthma susceptibility. Eur. J. Immunogenet. 2002, 29, 525–528. [Google Scholar] [CrossRef]
  45. Lazarus, R.; Klimecki, W.T.; Raby, B.A.; Vercelli, D.; Palmer, L.J.; Kwiatkowski, D.J.; Silverman, E.K.; Martinez, F.; Weiss, S.T. Single-nucleotide polymorphisms in the Toll-like receptor 9 gene (TLR9): Frequencies, pairwise linkage disequilibrium, and haplotypes in three U.S. ethnic groups and exploratory case–control disease association studies. Genomics 2003, 81, 85–91. [Google Scholar] [CrossRef]
  46. Kirkbride, H.J.; Bolscher, J.G.; Nazmi, K.; Vinall, L.E.; Nash, M.W.; Moss, F.M.; Mitchell, D.M.; Swallow, D.M. Genetic polymorphism of MUC7: Allele frequencies and association with asthma. Eur. J. Hum. Genet. 2001, 9, 347–354. [Google Scholar] [CrossRef] [Green Version]
  47. Noguchi, E.; Shibasaki, M.; Kamioka, M.; Yokouchi, Y.; Yamakawa-Kobayashi, K.; Hamaguchi, H.; Matsui, A.; Arinami, T. New polymorphisms of haematopoietic prostaglandin D synthase and human prostanoid DP receptor genes. Clin. Exp. Allergy 2002, 32, 93–96. [Google Scholar] [CrossRef]
  48. Noguchi, E.; Shibasaki, M.; Arinami, T.; Takeda, K.; Yokouchi, Y.; Kawashima, T.; Yanagi, H.; Matsui, A.; Hamaguchi, H. Association of asthma and the interleukin-4 promoter gene in Japanese. Clin. Exp. Allergy 1998, 28, 449–453. [Google Scholar] [CrossRef]
  49. Noguchi, E.; Nukaga-Nishio, Y.; Jian, Z.; Yokouchi, Y.; Kamioka, M.; Yamakawa-Kobayashi, K.; Hamaguchi, H.; Matsui, A.; Shibasaki, M.; Arinami, T. Haplotypes of the 5’ region of the IL-4 gene and SNPs in the intergene sequence between the IL-4 and IL-13 genes are associated with atopic asthma. Hum. Immunol. 2001, 62, 1251–1257. [Google Scholar] [CrossRef]
  50. Howard, T.D.; Whittaker, P.A.; Zaiman, A.L.; Koppelman, G.H.; Xu, J.; Hanley, M.T.; Meyers, D.A.; Postma, D.S.; Bleecker, E.R. Identification and association of polymorphisms in the interleukin-13 gene with asthma and atopy in a Dutch population. Am. J. Respir. Cell Mol. Biol. 2001, 25, 377–384. [Google Scholar] [CrossRef] [Green Version]
  51. Heinzmann, A.; Mao, X.Q.; Akaiwa, M.; Kreomer, R.T.; Gao, P.S.; Ohshima, K.; Umeshita, R.; Abe, Y.; Braun, S.; Yamashita, T.; et al. Genetic variants of IL-13 signalling and human asthma and atopy. Hum. Mol. Genet. 2000, 9, 549–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  52. van der Pouw Kraan, T.C.; van Veen, A.; Boeije, L.C.; van Tuyl, S.A.; de Groot, E.R.; Stapel, S.O.; Bakker, A.; Verweij, C.L.; Aarden, L.A.; van der Zee, J.S. An IL-13 promoter polymorphism associated with increased risk of allergic asthma. Genes Immun. 1999, 1, 61–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  53. Niimi, T.; Munakata, M.; Keck-Waggoner, C.L.; Popescu, N.C.; Levitt, R.C.; Hisada, M.; Kimura, S. A polymorphism in the human UGRP1 gene promoter that regulates transcription is associated with an increased risk of asthma. Am. J. Hum. Genet. 2002, 70, 718–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  54. Kotani, Y.; Nishimura, Y.; Maeda, H.; Yokoyama, M. Beta2-adrenergic receptor polymorphisms affect airway responsiveness to salbutamol in asthmatics. J. Asthma 1999, 36, 583–590. [Google Scholar] [CrossRef] [PubMed]
  55. Reihsaus, E.; Innis, M.; MacIntyre, N.; Liggett, S.B. Mutations in the gene encoding for the beta 2-adrenergic receptor in normal and asthmatic subjects. Am. J. Respir. Cell Mol. Biol. 1993, 8, 334–339. [Google Scholar] [CrossRef]
  56. Sanak, M.; Pierzchalska, M.; Bazan-Socha, S.; Szczeklik, A. Enhanced expression of the leukotriene C(4) synthase due to overactive transcription of an allelic variant associated with aspirin-intolerant asthma. Am. J. Respir. Cell Mol. Biol. 2000, 23, 290–296. [Google Scholar] [CrossRef]
  57. Kawagishi, Y.; Mita, H.; Taniguchi, M.; Maruyama, M.; Oosaki, R.; Higashi, N.; Kashii, T.; Kobayashi, M.; Akiyama, K. Leukotriene C4 synthase promoter polymorphism in Japanese patients with aspirin-induced asthma. J. Allergy Clin. Immunol. 2002, 109, 936–942. [Google Scholar] [CrossRef]
  58. Moffatt, M.F.; James, A.; Ryan, G.; Musk, A.W.; Cookson, W.O. Extended tumour necrosis factor/HLA-DR haplotypes and asthma in an Australian population sample. Thorax 1999, 54, 757–761. [Google Scholar] [CrossRef] [Green Version]
  59. Kronqvist, M.; Johansson, E.; Pershagen, G.; Johansson, S.G.; van Hage-Hamsten, M. Increasing prevalence of asthma over 12 years among dairy farmers on Gotland, Sweden: Storage mites remain dominant allergens. Clin. Exp. Allergy 1999, 29, 35–41. [Google Scholar] [CrossRef]
  60. Lara-Marquez, M.L.; Yunis, J.J.; Layrisse, Z.; Ortega, F.; Carvallo-Gil, E.; Montagnani, S.; Makhatadze, N.J.; Pocino, M.; Granja, C.; Yunis, E. Immunogenetics of atopic asthma: Association of DRB1*1101 DQA1*0501 DQB1*0301 haplotype with Dermatophagoides spp.-sensitive asthma in a sample of the Venezuelan population. Clin. Exp. Allergy 1999, 29, 60–71. [Google Scholar] [CrossRef]
  61. Dekker, J.W.; Nizankowska, E.; Schmitz-Schumann, M.; Pile, K.; Bochenek, G.; Dyczek, A.; Cookson, W.O.; Szczeklik, A. Aspirin-induced asthma and HLA-DRB1 and HLA-DPB1 genotypes. Clin. Exp. Allergy 1997, 27, 574–577. [Google Scholar] [CrossRef]
  62. Wilson, A.G.; Symons, J.A.; McDowell, T.L.; McDevitt, H.O.; Duff, G.W. Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc. Natl. Acad. Sci. USA 1997, 94, 3195–3199. [Google Scholar] [CrossRef] [Green Version]
  63. Chagani, T.; Pare, P.D.; Zhu, S.; Weir, T.D.; Bai, T.R.; Behbehani, N.A.; Fitzgerald, J.M.; Sandford, A.J. Prevalence of tumor necrosis factor-alpha and angiotensin converting enzyme polymorphisms in mild/moderate and fatal/near-fatal asthma. Am. J. Respir. Crit. Care Med. 1999, 160, 278–282. [Google Scholar] [CrossRef]
  64. Witte, J.S.; Palmer, L.J.; O’Connor, R.D.; Hopkins, P.J.; Hall, J.M. Relation between tumour necrosis factor polymorphism TNFalpha-308 and risk of asthma. Eur. J. Hum. Genet. 2002, 10, 82–85. [Google Scholar] [CrossRef]
  65. Noguchi, E.; Yokouchi, Y.; Shibasaki, M.; Inudou, M.; Nakahara, S.; Nogami, T.; Kamioka, M.; Yamakawa-Kobayashi, K.; Ichikawa, K.; Matsui, A.; et al. Association between TNFA polymorphism and the development of asthma in the Japanese population. Am. J. Respir. Crit. Care Med. 2002, 166, 43–46. [Google Scholar] [CrossRef]
  66. Moffatt, M.F.; Cookson, W.O. Tumour necrosis factor haplotypes and asthma. Hum. Mol. Genet. 1997, 6, 551–554. [Google Scholar] [CrossRef] [Green Version]
  67. Lin, Y.C.; Lu, C.C.; Su, H.J.; Shen, C.Y.; Lei, H.Y.; Guo, Y.L. The association between tumor necrosis factor, HLA-DR alleles, and IgE-mediated asthma in Taiwanese adolescents. Allergy 2002, 57, 831–834. [Google Scholar] [CrossRef]
  68. Ismail, A.; Bousaffara, R.; Kaziz, J.; Zili, J.; el Kamel, A.; Tahar Sfar, M.; Remadi, S.; Chouchane, L. Polymorphism in transporter antigen peptides gene (TAP1) associated with atopy in Tunisians. J. Allergy Clin. Immunol. 1997, 99, 216–223. [Google Scholar] [CrossRef]
  69. Hang, L.W.; Hsia, T.C.; Chen, W.C.; Chen, H.Y.; Tsai, F.J. TAP1 gene AccI polymorphism is associated with atopic bronchial asthma. J. Clin. Lab. Anal. 2003, 17, 57–60. [Google Scholar] [CrossRef]
  70. Stafforini, D.M.; Numao, T.; Tsodikov, A.; Vaitkus, D.; Fukuda, T.; Watanabe, N.; Fueki, N.; McIntyre, T.M.; Zimmerman, G.A.; Makino, S.; et al. Deficiency of platelet-activating factor acetylhydrolase is a severity factor for asthma. J. Clin. Investig. 1999, 103, 989–997. [Google Scholar] [CrossRef] [Green Version]
  71. Kruse, S.; Mao, X.Q.; Heinzmann, A.; Blattmann, S.; Roberts, M.H.; Braun, S.; Gao, P.S.; Forster, J.; Kuehr, J.; Hopkin, J.M.; et al. The Ile198Thr and Ala379Val variants of plasmatic PAF-acetylhydrolase impair catalytical activities and are associated with atopy and asthma. Am. J. Hum. Genet. 2000, 66, 1522–1530. [Google Scholar] [CrossRef] [Green Version]
  72. Ito, S.; Noguchi, E.; Shibasaki, M.; Yamakawa-Kobayashi, K.; Watanabe, H.; Arinami, T. Evidence for an association between plasma platelet-activating factor acetylhydrolase deficiency and increased risk of childhood atopic asthma. J. Hum. Genet. 2002, 47, 99–101. [Google Scholar] [CrossRef] [Green Version]
  73. Immervoll, T.; Loesgen, S.; Dutsch, G.; Gohlke, H.; Herbon, N.; Klugbauer, S.; Dempfle, A.; Bickeboller, H.; Becker-Follmann, J.; Ruschendorf, F.; et al. Fine mapping and single nucleotide polymorphism association results of candidate genes for asthma and related phenotypes. Hum. Mutat. 2001, 18, 327–336. [Google Scholar] [CrossRef]
  74. Shin, H.D.; Kim, L.H.; Park, B.L.; Jung, J.H.; Kim, J.Y.; Chung, I.Y.; Kim, J.S.; Lee, J.H.; Chung, S.H.; Kim, Y.H.; et al. Association of Eotaxin gene family with asthma and serum total IgE. Hum. Mol. Genet. 2003, 12, 1279–1285. [Google Scholar] [CrossRef] [Green Version]
  75. Schroeder, S.A.; Gaughan, D.M.; Swift, M. Protection against bronchial asthma by CFTR delta F508 mutation: A heterozygote advantage in cystic fibrosis. Nat. Med. 1995, 1, 703–705. [Google Scholar] [CrossRef]
  76. Dahl, M.; Tybærg-Hansen, A.; Lange, P.; Nordestgaard, B.G. ΔF508 heterozygosity in cystic fibrosis and susceptibility to asthma. Lancet 1998, 351, 1911–1913. [Google Scholar] [CrossRef]
  77. Lazaro, C.; de Cid, R.; Sunyer, J.; Soriano, J.; Gimenez, J.; Alvarez, M.; Casals, T.; Anto, J.M.; Estivill, X. Missense mutations in the cystic fibrosis gene in adult patients with asthma. Hum. Mutat. 1999, 14, 510–519. [Google Scholar] [CrossRef]
  78. Tzetis, M.; Efthymiadou, A.; Strofalis, S.; Psychou, P.; Dimakou, A.; Pouliou, E.; Doudounakis, S.; Kanavakis, E. CFTR gene mutations--including three novel nucleotide substitutions—And haplotype background in patients with asthma, disseminated bronchiectasis and chronic obstructive pulmonary disease. Hum. Genet. 2001, 108, 216–221. [Google Scholar] [CrossRef]
  79. Lee, Y.C.; Cheon, K.T.; Lee, H.B.; Kim, W.; Rhee, Y.K.; Kim, D.S. Gene polymorphisms of endothelial nitric oxide synthase and angiotensin-converting enzyme in patients with asthma. Allergy 2000, 55, 959–963. [Google Scholar] [CrossRef]
  80. Laing, I.A.; Goldblatt, J.; Eber, E.; Hayden, C.M.; Rye, P.J.; Gibson, N.A.; Palmer, L.J.; Burton, P.R.; Le Souef, P.N. A polymorphism of the CC16 gene is associated with an increased risk of asthma. J. Med. Genet. 1998, 35, 463–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  81. Laing, I.A.; Hermans, C.; Bernard, A.; Burton, P.R.; Goldblatt, J.; Le Souef, P.N. Association between plasma CC16 levels, the A38G polymorphism, and asthma. Am. J. Respir. Crit. Care Med. 2000, 161, 124–127. [Google Scholar] [CrossRef] [PubMed]
  82. Choi, M.; Zhang, Z.; Ten Kate, L.P.; Collee, J.M.; Gerritsen, J.; Mukherjee, A.B. Human uteroglobin gene polymorphisms and genetic susceptibility to asthma. Ann. N. Y. Acad. Sci. 2000, 923, 303–306. [Google Scholar] [CrossRef] [PubMed]
  83. Green, S.L.; Gaillard, M.C.; Song, E.; Dewar, J.B.; Halkas, A. Polymorphisms of the beta chain of the high-affinity immunoglobulin E receptor (Fcepsilon RI-beta) in South African black and white asthmatic and nonasthmatic individuals. Am. J. Respir. Crit. Care Med. 1998, 158, 1487–1492. [Google Scholar] [CrossRef] [PubMed]
  84. Hijazi, Z.; Haider, M.Z.; Khan, M.R.; Al-Dowaisan, A.A. High frequency of IgE receptor Fc epsilonRIbeta variant (Leu181/Leu183) in Kuwaiti Arabs and its association with asthma. Clin. Genet. 1998, 53, 149–152. [Google Scholar] [CrossRef]
  85. Palmer, L.J.; Rye, P.J.; Gibson, N.A.; Moffatt, M.F.; Goldblatt, J.; Burton, P.R.; Cookson, W.O.; Lesouef, P.N. Association of FcepsilonR1-beta polymorphisms with asthma and associated traits in Australian asthmatic families. Clin. Exp. Allergy 1999, 29, 1555–1562. [Google Scholar] [CrossRef]
  86. Cox, H.E.; Moffatt, M.F.; Faux, J.A.; Walley, A.J.; Coleman, R.; Trembath, R.C.; Cookson, W.O.; Harper, J.I. Association of atopic dermatitis to the beta subunit of the high affinity immunoglobulin E receptor. Br. J. Dermatol. 1998, 138, 182–187. [Google Scholar] [CrossRef]
  87. van Hage-Hamsten, M.; Johansson, E.; Kronqvist, M.; Loughry, A.; Cookson, W.O.; Moffatt, M.F. Associations of Fc epsilon R1-beta polymorphisms with immunoglobin E antibody responses to common inhalant allergens in a rural population. Clin. Exp. Allergy 2002, 32, 838–842. [Google Scholar] [CrossRef]
  88. Hizawa, N.; Yamaguchi, E.; Jinushi, E.; Kawakami, Y. A common FCER1B gene promoter polymorphism influences total serum IgE levels in a Japanese population. Am. J. Respir. Crit. Care Med. 2000, 161, 906–909. [Google Scholar] [CrossRef]
  89. Shirakawa, T.; Mao, X.Q.; Sasaki, S.; Enomoto, T.; Kawai, M.; Morimoto, K.; Hopkin, J. Association between atopic asthma and a coding variant of Fc epsilon RI beta in a Japanese population. Hum. Mol. Genet. 1996, 5, 1129–1130. [Google Scholar] [CrossRef] [Green Version]
  90. Fryer, A.A.; Bianco, A.; Hepple, M.; Jones, P.W.; Strange, R.C.; Spiteri, M.A. Polymorphism at the glutathione S-transferase GSTP1 locus. A new marker for bronchial hyperresponsiveness and asthma. Am. J. Respir. Crit. Care Med. 2000, 161, 1437–1442. [Google Scholar] [CrossRef]
  91. Noguchi, E.; Shibasaki, M.; Inudou, M.; Kamioka, M.; Yokouchi, Y.; Yamakawa-Kobayashi, K.; Hamaguchi, H.; Matsui, A.; Arinami, T. Association between a new polymorphism in the activation-induced cytidine deaminase gene and atopic asthma and the regulation of total serum IgE levels. J. Allergy Clin. Immunol. 2001, 108, 382–386. [Google Scholar] [CrossRef]
  92. Tamura, K.; Arakawa, H.; Suzuki, M.; Kobayashi, Y.; Mochizuki, H.; Kato, M.; Tokuyama, K.; Morikawa, A. Novel dinucleotide repeat polymorphism in the first exon of the STAT-6 gene is associated with allergic diseases. Clin. Exp. Allergy 2001, 31, 1509–1514. [Google Scholar] [CrossRef]
  93. Grasemann, H.; Yandava, C.N.; Storm van’s Gravesande, K.; Deykin, A.; Pillari, A.; Ma, J.; Sonna, L.A.; Lilly, C.; Stampfer, M.J.; Israel, E.; et al. A neuronal NO synthase (NOS1) gene polymorphism is associated with asthma. Biochem. Biophys. Res. Commun. 2000, 272, 391–394. [Google Scholar] [CrossRef]
  94. Gao, P.S.; Kawada, H.; Kasamatsu, T.; Mao, X.Q.; Roberts, M.H.; Miyamoto, Y.; Yoshimura, M.; Saitoh, Y.; Yasue, H.; Nakao, K.; et al. Variants of NOS1, NOS2, and NOS3 genes in asthmatics. Biochem. Biophys. Res. Commun. 2000, 267, 761–763. [Google Scholar] [CrossRef]
  95. Malerba, G.; Patuzzo, C.; Trabetti, E.; Lauciello, M.C.; Galavotti, R.; Pescollderungg, L.; Whalen, M.B.; Zanoni, G.; Martinati, L.C.; Boner, A.L.; et al. Chromosome 14 linkage analysis and mutation study of 2 serpin genes in allergic asthmatic families. J. Allergy Clin. Immunol. 2001, 107, 654–658. [Google Scholar] [CrossRef]
  96. Howard, T.D.; Koppelman, G.H.; Xu, J.; Zheng, S.L.; Postma, D.S.; Meyers, D.A.; Bleecker, E.R. Gene-gene interaction in asthma: IL4RA and IL13 in a Dutch population with asthma. Am. J. Hum. Genet. 2002, 70, 230–236. [Google Scholar] [CrossRef] [Green Version]
  97. Ober, C.; Leavitt, S.A.; Tsalenko, A.; Howard, T.D.; Hoki, D.M.; Daniel, R.; Newman, D.L.; Wu, X.; Parry, R.; Lester, L.A.; et al. Variation in the interleukin 4-receptor alpha gene confers susceptibility to asthma and atopy in ethnically diverse populations. Am. J. Hum. Genet. 2000, 66, 517–526. [Google Scholar] [CrossRef] [Green Version]
  98. Rosa-Rosa, L.; Zimmermann, N.; Bernstein, J.A.; Rothenberg, M.E.; Khurana Hershey, G.K. The R576 IL-4 receptor alpha allele correlates with asthma severity. J. Allergy Clin. Immunol. 1999, 104, 1008–1014. [Google Scholar] [CrossRef]
  99. Risma, K.A.; Wang, N.; Andrews, R.P.; Cunningham, C.M.; Ericksen, M.B.; Bernstein, J.A.; Chakraborty, R.; Hershey, G.K. V75R576 IL-4 receptor alpha is associated with allergic asthma and enhanced IL-4 receptor function. J. Immunol. 2002, 169, 1604–1610. [Google Scholar] [CrossRef] [Green Version]
  100. Mitsuyasu, H.; Izuhara, K.; Mao, X.Q.; Gao, P.S.; Arinobu, Y.; Enomoto, T.; Kawai, M.; Sasaki, S.; Dake, Y.; Hamasaki, N.; et al. Ile50Val variant of IL4R alpha upregulates IgE synthesis and associates with atopic asthma. Nat. Genet. 1998, 19, 119–120. [Google Scholar] [CrossRef]
  101. Hizawa, N.; Yamaguchi, E.; Konno, S.; Tanino, Y.; Jinushi, E.; Nishimura, M. A functional polymorphism in the RANTES gene promoter is associated with the development of late-onset asthma. Am. J. Respir. Crit. Care Med. 2002, 166, 686–690. [Google Scholar] [CrossRef] [Green Version]
  102. Fryer, A.A.; Spiteri, M.A.; Bianco, A.; Hepple, M.; Jones, P.W.; Strange, R.C.; Makki, R.; Tavernier, G.; Smilie, F.I.; Custovic, A.; et al. The -403 G-->A promoter polymorphism in the RANTES gene is associated with atopy and asthma. Genes Immun. 2000, 1, 509–514. [Google Scholar] [CrossRef] [Green Version]
  103. Benessiano, J.; Crestani, B.; Mestari, F.; Klouche, W.; Neukirch, F.; Hacein-Bey, S.; Durand, G.; Aubier, M. High frequency of a deletion polymorphism of the angiotensin-converting enzyme gene in asthma. J. Allergy Clin. Immunol. 1997, 99, 53–57. [Google Scholar] [CrossRef]
  104. Holla, L.; Vasku, A.; Znojil, V.; Siskova, L.; Vacha, J. Association of 3 gene polymorphisms with atopic diseases. J. Allergy Clin. Immunol. 1999, 103, 702–708. [Google Scholar] [CrossRef]
  105. Unoki, M.; Furuta, S.; Onouchi, Y.; Watanabe, O.; Doi, S.; Fujiwara, H.; Miyatake, A.; Fujita, K.; Tamari, M.; Nakamura, Y. Association studies of 33 single nucleotide polymorphisms (SNPs) in 29 candidate genes for bronchial asthma: Positive association a T924C polymorphism in the thromboxane A2 receptor gene. Hum. Genet. 2000, 106, 440–446. [Google Scholar] [CrossRef]
  106. Lee, S.Y.; Lee, Y.H.; Shin, C.; Shim, J.J.; Kang, K.H.; Yoo, S.H.; In, K.H. Association of asthma severity and bronchial hyperresponsiveness with a polymorphism in the cytotoxic T-lymphocyte antigen-4 gene. Chest 2002, 122, 171–176. [Google Scholar] [CrossRef] [Green Version]
  107. Sandford, A.J.; Chagani, T.; Zhu, S.; Weir, T.D.; Bai, T.R.; Spinelli, J.J.; Fitzgerald, J.M.; Behbehani, N.A.; Tan, W.C.; Pare, P.D. Polymorphisms in the IL4, IL4RA, and FCERIB genes and asthma severity. J. Allergy Clin. Immunol. 2000, 106, 135–140. [Google Scholar] [CrossRef]
  108. Holloway, J.W.; Dunbar, P.R.; Riley, G.A.; Sawyer, G.M.; Fitzharris, P.F.; Pearce, N.; Le Gros, G.S.; Beasley, R. Association of beta2-adrenergic receptor polymorphisms with severe asthma. Clin. Exp. Allergy 2000, 30, 1097–1103. [Google Scholar] [CrossRef]
  109. Pulleyn, L.J.; Newton, R.; Adcock, I.M.; Barnes, P.J. TGFbeta1 allele association with asthma severity. Hum. Genet. 2001, 109, 623–627. [Google Scholar] [CrossRef]
  110. Duetsch, G.; Illig, T.; Loesgen, S.; Rohde, K.; Klopp, N.; Herbon, N.; Gohlke, H.; Altmueller, J.; Wjst, M. STAT6 as an asthma candidate gene: Polymorphism-screening, association and haplotype analysis in a Caucasian sib-pair study. Hum. Mol. Genet. 2002, 11, 613–621. [Google Scholar] [CrossRef] [Green Version]
  111. Nakamura, H.; Luster, A.D.; Nakamura, T.; In, K.H.; Sonna, L.A.; Deykin, A.; Israel, E.; Drazen, J.M.; Lilly, C.M. Variant eotaxin: Its effects on the asthma phenotype. J. Allergy Clin. Immunol. 2001, 108, 946–953. [Google Scholar] [CrossRef] [PubMed]
  112. Rosenwasser, L.J.; Klemm, D.J.; Dresback, J.K.; Inamura, H.; Mascali, J.J.; Klinnert, M.; Borish, L. Promoter polymorphisms in the chromosome 5 gene cluster in asthma and atopy. Clin. Exp. Allergy 1995, 25 (Suppl. 2), 74–78, discussion 95–76. [Google Scholar] [CrossRef] [PubMed]
  113. Baldini, M.; Lohman, I.C.; Halonen, M.; Erickson, R.P.; Holt, P.G.; Martinez, F.D. A Polymorphism* in the 5’ flanking region of the CD14 gene is associated with circulating soluble CD14 levels and with total serum immunoglobulin E. Am. J. Respir. Cell Mol. Biol. 1999, 20, 976–983. [Google Scholar] [CrossRef] [PubMed]
  114. Koppelman, G.H.; Reijmerink, N.E.; Colin Stine, O.; Howard, T.D.; Whittaker, P.A.; Meyers, D.A.; Postma, D.S.; Bleecker, E.R. Association of a promoter polymorphism of the CD14 gene and atopy. Am. J. Respir. Crit. Care Med. 2001, 163, 965–969. [Google Scholar] [CrossRef] [PubMed]
  115. Moffatt, M.F.; Schou, C.; Faux, J.A.; Abecasis, G.R.; James, A.; Musk, A.W.; Cookson, W.O. Association between quantitative traits underlying asthma and the HLA-DRB1 locus in a family-based population sample. Eur. J. Hum. Genet. 2001, 9, 341–346. [Google Scholar] [CrossRef] [PubMed]
  116. Moffatt, M.F.; Faux, J.A.; Lester, S.; Pare, P.; McCluskey, J.; Spargo, R.; James, A.; Musk, A.W.; Cookson, W.O. Atopy, respiratory function and HLA-DR in Aboriginal Australians. Hum. Mol. Genet. 2003, 12, 625–630. [Google Scholar] [CrossRef] [PubMed]
  117. Spielman, R.S.; Ewens, W.J. The TDT and other family-based tests for linkage disequilibrium and association. Am. J. Hum. Genet. 1996, 59, 983–989. [Google Scholar]
  118. Gao, P.S.; Mao, X.Q.; Jouanguy, E.; Pallier, A.; Doffinger, R.; Tanaka, Y.; Nakashima, H.; Otsuka, T.; Roberts, M.H.; Enomoto, T.; et al. Nonpathogenic common variants of IFNGR1 and IFNGR2 in association with total serum IgE levels. Biochem. Biophys. Res. Commun. 1999, 263, 425–429. [Google Scholar] [CrossRef]
  119. Nagarkatti, R.; Rao, C.B.; Rishi, J.P.; Chetiwal, R.; Shandilya, V.; Vijayan, V.; Kumar, R.; Pemde, H.K.; Sharma, S.K.; Sharma, S.; et al. Association of IFNG gene polymorphism with asthma in the Indian population. J. Allergy Clin. Immunol. 2002, 110, 410–412. [Google Scholar] [CrossRef] [Green Version]
  120. Kauppi, P.; Lindblad-Toh, K.; Sevon, P.; Toivonen, H.T.; Rioux, J.D.; Villapakkam, A.; Laitinen, L.A.; Hudson, T.J.; Kere, J.; Laitinen, T. A second-generation association study of the 5q31 cytokine gene cluster and the interleukin-4 receptor in asthma. Genomics 2001, 77, 35–42. [Google Scholar] [CrossRef] [Green Version]
  121. Bottini, N.; Borgiani, P.; Otsu, A.; Saccucci, P.; Stefanini, L.; Greco, E.; Fontana, L.; Hopkin, J.M.; Mao, X.Q.; Shirakawa, T. IL-4 receptor alpha chain genetic polymorphism and total IgE levels in the English population: Two-locus haplotypes are more informative than individual SNPs. Clin. Genet. 2002, 61, 288–292. [Google Scholar] [CrossRef]
  122. Hobbs, K.; Negri, J.; Klinnert, M.; Rosenwasser, L.J.; Borish, L. Interleukin-10 and transforming growth factor-beta promoter polymorphisms in allergies and asthma. Am. J. Respir. Crit. Care Med. 1998, 158, 1958–1962. [Google Scholar] [CrossRef]
  123. Karjalainen, J.; Hulkkonen, J.; Nieminen, M.M.; Huhtala, H.; Aromaa, A.; Klaukka, T.; Hurme, M. Interleukin-10 gene promoter region polymorphism is associated with eosinophil count and circulating immunoglobulin E in adult asthma. Clin. Exp. Allergy 2003, 33, 78–83. [Google Scholar] [CrossRef]
  124. Hizawa, N.; Yamaguchi, E.; Jinushi, E.; Konno, S.; Kawakami, Y.; Nishimura, M. Increased total serum IgE levels in patients with asthma and promoter polymorphisms at CTLA4 and FCER1B. J. Allergy Clin. Immunol. 2001, 108, 74–79. [Google Scholar] [CrossRef]
  125. Suzuki, I.; Hizawa, N.; Yamaguchi, E.; Kawakami, Y. Association between a C+33T polymorphism in the IL-4 promoter region and total serum IgE levels. Clin. Exp. Allergy 2000, 30, 1746–1749. [Google Scholar] [CrossRef]
  126. Holla, L.I.; Buckova, D.; Kuhrova, V.; Stejskalova, A.; Francova, H.; Znojil, V.; Vacha, J. Prevalence of endothelial nitric oxide synthase gene polymorphisms in patients with atopic asthma. Clin. Exp. Allergy 2002, 32, 1193–1198. [Google Scholar] [CrossRef]
  127. Walley, A.J.; Cookson, W.O. Investigation of an interleukin-4 promoter polymorphism for associations with asthma and atopy. J. Med. Genet. 1996, 33, 689–692. [Google Scholar] [CrossRef] [Green Version]
  128. Stephan, V.; Kuehr, J.; Seibt, A.; Saueressig, H.; Zingsem, S.; Dinh, T.D.; Moseler, M.; Wahn, V.; Deichmann, K.A. Genetic linkage of HLA-class II locus to mite-specific IgE immune responsiveness. Clin. Exp. Allergy 1999, 29, 1049–1054. [Google Scholar] [CrossRef]
  129. Hu, C.; Hsu, P.N.; Lin, R.H.; Hsieh, K.H.; Chua, K.Y. HLA DPB1*0201 allele is negatively associated with immunoglobulin E responsiveness specific for house dust mite allergens in Taiwan. Clin. Exp. Allergy 2000, 30, 538–545. [Google Scholar] [CrossRef]
  130. Hill, M.R.; Cookson, W.O. A new variant of the beta subunit of the high-affinity receptor for immunoglobulin E (Fc epsilon RI-beta E237G): Associations with measures of atopy and bronchial hyper-responsiveness. Hum. Mol. Genet. 1996, 5, 959–962. [Google Scholar] [CrossRef] [Green Version]
  131. D’Amato, M.; Vitiani, L.R.; Petrelli, G.; Ferrigno, L.; di Pietro, A.; Trezza, R.; Matricardi, P.M. Association of persistent bronchial hyperresponsiveness with beta2-adrenoceptor (ADRB2) haplotypes. A population study. Am. J. Respir. Crit. Care Med. 1998, 158, 1968–1973. [Google Scholar] [CrossRef]
  132. Ulbrecht, M.; Hergeth, M.T.; Wjst, M.; Heinrich, J.; Bickeboller, H.; Wichmann, H.E.; Weiss, E.H. Association of beta(2)-adrenoreceptor variants with bronchial hyperresponsiveness. Am. J. Respir. Crit. Care Med. 2000, 161, 469–474. [Google Scholar] [CrossRef]
  133. Li Kam Wa, T.C.; Mansur, A.H.; Britton, J.; Williams, G.; Pavord, I.; Richards, K.; Campbell, D.A.; Morton, N.; Holgate, S.T.; Morrison, J.F. Association between—308 tumour necrosis factor promoter polymorphism and bronchial hyperreactivity in asthma. Clin. Exp. Allergy 1999, 29, 1204–1208. [Google Scholar] [CrossRef]
  134. Burchard, E.G.; Silverman, E.K.; Rosenwasser, L.J.; Borish, L.; Yandava, C.; Pillari, A.; Weiss, S.T.; Hasday, J.; Lilly, C.M.; Ford, J.G.; et al. Association between a sequence variant in the IL-4 gene promoter and FEV(1) in asthma. Am. J. Respir. Crit. Care Med. 1999, 160, 919–922. [Google Scholar] [CrossRef]
  135. Summerhill, E.; Leavitt, S.A.; Gidley, H.; Parry, R.; Solway, J.; Ober, C. beta(2)-adrenergic receptor Arg16/Arg16 genotype is associated with reduced lung function, but not with asthma, in the Hutterites. Am. J. Respir. Crit. Care Med. 2000, 162, 599–602. [Google Scholar] [CrossRef] [PubMed]
  136. Sayers, I.; Barton, S.; Rorke, S.; Beghe, B.; Hayward, B.; Van Eerdewegh, P.; Keith, T.; Clough, J.B.; Ye, S.; Holloway, J.W.; et al. Allelic association and functional studies of promoter polymorphism in the leukotriene C4 synthase gene (LTC4S) in asthma. Thorax 2003, 58, 417–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  137. Pickrell, J.K.; Berisa, T.; Liu, J.Z.; Segurel, L.; Tung, J.Y.; Hinds, D.A. Detection and interpretation of shared genetic influences on 42 human traits. Nat. Genet. 2016, 48, 709–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  138. Ferreira, M.A.; Matheson, M.C.; Duffy, D.L.; Marks, G.B.; Hui, J.; Le Souef, P.; Danoy, P.; Baltic, S.; Nyholt, D.R.; Jenkins, M.; et al. Identification of IL6R and chromosome 11q13.5 as risk loci for asthma. Lancet 2011, 378, 1006–1014. [Google Scholar] [CrossRef] [Green Version]
  139. Yan, Q.; Brehm, J.; Pino-Yanes, M.; Forno, E.; Lin, J.; Oh, S.S.; Acosta-Perez, E.; Laurie, C.C.; Cloutier, M.M.; Raby, B.A.; et al. A meta-analysis of genome-wide association studies of asthma in Puerto Ricans. Eur. Respir. J. 2017, 49. [Google Scholar] [CrossRef] [Green Version]
  140. Mathias, R.A.; Grant, A.V.; Rafaels, N.; Hand, T.; Gao, L.; Vergara, C.; Tsai, Y.J.; Yang, M.; Campbell, M.; Foster, C.; et al. A genome-wide association study on African-ancestry populations for asthma. J. Allergy Clin. Immunol. 2010, 125, 336–346.e4. [Google Scholar] [CrossRef] [Green Version]
  141. Hirota, T.; Takahashi, A.; Kubo, M.; Tsunoda, T.; Tomita, K.; Doi, S.; Fujita, K.; Miyatake, A.; Enomoto, T.; Miyagawa, T.; et al. Genome-wide association study identifies three new susceptibility loci for adult asthma in the Japanese population. Nat. Genet. 2011, 43, 893–896. [Google Scholar] [CrossRef]
  142. Himes, B.E.; Hunninghake, G.M.; Baurley, J.W.; Rafaels, N.M.; Sleiman, P.; Strachan, D.P.; Wilk, J.B.; Willis-Owen, S.A.; Klanderman, B.; Lasky-Su, J.; et al. Genome-wide association analysis identifies PDE4D as an asthma-susceptibility gene. Am. J. Hum. Genet. 2009, 84, 581–593. [Google Scholar] [CrossRef] [Green Version]
  143. Almoguera, B.; Vazquez, L.; Mentch, F.; Connolly, J.; Pacheco, J.A.; Sundaresan, A.S.; Peissig, P.L.; Linneman, J.G.; McCarty, C.A.; Crosslin, D.; et al. Identification of Four Novel Loci in Asthma in European American and African American Populations. Am. J. Respir. Crit. Care Med. 2017, 195, 456–463. [Google Scholar] [CrossRef]
  144. Li, X.; Howard, T.D.; Zheng, S.L.; Haselkorn, T.; Peters, S.P.; Meyers, D.A.; Bleecker, E.R. Genome-wide association study of asthma identifies RAD50-IL13 and HLA-DR/DQ regions. J. Allergy Clin. Immunol. 2010, 125, 328–335.e311. [Google Scholar] [CrossRef] [Green Version]
  145. Noguchi, E.; Sakamoto, H.; Hirota, T.; Ochiai, K.; Imoto, Y.; Sakashita, M.; Kurosaka, F.; Akasawa, A.; Yoshihara, S.; Kanno, N.; et al. Genome-wide association study identifies HLA-DP as a susceptibility gene for pediatric asthma in Asian populations. PLoS Genet. 2011, 7, e1002170. [Google Scholar] [CrossRef] [Green Version]
  146. Lasky-Su, J.; Himes, B.E.; Raby, B.A.; Klanderman, B.J.; Sylvia, J.S.; Lange, C.; Melen, E.; Martinez, F.D.; Israel, E.; Gauderman, J.; et al. HLA-DQ strikes again: Genome-wide association study further confirms HLA-DQ in the diagnosis of asthma among adults. Clin. Exp. Allergy 2012, 42, 1724–1733. [Google Scholar] [CrossRef]
  147. Lowe, R.; Shirley, N.; Bleackley, M.; Dolan, S.; Shafee, T. Transcriptomics technologies. PLoS Comput. Biol. 2017, 13, e1005457. [Google Scholar] [CrossRef] [Green Version]
  148. Liew, C.C.; Ma, J.; Tang, H.C.; Zheng, R.; Dempsey, A.A. The peripheral blood transcriptome dynamically reflects system wide biology: A potential diagnostic tool. J. Lab. Clin. Med. 2006, 147, 126–132. [Google Scholar] [CrossRef]
  149. Bjornsdottir, U.S.; Holgate, S.T.; Reddy, P.S.; Hill, A.A.; McKee, C.M.; Csimma, C.I.; Weaver, A.A.; Legault, H.M.; Small, C.G.; Ramsey, R.C.; et al. Pathways activated during human asthma exacerbation as revealed by gene expression patterns in blood. PLoS ONE 2011, 6, e21902. [Google Scholar] [CrossRef] [Green Version]
  150. Bigler, J.; Boedigheimer, M.; Schofield, J.P.R.; Skipp, P.J.; Corfield, J.; Rowe, A.; Sousa, A.R.; Timour, M.; Twehues, L.; Hu, X.; et al. A Severe Asthma Disease Signature from Gene Expression Profiling of Peripheral Blood from U-BIOPRED Cohorts. Am. J. Respir. Crit. Care Med. 2017, 195, 1311–1320. [Google Scholar] [CrossRef]
  151. Woodruff, P.G.; Boushey, H.A.; Dolganov, G.M.; Barker, C.S.; Yang, Y.H.; Donnelly, S.; Ellwanger, A.; Sidhu, S.S.; Dao-Pick, T.P.; Pantoja, C.; et al. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc. Natl. Acad. Sci. USA 2007, 104, 15858–15863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  152. Woodruff, P.G.; Modrek, B.; Choy, D.F.; Jia, G.; Abbas, A.R.; Ellwanger, A.; Koth, L.L.; Arron, J.R.; Fahy, J.V. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am. J. Respir. Crit. Care Med. 2009, 180, 388–395. [Google Scholar] [CrossRef] [PubMed]
  153. Wilson, S.J.; Ward, J.A.; Sousa, A.R.; Corfield, J.; Bansal, A.T.; De Meulder, B.; Lefaudeux, D.; Auffray, C.; Loza, M.J.; Baribaud, F.; et al. Severe asthma exists despite suppressed tissue inflammation: Findings of the U-BIOPRED study. Eur. Respir. J. 2016, 48, 1307–1319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  154. Modena, B.D.; Bleecker, E.R.; Busse, W.W.; Erzurum, S.C.; Gaston, B.M.; Jarjour, N.N.; Meyers, D.A.; Milosevic, J.; Tedrow, J.R.; Wu, W.; et al. Gene Expression Correlated with Severe Asthma Characteristics Reveals Heterogeneous Mechanisms of Severe Disease. Am. J. Respir. Crit. Care Med. 2017, 195, 1449–1463. [Google Scholar] [CrossRef] [PubMed]
  155. Baines, K.J.; Simpson, J.L.; Wood, L.G.; Scott, R.J.; Gibson, P.G. Transcriptional phenotypes of asthma defined by gene expression profiling of induced sputum samples. J. Allergy Clin. Immunol. 2011, 127, 153–160.e9. [Google Scholar] [CrossRef]
  156. Peters, M.C.; Mekonnen, Z.K.; Yuan, S.; Bhakta, N.R.; Woodruff, P.G.; Fahy, J.V. Measures of gene expression in sputum cells can identify TH2-high and TH2-low subtypes of asthma. J. Allergy Clin. Immunol. 2014, 133, 388–394. [Google Scholar] [CrossRef] [Green Version]
  157. Baines, K.J.; Simpson, J.L.; Wood, L.G.; Scott, R.J.; Fibbens, N.L.; Powell, H.; Cowan, D.C.; Taylor, D.R.; Cowan, J.O.; Gibson, P.G. Sputum gene expression signature of 6 biomarkers discriminates asthma inflammatory phenotypes. J. Allergy Clin. Immunol. 2014, 133, 997–1007. [Google Scholar] [CrossRef]
  158. Peters, M.C.; Ringel, L.; Dyjack, N.; Herrin, R.; Woodruff, P.G.; Rios, C.; O’Connor, B.; Fahy, J.V.; Seibold, M.A. A Transcriptomic Method to Determine Airway Immune Dysfunction in T2-High and T2-Low Asthma. Am. J. Respir. Crit. Care Med. 2019, 199, 465–477. [Google Scholar] [CrossRef]
  159. Kim, B.K.; Lee, H.S.; Sohn, K.H.; Lee, S.Y.; Cho, S.H.; Park, H.W. Different Biological Pathways Are Up-regulated in the Elderly With Asthma: Sputum Transcriptomic Analysis. Allergy Asthma Immunol. Res. 2019, 11, 104–115. [Google Scholar] [CrossRef]
  160. Pandey, G.; Pandey, O.P.; Rogers, A.J.; Ahsen, M.E.; Hoffman, G.E.; Raby, B.A.; Weiss, S.T.; Schadt, E.E.; Bunyavanich, S. A Nasal Brush-based Classifier of Asthma Identified by Machine Learning Analysis of Nasal RNA Sequence Data. Sci. Rep. 2018, 8, 8826. [Google Scholar] [CrossRef] [Green Version]
  161. Weathington, N.; O’Brien, M.E.; Radder, J.; Whisenant, T.C.; Bleecker, E.R.; Busse, W.W.; Erzurum, S.C.; Gaston, B.; Hastie, A.T.; Jarjour, N.N.; et al. BAL Cell Gene Expression in Severe Asthma Reveals Mechanisms of Severe Disease and Influences of Medications. Am. J. Respir. Crit. Care Med. 2019, 200, 837–856. [Google Scholar] [CrossRef]
  162. Hekking, P.P.; Loza, M.J.; Pavlidis, S.; de Meulder, B.; Lefaudeux, D.; Baribaud, F.; Auffray, C.; Wagener, A.H.; Brinkman, P.I.; Lutter, R.I.; et al. Pathway discovery using transcriptomic profiles in adult-onset severe asthma. J. Allergy Clin. Immunol. 2018, 141, 1280–1290. [Google Scholar] [CrossRef] [Green Version]
  163. Aslam, B.; Basit, M.; Nisar, M.A.; Khurshid, M.; Rasool, M.H. Proteomics: Technologies and Their Applications. J. Chromatogr. Sci. 2017, 55, 182–196. [Google Scholar] [CrossRef] [Green Version]
  164. Barbosa, E.B.; Vidotto, A.; Polachini, G.M.; Henrique, T.; Marqui, A.B.; Tajara, E.H. Proteomics: Methodologies and applications to the study of human diseases. Rev. Assoc. Med. Bras. 2012, 58, 366–375. [Google Scholar]
  165. Lee, S.H.; Rhim, T.; Choi, Y.S.; Min, J.W.; Kim, S.H.; Cho, S.Y.; Paik, Y.K.; Park, C.S. Complement C3a and C4a increased in plasma of patients with aspirin-induced asthma. Am. J. Respir. Crit. Care Med. 2006, 173, 370–378. [Google Scholar] [CrossRef]
  166. Gharib, S.A.; Nguyen, E.V.; Lai, Y.; Plampin, J.D.; Goodlett, D.R.; Hallstrand, T.S. Induced sputum proteome in healthy subjects and asthmatic patients. J. Allergy Clin. Immunol. 2011, 128, 1176–1184.e1176. [Google Scholar] [CrossRef] [Green Version]
  167. Lee, T.H.; Jang, A.S.; Park, J.S.; Kim, T.H.; Choi, Y.S.; Shin, H.R.; Park, S.W.; Uh, S.T.; Choi, J.S.; Kim, Y.H.; et al. Elevation of S100 calcium binding protein A9 in sputum of neutrophilic inflammation in severe uncontrolled asthma. Ann. Allergy Asthma Immunol. 2013, 111, 268–275.e1. [Google Scholar] [CrossRef]
  168. Wu, J.; Kobayashi, M.; Sousa, E.A.; Liu, W.; Cai, J.; Goldman, S.J.; Dorner, A.J.; Projan, S.J.; Kavuru, M.S.; Qiu, Y.; et al. Differential proteomic analysis of bronchoalveolar lavage fluid in asthmatics following segmental antigen challenge. Mol. Cell Proteomics 2005, 4, 1251–1264. [Google Scholar] [CrossRef] [Green Version]
  169. Candiano, G.; Bruschi, M.; Pedemonte, N.; Caci, E.; Liberatori, S.; Bini, L.; Pellegrini, C.; Vigano, M.; O’Connor, B.J.; Lee, T.H.; et al. Gelsolin secretion in interleukin-4-treated bronchial epithelia and in asthmatic airways. Am. J. Respir. Crit. Care Med. 2005, 172, 1090–1096. [Google Scholar] [CrossRef]
  170. Ghosh, S.; Janocha, A.J.; Aronica, M.A.; Swaidani, S.; Comhair, S.A.; Xu, W.; Zheng, L.; Kaveti, S.; Kinter, M.; Hazen, S.L.; et al. Nitrotyrosine proteome survey in asthma identifies oxidative mechanism of catalase inactivation. J. Immunol. 2006, 176, 5587–5597. [Google Scholar] [CrossRef] [Green Version]
  171. Cederfur, C.; Malmstrom, J.; Nihlberg, K.; Block, M.; Breimer, M.E.; Bjermer, L.; Westergren-Thorsson, G.; Leffler, H. Glycoproteomic identification of galectin-3 and -8 ligands in bronchoalveolar lavage of mild asthmatics and healthy subjects. Biochim. Biophys. Acta 2012, 1820, 1429–1436. [Google Scholar] [CrossRef]
  172. O’Neil, S.E.; Sitkauskiene, B.; Babusyte, A.; Krisiukeniene, A.; Stravinskaite-Bieksiene, K.; Sakalauskas, R.; Sihlbom, C.; Ekerljung, L.; Carlsohn, E.; Lotvall, J. Network analysis of quantitative proteomics on asthmatic bronchi: Effects of inhaled glucocorticoid treatment. Respir. Res. 2011, 12, 124. [Google Scholar] [CrossRef] [Green Version]
  173. Dunn, W.B.; Bailey, N.J.; Johnson, H.E. Measuring the metabolome: Current analytical technologies. Analyst 2005, 130, 606–625. [Google Scholar] [CrossRef]
  174. Lei, Z.; Huhman, D.V.; Sumner, L.W. Mass spectrometry strategies in metabolomics. J. Biol. Chem. 2011, 286, 25435–25442. [Google Scholar] [CrossRef] [Green Version]
  175. Sahoo, N.; Tejaswini, G.; Sahu, M.; Muralikrishna, K. An overview on NMR spectroscopy based metabolomics. Int. J. Pharm. Sci. Dev. Res. 2020, 6, 016–020. [Google Scholar] [CrossRef]
  176. Ried, J.S.; Baurecht, H.; Stuckler, F.; Krumsiek, J.; Gieger, C.; Heinrich, J.; Kabesch, M.; Prehn, C.; Peters, A.; Rodriguez, E.; et al. Integrative genetic and metabolite profiling analysis suggests altered phosphatidylcholine metabolism in asthma. Allergy 2013, 68, 629–636. [Google Scholar] [CrossRef]
  177. Jung, J.; Kim, S.H.; Lee, H.S.; Choi, G.S.; Jung, Y.S.; Ryu, D.H.; Park, H.S.; Hwang, G.S. Serum metabolomics reveals pathways and biomarkers associated with asthma pathogenesis. Clin. Exp. Allergy 2013, 43, 425–433. [Google Scholar] [CrossRef]
  178. Chang, C.; Guo, Z.G.; He, B.; Yao, W.Z. Metabolic alterations in the sera of Chinese patients with mild persistent asthma: A GC-MS-based metabolomics analysis. Acta Pharmacol. Sin. 2015, 36, 1356–1366. [Google Scholar] [CrossRef] [Green Version]
  179. Reinke, S.N.; Gallart-Ayala, H.; Gomez, C.; Checa, A.; Fauland, A.; Naz, S.; Kamleh, M.A.; Djukanovic, R.; Hinks, T.S.; Wheelock, C.E. Metabolomics analysis identifies different metabotypes of asthma severity. Eur. Respir. J. 2017, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  180. Pang, Z.; Wang, G.; Wang, C.; Zhang, W.; Liu, J.; Wang, F. Serum Metabolomics Analysis of Asthma in Different Inflammatory Phenotypes: A Cross-Sectional Study in Northeast China. BioMed Res. Int. 2018, 2018, 2860521. [Google Scholar] [CrossRef] [PubMed]
  181. Bochenek, G.; Nizankowska, E.; Gielicz, A.; Swierczynska, M.; Szczeklik, A. Plasma 9alpha,11beta-PGF2, a PGD2 metabolite, as a sensitive marker of mast cell activation by allergen in bronchial asthma. Thorax 2004, 59, 459–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  182. Comhair, S.A.; McDunn, J.; Bennett, C.; Fettig, J.; Erzurum, S.C.; Kalhan, S.C. Metabolomic Endotype of Asthma. J. Immunol. 2015, 195, 643–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  183. Jiang, T.; Dai, L.; Li, P.; Zhao, J.; Wang, X.; An, L.; Liu, M.; Wu, S.; Wang, Y.; Peng, Y.; et al. Lipid metabolism and identification of biomarkers in asthma by lipidomic analysis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2021, 1866, 158853. [Google Scholar] [CrossRef] [PubMed]
  184. Liu, Y.; Zheng, J.; Zhang, H.P.; Zhang, X.; Wang, L.; Wood, L.; Wang, G. Obesity-Associated Metabolic Signatures Correlate to Clinical and Inflammatory Profiles of Asthma: A Pilot Study. Allergy Asthma Immunol. Res. 2018, 10, 628–647. [Google Scholar] [CrossRef]
  185. Loureiro, C.C.; Duarte, I.F.; Gomes, J.; Carrola, J.; Barros, A.S.; Gil, A.M.; Bousquet, J.; Bom, A.T.; Rocha, S.M. Urinary metabolomic changes as a predictive biomarker of asthma exacerbation. J. Allergy Clin. Immunol. 2014, 133, 261–263.e5. [Google Scholar] [CrossRef]
  186. Loureiro, C.C.; Oliveira, A.S.; Santos, M.; Rudnitskaya, A.; Todo-Bom, A.; Bousquet, J.; Rocha, S.M. Urinary metabolomic profiling of asthmatics can be related to clinical characteristics. Allergy 2016, 71, 1362–1365. [Google Scholar] [CrossRef]
  187. Kolmert, J.; Gomez, C.; Balgoma, D.; Sjodin, M.; Bood, J.; Konradsen, J.R.; Ericsson, M.; Thorngren, J.O.; James, A.; Mikus, M.; et al. Urinary Leukotriene E4 and Prostaglandin D2 Metabolites Increase in Adult and Childhood Severe Asthma Characterized by Type 2 Inflammation. A Clinical Observational Study. Am. J. Respir. Crit. Care Med. 2021, 203, 37–53. [Google Scholar] [CrossRef]
  188. Wheelock, C.E.; Goss, V.M.; Balgoma, D.; Nicholas, B.; Brandsma, J.; Skipp, P.J.; Snowden, S.; Burg, D.; D’Amico, A.; Horvath, I.; et al. Application of ‘omics technologies to biomarker discovery in inflammatory lung diseases. Eur. Respir. J. 2013, 42, 802–825. [Google Scholar] [CrossRef]
  189. Ibrahim, B.; Marsden, P.; Smith, J.A.; Custovic, A.; Nilsson, M.; Fowler, S.J. Breath metabolomic profiling by nuclear magnetic resonance spectroscopy in asthma. Allergy 2013, 68, 1050–1056. [Google Scholar] [CrossRef]
  190. Ntontsi, P.; Ntzoumanika, V.; Loukides, S.; Benaki, D.; Gkikas, E.; Mikros, E.; Bakakos, P. EBC metabolomics for asthma severity. J. Breath Res. 2020, 14, 036007. [Google Scholar] [CrossRef]
  191. Motta, A.; Paris, D.; D’Amato, M.; Melck, D.; Calabrese, C.; Vitale, C.; Stanziola, A.A.; Corso, G.; Sofia, M.; Maniscalco, M. NMR metabolomic analysis of exhaled breath condensate of asthmatic patients at two different temperatures. J. Proteome Res. 2014, 13, 6107–6120. [Google Scholar] [CrossRef]
  192. Sinha, A.; Desiraju, K.; Aggarwal, K.; Kutum, R.; Roy, S.; Lodha, R.; Kabra, S.K.; Ghosh, B.; Sethi, T.; Agrawal, A. Exhaled breath condensate metabolome clusters for endotype discovery in asthma. J. Transl. Med. 2017, 15, 262. [Google Scholar] [CrossRef] [Green Version]
  193. Maniscalco, M.; Paris, D.; Melck, D.J.; D’Amato, M.; Zedda, A.; Sofia, M.; Stellato, C.; Motta, A. Coexistence of obesity and asthma determines a distinct respiratory metabolic phenotype. J. Allergy Clin. Immunol. 2017, 139, 1536–1547.e5. [Google Scholar] [CrossRef] [Green Version]
  194. Snowden, S.; Dahlen, S.E.; Wheelock, C.E. Application of metabolomics approaches to the study of respiratory diseases. Bioanalysis 2012, 4, 2265–2290. [Google Scholar] [CrossRef] [Green Version]
  195. Horgan, R.P.; Kenny, L.C. Omic technologies: Genomics, transcriptomics, proteomics and metabolomics. Obestetrician Gynaecol. 2011, 13, 189–195. [Google Scholar] [CrossRef]
  196. Hodge, S.E. Linkage analysis versus association analysis: Distinguishing between two models that explain disease-marker associations. Am. J. Hum. Genet. 1993, 53, 367–384. [Google Scholar]
  197. Donovan, B.M.; Bastarache, L.; Turi, K.N.; Zutter, M.M.; Hartert, T.V. The current state of omics technologies in the clinical management of asthma and allergic diseases. Ann. Allergy Asthma Immunol. 2019, 123, 550–557. [Google Scholar] [CrossRef] [Green Version]
  198. Hegde, P.S.; White, I.R.; Debouck, C. Interplay of transcriptomics and proteomics. Curr. Opin. Biotechnol. 2003, 14, 647–651. [Google Scholar] [CrossRef]
  199. Ivanova, O.; Richards, L.B.; Vijverberg, S.J.; Neerincx, A.H.; Sinha, A.; Sterk, P.J.; Maitland-van der Zee, A.H. What did we learn from multiple omics studies in asthma? Allergy 2019, 74, 2129–2145. [Google Scholar] [CrossRef] [Green Version]
  200. Abdel-Aziz, M.I.; Neerincx, A.H.; Vijverberg, S.J.; Kraneveld, A.D.; Maitland-van der Zee, A.H. Omics for the future in asthma. Semin. Immunopathol. 2020, 42, 111–126. [Google Scholar] [CrossRef]
  201. Teran, L.M.; Montes-Vizuet, R.; Li, X.; Franz, T. Respiratory proteomics: From descriptive studies to personalized medicine. J. Proteome Res. 2015, 14, 38–50. [Google Scholar] [CrossRef]
  202. Neerincx, A.H.; Vijverberg, S.J.H.; Bos, L.D.J.; Brinkman, P.; van der Schee, M.P.; de Vries, R.; Sterk, P.J.; Maitland-van der Zee, A.H. Breathomics from exhaled volatile organic compounds in pediatric asthma. Pediatr. Pulmonol. 2017, 52, 1616–1627. [Google Scholar] [CrossRef]
  203. Wu, G. Functional amino acids in growth, reproduction, and health. Adv. Nutr. 2010, 1, 31–37. [Google Scholar] [CrossRef]
  204. Wu, G. Amino acids: Metabolism, functions, and nutrition. Amino Acids 2009, 37, 1–17. [Google Scholar] [CrossRef]
  205. Ricciardolo, F.L.; Sterk, P.J.; Gaston, B.; Folkerts, G. Nitric oxide in health and disease of the respiratory system. Physiol. Rev. 2004, 84, 731–765. [Google Scholar] [CrossRef]
  206. Folkerts, G.; Kloek, J.; Muijsers, R.B.; Nijkamp, F.P. Reactive nitrogen and oxygen species in airway inflammation. Eur. J. Pharmacol. 2001, 429, 251–262. [Google Scholar] [CrossRef]
  207. Xu, W.; Comhair, S.A.A.; Janocha, A.J.; Lara, A.; Mavrakis, L.A.; Bennett, C.D.; Kalhan, S.C.; Erzurum, S.C. Arginine metabolic endotypes related to asthma severity. PLoS ONE 2017, 12, e0183066. [Google Scholar] [CrossRef] [Green Version]
  208. Xu, W.; Ghosh, S.; Comhair, S.A.; Asosingh, K.; Janocha, A.J.; Mavrakis, D.A.; Bennett, C.D.; Gruca, L.L.; Graham, B.B.; Queisser, K.A.; et al. Increased mitochondrial arginine metabolism supports bioenergetics in asthma. J. Clin. Investig. 2016, 126, 2465–2481. [Google Scholar] [CrossRef] [Green Version]
  209. Asosingh, K.; Lauruschkat, C.D.; Alemagno, M.; Frimel, M.; Wanner, N.; Weiss, K.; Kessler, S.; Meyers, D.A.; Bennett, C.; Xu, W.; et al. Arginine metabolic control of airway inflammation. JCI Insight 2020, 5. [Google Scholar] [CrossRef]
  210. Zehethofer, N.; Bermbach, S.; Hagner, S.; Garn, H.; Muller, J.; Goldmann, T.; Lindner, B.; Schwudke, D.; Konig, P. Lipid Analysis of Airway Epithelial Cells for Studying Respiratory Diseases. Chromatographia 2015, 78, 403–413. [Google Scholar] [CrossRef] [Green Version]
  211. Wendell, S.G.; Baffi, C.; Holguin, F. Fatty acids, inflammation, and asthma. J. Allergy Clin. Immunol. 2014, 133, 1255–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  212. Miyata, J.; Arita, M. Role of omega-3 fatty acids and their metabolites in asthma and allergic diseases. Allergol. Int. 2015, 64, 27–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  213. Park, H.; Choi, Y.; Jung, C.G.; Park, H.S. Potential Biomarkers for NSAID-Exacerbated Respiratory Disease. Mediat. Inflamm. 2017, 2017, 8160148. [Google Scholar] [CrossRef] [PubMed]
  214. Ammit, A.J.; Hastie, A.T.; Edsall, L.C.; Hoffman, R.K.; Amrani, Y.; Krymskaya, V.P.; Kane, S.A.; Peters, S.P.; Penn, R.B.; Spiegel, S.; et al. Sphingosine 1-phosphate modulates human airway smooth muscle cell functions that promote inflammation and airway remodeling in asthma. FASEB J. 2001, 15, 1212–1214. [Google Scholar] [CrossRef] [PubMed]
  215. Kim, S.H.; Jung, H.W.; Kim, M.; Moon, J.Y.; Ban, G.Y.; Kim, S.J.; Yoo, H.J.; Park, H.S. Ceramide/sphingosine-1-phosphate imbalance is associated with distinct inflammatory phenotypes of uncontrolled asthma. Allergy 2020, 75, 1991–2004. [Google Scholar] [CrossRef] [PubMed]
  216. Bahlas, S.; Damiati, L.A.; Al-Hazmi, A.S.; Pushparaj, P.N. Decoding the Role of Sphingosine-1-Phosphate in Asthma and Other Respiratory System Diseases Using Next Generation Knowledge Discovery Platforms Coupled With Luminex Multiple Analyte Profiling Technology. Front. Cell Dev. Biol. 2020, 8, 444. [Google Scholar] [CrossRef]
  217. Trinh, H.K.; Kim, S.C.; Cho, K.; Kim, S.J.; Ban, G.Y.; Yoo, H.J.; Cho, J.Y.; Park, H.S.; Kim, S.H. Exploration of the Sphingolipid Metabolite, Sphingosine-1-phosphate and Sphingosine, as Novel Biomarkers for Aspirin-exacerbated Respiratory Disease. Sci. Rep. 2016, 6, 36599. [Google Scholar] [CrossRef]
  218. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2021. Available online: www.ginasthma.org (accessed on 15 May 2021).
  219. Pite, H.; Morais-Almeida, M.; Rocha, S.M. Metabolomics in asthma: Where do we stand? Curr. Opin. Pulm. Med. 2018, 24, 94–103. [Google Scholar] [CrossRef]
  220. Panda, L.; Gheware, A.; Rehman, R.; Yadav, M.K.; Jayaraj, B.S.; Madhunapantula, S.V.; Mahesh, P.A.; Ghosh, B.; Agrawal, A.; Mabalirajan, U. Linoleic acid metabolite leads to steroid resistant asthma features partially through NF-kappaB. Sci. Rep. 2017, 7, 9565. [Google Scholar] [CrossRef] [Green Version]
  221. Mabalirajan, U.; Rehman, R.; Ahmad, T.; Kumar, S.; Singh, S.; Leishangthem, G.D.; Aich, J.; Kumar, M.; Khanna, K.; Singh, V.P.; et al. Linoleic acid metabolite drives severe asthma by causing airway epithelial injury. Sci. Rep. 2013, 3, 1349. [Google Scholar] [CrossRef] [Green Version]
  222. Lessard, A.; Turcotte, H.; Cormier, Y.; Boulet, L.P. Obesity and asthma: A specific phenotype? Chest 2008, 134, 317–323. [Google Scholar] [CrossRef]
  223. Peters, U.; Dixon, A.E.; Forno, E. Obesity and asthma. J. Allergy Clin. Immunol. 2018, 141, 1169–1179. [Google Scholar] [CrossRef] [Green Version]
  224. Leiria, L.O.; Martins, M.A.; Saad, M.J. Obesity and asthma: Beyond T(H)2 inflammation. Metabolism 2015, 64, 172–181. [Google Scholar] [CrossRef]
  225. Periyalil, H.A.; Gibson, P.G.; Wood, L.G. Immunometabolism in obese asthmatics: Are we there yet? Nutrients 2013, 5, 3506–3530. [Google Scholar] [CrossRef]
  226. Rastogi, D.; Fraser, S.; Oh, J.; Huber, A.M.; Schulman, Y.; Bhagtani, R.H.; Khan, Z.S.; Tesfa, L.; Hall, C.B.; Macian, F. Inflammation, metabolic dysregulation, and pulmonary function among obese urban adolescents with asthma. Am. J. Respir. Crit. Care Med. 2015, 191, 149–160. [Google Scholar] [CrossRef] [Green Version]
  227. Xie, B.; Waters, M.J.; Schirra, H.J. Investigating potential mechanisms of obesity by metabolomics. J. BioMed Biotechnol. 2012, 2012, 805683. [Google Scholar] [CrossRef] [Green Version]
  228. Choi, S.; Snider, A.J. Sphingolipids in High Fat Diet and Obesity-Related Diseases. Mediat. Inflamm 2015, 2015, 520618. [Google Scholar] [CrossRef] [Green Version]
  229. Sturgill, J.L.; Khosravi, M.; Allegood, J.; 2, S.S. Ceramide as a Key Player in Obesity Exacerbated Asthma. Am. J. Respir. Crit. Care Med. 2019, 199. [Google Scholar] [CrossRef]
  230. Choi, Y.; Kim, M.; Kim, S.J.; Yoo, H.J.; Kim, S.H.; Park, H.S. Metabolic shift favoring C18:0 ceramide accumulation in obese asthma. Allergy 2020, 75, 2858–2866. [Google Scholar] [CrossRef]
  231. Gowda, G.A.; Zhang, S.; Gu, H.; Asiago, V.; Shanaiah, N.; Raftery, D. Metabolomics-based methods for early disease diagnostics. Expert Rev. Mol. Diagn. 2008, 8, 617–633. [Google Scholar] [CrossRef] [Green Version]
  232. Checkley, W.; Deza, M.P.; Klawitter, J.; Romero, K.M.; Klawitter, J.; Pollard, S.L.; Wise, R.A.; Christians, U.; Hansel, N.N. Identifying biomarkers for asthma diagnosis using targeted metabolomics approaches. Respir. Med. 2016, 121, 59–66. [Google Scholar] [CrossRef] [Green Version]
Table 1. Summary of genomic analysis in adult asthmatics.
Table 1. Summary of genomic analysis in adult asthmatics.
Linkage Studies with Positional Cloning
ADAM3320p13[25]
DPP102q14[26]
PHF1113q14[27]
GPRA7p14[28]
HLA-G6p21[29]
CYFIP25q33[30]
IRAK312q14[31]
OPN31q[32]
Candidate gene association studies
AsthmaIL101q31[37]
IL1RN2q14[38]
IL1B2q14[39]
HNMT2q22[40]
CTLA42q33[41]
CCR33p21[42]
CCR53p21[43,44]
TLR93p21.3[45]
MUC74q13-21[46]
PGDS4q21-22[47]
CSF25q31[37]
IL45q31[48,49]
IL135q31[50,51,52]
UGRP15q31-34[53]
ADRB25q32-34[54,55]
LTC4S5q35[56,57]
HLA-DRB16p21[58,59,60,61]
HLA-DPB16p21[62]
TNF6p21[58,63,64,65,66]
LTA6p21[58,65]
TAP16p21[67,68]
PAFAH6p21[69,70,71]
EDN16p21[72]
EOTAXIN27q11[73]
CFTR7q31[74,75,76,77]
NOS37q36[37,78]
C59q34[37]
SDF110q11[37]
CC16/CC1011q12-13[79,80,81]
FCER1B11q12-13[82,83,84,85,86,87,88]
GSTP111q13[89]
AICDA12p13[90]
STAT612q13[91]
NOS112q24[92,93]
ACT14q32[94]
IL4RA16p12[95,96,97,98,99]
RANTES17q11-12[100,101]
ACE17q23[102,103]
TBXA2R19p13[104]
Asthma severityCTLA42q33[105]
IL45q31[106]
ADRB25q32-34[107]
PAFAH6p21[69]
IL4RA16p12[97]
TGFB119q13[108]
Eosinophil countsIL101q31[72]
STAT612q13[109]
NOS112q24[72]
EOTAXIN117q21[110]
Total IgE in general populationCTLA42q33[41]
IL45q31[111]
CD145q31[112,113]
HLA-DRB16p21[114,115,116]
PAFAH6p21[70]
IFNGR16q23[117]
FCER1B11q13[84]
AICDA12p13[90]
IFNG12q21[118]
NOS112q24[72]
IL4RA16p12[95,99,119,120]
TGFB119q13[121]
IFNGR221q22[117]
IL13RA1Xq13[51]
Total IgE in asthmaticsIL101q31[121,122]
CTLA42q33[123]
IL45q31[124]
NOS37q36[125]
FCER1B11q13[87]
EOTAXIN117q21[73]
Specific IgEIL45q31[126]
HLA-DPB16p21[127,128]
PAFAH6p21[70]
NOS37q36[125]
FCER1B11q13[129]
AHR/BHRIL101q31[37]
CTLA42q33[41,105]
CSF25q31[37]
IL135q31[50]
ADRB25q32-34[130,131]
LTC4S5q35[37]
TNF6p21[37,132,133]
LTA6p21[132]
NOS37q36[37]
FCER1B11q13[129]
ACT14q32[94]
IL4RA16p12[95]
NOS2A17cen-q11[37]
FEV1/FVCIL45q31[134]
ADRB25q32-34[135]
LTC4S5q35[136]
IL4RA16p12[106]
EOTAXIN117q21[110]
Genome-wide association studies
CRCT11q21[137]
IL6R1q21[137,138]
PYHIN11q23[35,137]
DENND1B/CRB11q31[137]
IL18R1/IL1RL1/IL1RL22q12[34,35,137,138,139]
DPP102q12.3-q14.2[140]
D2HGDH2q37[137]
USP38/GAB14q31[137,141]
PDE4D5q12[142]
TSLP/SLC22A55q22[34,137,139,141,143]
RAD50/NDFIP15q31[137,144]
ADRA1B5q33[140]
IL135q[34,144]
HLA-DP/DQ/DR6p21[34,137,143,144,145,146]
BTNL26p21[137]
CDHR38q24[137]
TEK9p21[143]
IL-339p24[34,138]
PTGES9q34[143]
GATA310p14[141]
JMJDIC/REEP310q21[143]
CDK2/IKZF412q13[137]
RORA15q22[34,35,137]
SMAD315q22[34,137]
ORMDL3/GSMDB/IKZF3 17q21[34,35,137,138,139]
PRNP20pter-p12[140]
IL2RB22q12.3[34,35,137,138]
ADAM33, a disintegrin and metalloproteinase 33; DPP10, dipeptidyl peptidase 10; PHF11, PHD finger protein 11; GPRA, G-protein-coupled receptor for asthma susceptibility; HLA-G, human leukocyte antigen-G; CYFIP2, cytoplasmic FMR1-interacting protein 2; IRAK3, IL-1 receptor-associated kinase 3; OPN3, opsin 3; AHR, airway hyperresponsiveness; BHR, bronchial hyperresponsiveness; FEV1, forced expiratory volume; FVC, forced vital capacity; IL, interleukin; HNMT, histamine N-methyltransferase; CTLA4, cytotoxic T lymphocyte antigen 4; CCR, CC chemokine receptor; TLR, toll-like receptor; MUC, mucin; PGDS, prostaglandin D synthase; CSF2, colony stimulating factor 2; UGRP1, uterus globulin associated protein 1; ADRB2, adrenoceptor beta 2; LTC4S, leukotriene C4 synthase; TNF, tumor necrosis factor; LTA, lymphotoxin alpha; TAP1, antigen peptide transporter 1; PAFAH, platelet activating factor acetylhydrolase; EDN1, endothelin 1; CFTR, cystic fibrosis transmembrane conductance regulator; NOS, nitric oxide synthase; SDF1, stromal cell-derived factor 1; CC, clara cell secretory protein; FCER1B, high affinity immunoglobulin epsilon receptor subunit beta; GSTP1, glutathione S-transferase Pi 1; AICDA, activation induced cytidine deaminase; STAT6, signal transducer and activator of transcription 6; ACT, alpha-1-antichymotrypsin; IL4RA, interleukin 4 receptor alpha; RANTES, regulated on activation, normal T cell expressed and secreted; ACE, angiotensin converting enzyme; TBXA2R, thromboxane A2 receptor; TGFB1, transforming growth factor beta 1; IFNGR, interferon gamma receptor 1; IFNG, interferon gamma; IL13RA1, interleukin 13 receptor alpha 1; CRCT1; cysteine-rich C-terminal 1; IL6R, interleukin 6 receptor; PYHIN1, pyrin, and HIN domain family member 1; D2NND1B, DENN domain containing 1B; CRB1, crumbs cell polarity complex component 1; IL18R1, interleukin 18 receptor 1; IL1RL, interleukin 1 receptor like; D2HGDH, D-2-hydroxyglutarate dehydrogenase; USP38, ubiquitin specific peptidase 38; GAB1, growth factor receptor bound protein 2-associated binding protein 1; PDE4D, phosphodiesterase 4D; TSLP, thymic stromal lymphopoietin; SLC22A5, solute carrier family 22 member 5; RAD50, RAD50 double strand break repair protein; NDFIP1, Nedd4 family interacting protein 1; ADRA1B, adrenoceptor alpha 1B; HLA, major histocompatibility complex; BTNL2, butyrophilin like 2; CDHR3, cadherin related family member 3; TEK, TEK receptor tyrosine kinase; PTGES, prostaglandin E synthase; GATA3, GATA binding protein 3; JMJD1C, jumonji domain containing 1C; REEP3, receptor accessory protein 3; CDK2, cyclin dependent kinase 2; IKZF, IKAROS family zinc finger; RORA, RAR related orphan receptor A; SMAD3, mothers against decapentaplegic homolog 3; ORMDL3, ORMDL sphingolipid biosynthesis regulator 3; GSMDB, gasdermin B; PRNP, prion protein; IL2RB, interleukin 2 receptor subunit beta.
Table 2. Summary of transcriptomic analyses in adult asthmatics.
Table 2. Summary of transcriptomic analyses in adult asthmatics.
PopulationMethodsPurposeFindingsRef.
Blood
Exacerbation sample in adult asthmatics (n = 118)Microarray and
qPCR with pathway analysis
To identify the exacerbation-associated gene expression patterns in PBMCTLR activation pathway with elevations in type 1 interferon and IL-15 genes is associated with asthma exacerbation.[149]
Nonsmoking SA/smoking SA/nonsmoking mild to moderate asthma/nonsmoking controls (n = 246/88/77/87)Microarray with WGCNATo find the transcriptional differences between subgroups of asthmatics and non-asthmatics in whole bloodDifferentially expressed genes in immune cells of severe asthmatics.
Gene sets related to chemotaxis, mobilization, migration, and infiltration of myeloid cells contribute to asthma severity.
[150]
Airway epithelial cell
nonsmoking asthma/nonsmoking HCs/smoking controls
(n = 42/28/16)
Microarray and qPCRTo explore the distinct gene expression related to airway dysfunction and corticosteroid treatment in epithelial cells of asthmatics Identification of 22 differentially expressed genes in asthmatics.
IL-13-derived asthma-associated genes (CLCA1, periostin, and serpinB2) are decreased by corticosteroid treatment with an improvement in lung function.
[151]
Asthmatics/HCs
(n = 42/28)
Microarray and qPCRTo define the molecular phenotypes based on type 2 cytokines-induced gene expression in epithelial brushings of asthmaticsPhenotyping of asthma as Th2-high and Th2-low based on CLCA1, periostin, and sepinB2 gene expression.
Th2-high asthma has worse clinical outcomes (lower lung function, higher serum IgE, and blood/airway eosinophilia) and inflammatory features (subepithelial fibrosis and increase of mucin stores).
[152]
Nonsmoking SA/smoking SA/mild-to-moderate asthma/HCs
(n = 46/16/34/41)
MicroarrayTo investigate the pathogenesis of severe asthma and the influences of blood, sputum, and submucosal eosinophils or neutrophils on the gene expression in bronchial brushing7 genes (COX-2, ADAM-7, SLCO1A2, TMEFF2, TRPM-1, and 2 unnamed genes) are positively correlated with blood and submucosal eosinophilia with thick lamina reticularis and elevated FENO.[153]
SA/moderate asthma with ICS/mild asthma with ICS/mild-to-moderate asthma with no ICS/HCs
(n = 51/19/22/37/26)
Microarray with WGCNA, LIMMA, and pathway analysisTo identify specific genetic networks to be associated with asthma severityAsthma severity has a positive correlation with a network related to mitosis/cell division and T2 inflammation, but a negative correlation with a network related to epithelial growth/repair, cell integrity/remodeling, and neuronal function/development.[154]
Sputum
Asthmatics/HCs
(n = 59/13)
Microarray and qPCR with GO and pathway analysisTo establish 3 distinct transcriptional asthma phenotypes (TAPs) considering clinical status and gene expression in the sputum of asthmaticsClassification of asthma phenotypes as eosinophilic, neutrophilic, or paucigranulocytic asthma based on the predominance of immune cells in sputum.
IL-1 and TNF-α/NF-κB pathways are involved in the pathogenesis of neutrophilic asthma.
[155]
Asthmatics/HCs
(n = 37/15)
qPCRTo determine genetic profiling related to Th2 cytokines in the sputum cells of asthmatics for the categorization of asthma phenotypesStandardization of IL-4, IL-5, and IL-13 gene expression for classification as Th2-high and Th2-low subtypes (Th2 gene mean).
Th2-high asthma has poor clinical outcomes (low lung function and blood eosinophilia) with elevation in mast cell/eosinophil-related genes.
[156]
Asthmatics/HCs
(n = 106/20)
Microarray and qPCRTo validate genetic biomarkers for inflammatory phenotypes of asthma and prediction of ICS treatment responseIdentification of 23 differentially expressed genes across eosinophilic, neutrophilic, and paucigranulocytic phenotypes.
The 3 genes for eosinophilic asthma (CLC, CPA3, and DNASE1L3) and 3 for neutrophilic asthma (IL1B, ALPL, and CXCR2) are validated with distinct alterations after ICS treatments.
[157]
Asthmatics/HCs
(n = 84/27)
RNA seq with WGCNA and pathway analysisTo identify genetic networks in sputum immune cells of asthmatics for clustering them into T2-high and T2-low subgroupsHigh T2-network gene expression in the T2-high asthma comes from the interaction of various immune cells (eosinophils, mast cells, basophils, and dendritic cells), leading to severe airway dysfunction.
CD8+T cell network gene expression is lower in T2-low asthma and negatively correlated with body mass index.
[158]
Elderly asthmatics/HCs
(n = 55/10)
Microarray with GSEA and cluster analysisTo find distinct biological mechanisms with genetic profiling in sputum cells for clustering of elderly asthmaticsIdentification of 2 molecular clusters in elderly asthmatics with increased OXPHOS and EMT gene sets, respectively.
The OXPHOS/UPR system related to oxidative stress leads to inflammatory response and immune function dysregulation in the airways of elderly asthmatics.
The EMT gene sets contribute to airway remodeling with lower lung function in elderly asthmatics.
[159]
Nasal brushings
Mild-to-moderate asthmatics/HCs
(n = 66/124)
Microarray and RNA seq with pathway and classification analysisTo validate nasal brush-based classifier genes for the diagnosis of asthmaIdentification of 90 genes as a nasal classifier for mild-to-moderate asthma[160]
BALF
SA/moderate asthma with ICS/mild asthma with ICS/mild-to-moderate asthma with no ICS/HCs
(n = 44/15/18/40/37)
LIMMA, WGCNA, GO and pathway analysisTo determine severity-related genes and influence of β-agonist use on gene expression in BAL immune cellsHigher BAL neutrophils with increased gene expression related to TNF-α and type 1 interferon pathway in SA.
Several severity-related genes are within or close to asthma susceptibility loci (5q, 17q, 1p).
A specific gene network related to cAMP signaling is associated with asthma severity and β-agonist exposure.
[161]
Mixed
Adult/childhood-onset SA
(n = 253/158)
Microarray with GSVATo identify gene signatures in adult-onset compared to childhood-onset SA using diverse samples (nasal brushings, bronchial brushings, and sputum)Identification of 5 differentially expressed gene signatures in nasal brushings, 6 in bronchial brushings, and 3 in sputum.
Specific genes related to immune cells (eosinophils, mast cell, ILC3) and type 2 inflammation are up-regulated in adult-onset SA.
[162]
HCs, healthy controls; SA, severe asthma; ICS, inhaled corticosteroid; qPCR; quantitative PCR; WGCNA, weighted gene co-expression network analysis; LIMMA, linear models for microarray data; GO, gene ontology; GSCA, gene set co-expression analysis; PBMC, peripheral blood mononuclear cell; BALF, bronchoalveolar lavage fluid; TLR, toll-like receptor; CLCA1, chloride accessory 1; COX-2, cyclooxygenease-2; ADAM-7, a disintegrin and metalloproteinase domain-containing protein 7; SLCO1A2, solute carrier organic anion transporter family member 1A2; TMEFF2, transmembrane protein with epidermal growth factor like and two follistatin like domains 2; TRPM-1, transient receptor potential cation channel subfamily M member 1; CLC. Charcot-leydon crystal protein; CPA3, carboxypeptidase A3; DNASE1L3, deoxyribonuclease 1-like 3; ALPL, alkaline phosphatase, tissue-nonspecific isozyme; CXCR2, chemokine (C-X-C motif) receptor 2; OXPHOS, oxidative phosphorylation; UPR, unfolded protein response; EMT, epithelial-mesenchymal transition; cAMP, cyclic adenosine 3′,5′-monophosphate; ILC3, innate lymphoid cell 3.
Table 3. Summary of proteomic analyses in adult asthmatics.
Table 3. Summary of proteomic analyses in adult asthmatics.
PopulationMethodsPurposeFindingsRef.
Serum
AIA/ATA/HCs
(n = 30/24/21)
2D-PAGE, MALDI-TOF MS, and ELISATo investigate differentially expressed proteins in AIAIdentification of distinct protein expression in AIA as complement components, modified albumin, apolipoprotein, PRO2619, hypothetical protein, and SPOCD1 protein.
C3a and C4a levels are higher in AIA and correlated with FEV1, suggesting the pathogenic role of complements in AIA.
[165]
Sputum
Asthmatics with EIB/those without EIB/HCs
(n = 5/5/5)
LC-MS/MS with GO and network analysisTo determine the contribution of specific proteins to asthma and susceptibility for EIB10 up-regulated (SERPINA1) and 7 down-regulated proteins (S100A9, S100A8, SMR3B, and SCGB1A1) in asthmatics are related to defense response, inflammation, and protease inhibitory activity.
9 proteins including C3 and HPX are susceptible to EIB in asthmatics.
[166]
UA/PC/CA/COPD/HCs
(n = 20/35/21/21/8)
2D-PAGE, MALDI-TOF MS, and ELISATo identify biomarkers for severe UA with neutrophilic inflammation6 increased and 7 decreased proteins in severe uncontrolled asthma with neutrophilic inflammation are related to inflammatory/immunity/enzyme activity, cysteine protease inhibitor, signaling, and cytoskeleton functions.
S100A9 is suggested as a UA biomarker contributing to neutrophilic airway inflammation and steroid resistance.
[167]
BALF
Asthmatics/HCs
(n = 4/3)
SDS-PAGE, nano-HPLC-MS/MS, and ELISA with GO analysisTo verify protein expression changes before and after segmental allergen challenge in asthmaticsAlterations in protein expression related to diverse biological functions after segmental allergen challenge in asthmatics.
Several signature proteins released from immune cells (CLC, MBP, EDN, ECP, CRISP-3, and MMP-9) are elevated after challenge.
Differentially expressed proteins are involved in various molecular functions (hydrolase activity, protein binding, and calcium ion binding) and biological process (immune response, lipid metabolism, transport, and signal transduction).
[168]
Atopic asthmatics/HCs
(n = 6/6)
2D-PAGE, MALDI-TOF MS, and ELISA with functional analysisTo demonstrate the influences of IL-4 stimulation on gelsolin secretion in BALF of asthmaticsHigher concentrations of IL-4 and gelsolin in BALF of asthmatics.
IL-4 treatment induces gelsolin expression in airway epithelial cells of asthmatics for mucus viscosity control and innate antimicrobial activity.
[169]
Asthmatics/HCs
(n = 11/19)
2D-PAGE, SDS-PAGE, and MS/MSTo investigate the oxidative mechanisms in asthmatic airways and allergen-induced mouse models Lower activity of catalase function in asthmatics contributes to increased oxidative stress, driving chronic and severe airway inflammation. [170]
Mild asthmatics/HCs
(n = 4/4)
Affinity chromatography and ESI LC-MS/MS with functional analysisTo identify the function of galectins in asthmatic airwaysDifferential airway localization of galectin-3 in epithelium, endothelium, smooth muscle cells, and fibroblasts, as well as galectin-8 in plasma cells.
Distinct profiles of galectin-bound proteins in asthmatics suggest its linkage with eosinophilic inflammation and airway remodeling.
[171]
Bronchial biopsy
Asthmatics/HCs
(n = 12/3)
iTRAQ LC-MS/MS with functional and pathway analysisTo determine distinct proteins and related biological pathways related to asthmatics and their alterations by ICS treatment. Identification of 7 significantly different proteins between asthmatics and HCs related to multiple biological functions (hematological system development/function, lipid metabolism, molecular transport, signaling, and tissue development).
ICS treatment alters protein expression related to immune cell trafficking, tissue development, and hematological systems development/function.
[172]
AIA, aspirin-induced asthma; ATA, aspirin-tolerant asthma; HCs, healthy controls; EIB, exercise-induced bronchoconstriction; UA, uncontrolled asthma; PC, partially controlled asthma; CA, controlled asthma; COPD, chronic obstructive pulmonary diseases; 2D-PAGE, two-dimensional gel electrophoresis; MALDI, matrix-assisted laser desorption and ionization; TOF, time-of-flight; MS, mass spectrometry; LC, liquid chromatography; HPLC, high-performance liquid chromatography; ESI, electrospray ionization; iTRAQ, isobaric tag for relative and absolute quantitation; SPOCD1, spen paralogue and orthologue C-terminal domain containing 1; SERPINA1, serpin peptidase inhibitor; S100A9, S100 calcium binding protein A9; S100A8, S100 calcium-binding protein A8; SMR3B, submaxillary gland androgen-regulated protein 3B; SCGB1A1, secretoglobin; HPX, hemopexin; CLC, charcot-leyden crystal protein; MBP, major basic protein; EDN, eosinophil-derived neurotoxin; ECP, eosinophil cationic protein; CRISP-3, cysteine-rich secretory proteins; MMP-9, matrix metalloproteinase-9.
Table 4. Summary of metabolomic analyses in adult asthmatics.
Table 4. Summary of metabolomic analyses in adult asthmatics.
PopulationMethodsPurposeFindingsRef.
Blood
Asthmatics/HCs
(n = 147/2778)
ESI-MS/MSTo investigate lipid metabolic biomarkers associated with asthma candidate genes by genomic and metabolomic analysis in the sera of asthmatics151 different metabolites between asthmatics and HCs.
2 significant metabolites (PC.ae.C42:1 and PC.ae.C42:5) are associated with current asthma.
6 SNPs exert effects on the production of asthma-associated metabolites: 2 SNPs at 17q21 (PSMD3, MED24) on PC.ae.C42:4, PC.ae.C42:5, PC.ae.C44:5, PC.ae.C44:6, and 1 SNP at TSLP gene on PC.aa.C34:4, SM.C20:2 and IL1RL1 gene on SM.C20:2.
[176]
Asthmatics/HCs
(n = 39/26)
1H-NMRTo demonstrate distinct metabolic profiling in the sera of asthmatics and identify the potential biomarkers for asthma10 significant metabolites in asthmatics: increase of methionine and glutamine and decrease of formate, choline, histidine, acetate, glucose, phosphocholine, arginine, and methanol.
FEV1 has a positive correlation with choline and arginine, but a negative correlation with acetone.
[177]
Asthmatics/HCs
(n = 17/17)
GC-TOF-MSTo explore metabolic changes and related mechanisms in the sera of mild asthmatics for novel prognostic markers14 significant metabolites in asthmatics and 8 potential clinical indicators for asthma: succinic acid, 3,4-dihydroxybenzoic acid, inosine, 5-aminovaleric acid, phenylalanine, ascorbate, dehydroascorbic acid, and 2-ketovateric acid.
Specific metabolic pathways (TCA cycle, hypoxia metabolism, and urea cycle) are associated with asthma.
[178]
Mild/moderate/severe asthmatics/HCs
(n = 12/20/22/22)
LC-HRMS, MS/MSTo determine distinct serum metabolic profiles related to asthma severity and steroid treatment15 significant metabolites across mild/moderate/severe asthma and HCs.
6 significant metabolites are correlated with ICS doses: DHEA-S, cortisone, ProHyp, pipecolate, N-palmitoyltaurine, and cortisol.
2 primary metabolic clusters are correlated with asthma severity: decrease of DHEA-S and increase of OEA, S1P, N-palmitoltaurine, 22-hydroxycholesterol, and xanthine.
Targeted analysis for lipid metabolites reveals increases in specific ceramides, sphingomyelins, eicosanoids, and fatty acids and their correlation with asthma severity and ICS doses.
[179]
EA/NEA/HCs
(n = 13/16/15)
UPLC-MS/MSTo identify differential metabolic patterns and pathways in specific clinical inflammatory phenotypes 18 potential metabolites for diagnostic biomarkers for EA and NEA.
3 significant metabolic pathways related to glycerophospholipid, retinol, and sphingolipid for asthma pathogenesis.
[180]
Allergic asthma/HCs
(n = 32/50)
GC-NICI-MSTo investigate the role of prostaglandin D2 and its metabolites in the early asthmatic response to allergensTargeted analysis in plasma shows early increase in 9α,11β-Prostaglandin F2 after allergen challenge induced by mast cell activation.[181]
NSA/SA/HCs
(n = 10/10/10)
UHLPC-MS/MS, GC/MSTo determine the involvement of biochemical metabolism in asthma and its severity25 significant metabolites for asthmatics mostly related with lipid metabolism, 16 for severe asthma with steroid/amino acid metabolism, and 13 for high FENO with amino acid/lipid/bile acid metabolism.
Increased taurine, nicotinamide, AMP, and arachidonate in asthmatics.
Decreased 1-steraroyylglycerol, degydroisoandrosterone sulfate, and androsterone sulfate in severe asthma.
Contribution of valine, isoleucine, and ornithine to high FENO in asthmatics.
[182]
Asthmatics/HCs
(n = 35/32)
UHPLC-MS/MSTo identify the role of lipid metabolism for asthma and IgE levels by lipidomic analysis in plasma10 lipid species for asthma diagnosis: PE(38:1), PE(18:1p/22:6), PE(20:0/18:1), SM(d18:1/18:1), TG(17:0/18:1/18:1), TG(16:0/16:0/18:1), PI(16:0/20:4), PG(44:9), Cer(d16:0/27:2), and LPC(22:4).
Correlation of PE(20:0/18:1) and TG(16:0/16:0/18:1) IgE levels in asthmatics.
[183]
Urine
Asthmatics
(n = 10)
GC×GC-TOF-MS
H-NMR
To identify the urinary metabolic changes related to asthma exacerbationContribution of lipid peroxidation to asthma exacerbation with an increase of alkanes and aldehydes in urine.
Threonine, alanine, carnitine acetylcarnitine, and trimethylamine-N-oxide are increased; acetate, citrate, malonate, Hippurate, dimethylglycine, and phenylacetylglutamine are decreased in exacerbated condition.
[185]
Asthmatics
(n = 57)
GC×GC-TOF-MSTo demonstrate the influences of metabolites related to lipid peroxidation on asthma and its clinical parametersIncrease of urine metabolites related to lipid peroxidation in asthma related to clinical characteristics (asthma severity scores, FEV1, FENO, blood eosinophils, and serum IgE).[186]
Smoking SA/nonsmoking SA/nonsmoking mild-to-moderate asthma/HCs
(n = 109/302/86/100)
MSTo investigate urinary eicosanoid metabolism in asthma for its phenotyping and association with asthma therapeutic agentsHigher concentration of urinary metabolites related to PGD2, PGF2α, PGE2, TXA2, isoprostanes, and CysLTs pathway in SA.
Lower concentration of 2,3-dinor-TXB2 and 8,12-iso-iPF-VI in the OCS-treated group and 2,3-dinor-11β-PGF, LTE4, and 11-dehydro-TXB2 in the omalizumab-treated group.
Correlation of urinary LTE4 with T2 inflammation markers in asthma (low lung function, blood/sputum eosinophils, and serum IgE/periostin/IL-13).
[187]
Exhaled breath condensate (EBC)
Asthmatics/HCs
(n = 82/35)
1H-NMRTo determine EBC metabolomic profiles for phenotype comparisons and ICS use5 distinct spectral regions for asthmatics (0.16-0.18, 0.78-0.84, 0.88-0.94, 7.36-7.42, and 7.44-7.52 ppm)
2 significant spectra regions for sputum eosinophilia, 7 for sputum neutrophilia, 1 for asthma control, and 8 for steroid use.
[189]
SA/mild-to-moderate asthma
(n = 15/21)
UHPLC-ESI-MS
1H-NMR
To validate discriminating metabolites of SA from mild-to-moderate asthma Contribution of amino acid (lysine) and lipid metabolism (eicosanoids, phospholipids, and unsaturated fatty acids) to asthma severity.[190]
Mild asthma/HCs
(n = 55/55)
NMRTo identify differential NMR profiles of asthma in different operating temperature (−27.3 and −4.8 °C) for standardization of EBC collection.Separation of asthmatics at −27.3 °C from HCs at −4.8 °C by uracil, urocanic acid, succinate, SFA, Phe, hippurate, trimethylamine, Val, and Tyr; from HCs at −27.3 °C by propionate, 4OH-phenylacetate, Val, acetate, SFA, Pro, Tyr, Arg, trans-aconitate, and Phe.
Separation of asthmatics at −4.8 °C from HCs at −27.3 °C by Phe, succinate, Val, propionate, SFA, methanol, uracil, Pro, formate, isobutyrate, and urocanic acid; from HCs at −4.8 °C by SFA, Val, adenosine, Hippurate, Ala, formate, urocanic acid, Pro, acetate, ethanol, methanol, and Ile.
[191]
Asthmatics/HCs
(n = 89/20)
NMRTo determine distinct metabolic patterns of asthma and its endotypesNMR spectra region at 7 ppm for distinguishing asthmatics from HCs by up-regulation of isopropanol and N,N, dimethylglycine and by down-regulation of ammonia.
Classifying asthmatics as 3 clusters characterized (1) by low exacerbation ratio, (2) by high exhaled nitric oxide, and (3) by low blood eosinophils but high blood neutrophils.
Contribution of high acetate, acetone, formic acid, methanol, and N,N, dimethylglycine concentrations as well as low concentrations of ammonia and hydroxybutyrate to asthma severity.
[192]
OA/LA/HCs
(n = 25/30/30/25)
1H-NMRTo investigate metabolic profiles and pathways for class-specific metabolic typesConfirmation of carbohydrate signals (3.9-3.2 ppm) in OA.
23 and 17 metabolic pathways for OA distinct from HCs and LA, respectively, mostly related to energy metabolism (methane) and carbohydrate metabolism (glyoxylate/dicarboxylate and pyruvate).
Differential metabolic profiling in OA: increases in glucose, butyrate, and acetoin and decreases in formate, tyrosine, ethanol, ethylene glycol, methanol, n-valerate, acetate, SFA, and propionate compared to HCs; increases in glucose, n-valerate, acetoin, isovalerate, and 1,2-propanediol and decreases in formate, ethnol, methanol, acetone, propionate, acetate, lactate, and SFA compared to LA.
[193]
Mixed
OA/LA
(n = 11/22)
GC-TOF-MSTo identify obesity-associated metabolites for obese asthma in sputum and blood11 metabolic signatures in sputum for OA related to xanthine, gluconic lactone, shikimic acid, indole-3-acetate, L-glutamic acid, 4-aminobutyric acid, benzoate, and phytosphingosine pathways.
Metabolic signatures in serum of OA: increase of valine, uric acid, N-Methy-DL-alanine, and β-glycerophosphoric acid as well as decrease of asparagine 1, and d-glyceric acid.
3 metabolic signatures in PBMCs of OA: increases in 3-ydroxynorvaline 2 and decreases in 3-hydroxybutyric acid, linolenic acid, and isoleucine.
[184]
HCs, healthy controls; EA, eosinophilic asthma; NEA, non-eosinophilic asthma; OA, obese asthma; LA, lean asthma; MMA, mild-to-moderate asthma; MS, mass spectrometry; H-NMR, proton nuclear magnetic resonance; TOF, time-of-flight; HRMS, high resolution mass spectrometry; UPLC, ultra performance liquid chromatography; UHLPC, ultra high performance liquid chromatography; NICI, negative ion chemical ionization; SNP, single nucleotide polymorphism; PC.ae, acyl-alkyl-phosphatidylcholine; PC.aa, diacyl-phosphatidylcholine; SM, sphingomyelin; PSMD3, proteasome 26S subunit, non-ATPase 3; MED24, mediator complex subunit 24; TSLP, thymic stromal lymphopoietin; IL1RL1, interleukin-1 receptor-like 1; TCA, tricarboxylic acid; ICS, inhaled corticosteroid; DHEA-S, dehydroepiandrosterone sulfate; ProHyp, prolylhydroxyproline; S1P, sphinosine-1-phosphate; AMP, adenosine 5′-monohosphate; PE, phosphatidylethanolamine; SM, sphingomyelin; TG, triglyceride; PI, phosphatidylinositol; PG, phosphatidylglycerol; Cer, ceramide; LPC, lysophosphatidylcholine; PGD2, prostaglandin D2; PGF, prostaglandin F; PGE2, prostaglandin E2; CysLT; cysteinyl leukotriene; LTE4, leukotriene E4; TXA2, thromboxane A2; TXB2; thromboxane B2; SFA, saturated fatty acids; PBMC, peripheral blood mononuclear cells.
Table 5. Metabolic signatures for asthma and its phenotypes.
Table 5. Metabolic signatures for asthma and its phenotypes.
Significant Metabolic SignaturesPopulation or PhenotypeSampleAUC ValuesRef.
Carbohydrates
GlucoseA/Hserum, ↓ [177]
O > L/ONEBC[193]
MonosaccharideN > E > Hserum [180]
MaltoseA/Hplasma, ↑ [182]
MaltotrioseA/Hplasma, ↑ [182]
D-Glyceric acidO < Lserum [184]
D-Glucoheptose 1O > Lsputum [184]
Amino acid Metabolism
Alanine A/HEBC, ↑ [191]
N-Methyl-DL-alanineO > Lserum[184]
ArginineA/Hserum, ↓ [177]
A/HEBC, ↑[191]
Glutamine A/Hserum, ↑ [177]
L-glutamic acidO > Lsputum [184]
β-glutamic acid 1O > Lsputum [184]
HistidineA/Hserum, ↓ [177]
IsoleucineO < LPBMCs [184]
A/HEBC, ↑ [191]
MethionineA/Hserum, ↑ [177]
PhenylalanineA/HEBC, ↑ [191]
ProlineA/HEBC, ↑ [191]
TyrosineA/HEBC, ↓ [191]
O < L/ONEBC [193]
ValineO > Lserum [184]
A/HEBC, ↓ [191]
TaurineA/Hplasma, ↑ [182]
Gly-proO > Lsputum [184]
5-Aminobaleric acidA/Hserum, ↑0.948[178]
N,N-DimethylglycineA/HEBC, ↑ [192]
3-Hydroxynorvaline 2O < LPBMCs [184]
Lipid metabolism
CholineA/Hserum, ↓ [177]
GlycerolipidsPhosphatidylcholine (20:4/16:1)H > N > Eserum [180]
Phosphatidylcholine (18:1/2:0)N > E > Hserum[180]
Phosphatidylcholine (16:0/18:1)E > N > Hserum[180]
Acyl-alkyl-phosphatidylcholine (C42:4)A/Hserum, ↑ [176]
Acyl-alkyl-phosphatidylcholine (C42:5)A/Hserum, ↑[176]
Acyl-alkyl-phosphatidylcholine (C44:5)A/Hserum, ↑[176]
Acyl-alkyl-phosphatidylcholine (C44:6)A/Hserum, ↑[176]
PhosphatidylethanolamineA/Hplasma, ↑ [182]
Phosphatidylethanolamine (38:1)A/Hplasma, ↑0.746[183]
Phosphatidylethanolamine (18:1p/22:6)A/Hplasma, ↑0.731[183]
Phosphatidylethanolamine (20:0/18:1)A/Hplasma, ↑0.710[183]
Phosphatidylethanolamine (18:3/14:0)E > N > Hserum [180]
Phosphatidylglycerol (44:0)A/Hplasma, ↓0.675[183]
GlycerophosphorylcholineA/Hplasma, ↑ [182]
H > N > Eserum[180]
Β-glycerophosphorateO > Lserum [184]
Lysophosphatidylcholine (18:1)E > N > Hserum [180]
Lysophosphatidylcholine (22:4)A/Hplasma, ↓0.689[183]
PhosphatidylinositolA/Hplasma, ↓0.723[183]
Triglyceride (17:0/18:0/18:0)A/Hplasma, ↑0.714[183]
Triglyceride (16:0/16:0/18:1)A/Hplasma, ↑0.661[183]
O-phosphocholineA/Hserum, ↓ [177]
Fatty acidsSaturated fatty acidA/HEBC, ↓ [191]
O < L/ONEBC[193]
Arachidonic acidN > E > Hserum [180]
Arachidonate (20:4n6)A/Hplasma, ↑[182]
IsobutyrateA/HEBC, ↑ [191]
Linolenic acidO < LPBMCs [184]
N-palmitoyltaurineSAserum, ↓ [179]
OleamideA/Hplasma, ↓ [182]
n-valerateO > LEBC [193]
O < ONEBC[193]
IsovalerateO > LEBC [193]
SphingolipidsSphingosineA/Hplasma, ↑ [182]
Sphingosine-1-phosphateSAserum, ↑ [179]
Sphingomyelin (d18:1/18:1)A/Hplasma, ↑0.731[183]
PhytosphingosineH > N > Eserum [180]
Phytosphingosine 2O > Lsputum[184]
SphinganineH > N > Eserum [180]
Ceramide (d16:0/27:2)A/Hplasma, ↓0.690[183]
EicosanoidsLeukotriene E4SA, T2urine, ↑ [187]
Tetranor prostaglandin D metabolitesSA, T2urine, ↑ [187]
2,3-dinor-11β-PGFSA, T2urine, ↑[187]
8-iso-PGFSAurine, ↑[187]
2,3-dinor-8-iso-PGFSAurine, ↑[187]
Sterol/SteroidsAndrosterone sulfateA/Hplasma, ↓ [182]
Epiandrosterone sulfateA/Hplasma, ↓ [182]
Dehydroepiandrosterone sulfateSAserum, ↓ [179]
GlycodeoxycholateA/Hplasma, ↑ [182]
TaurocholateA/Hplasma, ↑ [182]
LathosterolA/Hplasma, ↑ [182]
RetinolH > N > Eserum [180]
Carboxylic acid
AcetateA/Hserum, ↓ [180]
A/HEBC, ↑/↓[180]
O < L/ONEBC[180]
ButyrateA/HEBC, ↑ [180]
O > ONEBC[180]
FormateA/Hserum, ↓ [180]
A/HEBC, ↓[180]
O < L/ONEBC[180]
PropionateA/H’EBC, ↑ [180]
O < L/ONEBC[180]
TCA cycle
Succinic acidA/Hserum, ↑0.976[191]
A/HEBC, ↑/↓[191]
Nucleoside/Nucleotide
InosineA/Hserum, ↑0.962[178]
AdenosineA/HEBC, ↓ [191]
Other organic compounds
AcetoinO > L/ONEBC [193]
AlcoholEthanolA/HEBC, ↑ [191]
O < L/ONEBC[193]
Ethylene glycolO < ONEBC [193]
IsopropanolA/HEBC, ↑ [192]
MethanolA/Hserum, ↓ [177]
A/HEBC, ↑[177]
A/HEBC, ↑[191]
O < L/ONEBC[191]
1,2-propanediolO > LEBC [193]
AminesTrimethylamineA/HEBC, ↓ [191]
AscorbateA/Hserum, ↑0.917[178]
3-aminopropionitrile 1O > Lsputum [184]
Benzene3,4-Dihydroxybenzoic acidA/Hserum, ↑0.965[178]
HippurateA/HEBC, ↓ [191]
3-Hydroxybutyric acidO > Lsputum [184]
Ketones bodiesAcetoneA/Hserum, ↓ [177]
O < LEBC[193]
2-Ketovaleric acidA/Hserum, ↑0.874[178]
LactateO < LEBC [193]
Urocanic acidA/HEBC, ↓ [191]
Dehydroascorbic acidA/Hserum, ↑0.896[178]
UreaA/Hplasma, ↓ [182]
A/HEBC, ↑[192]
Uric acidO > Lserum, ↑ [184]
XanthineO > Lsputum [184]
Inorganic compounds
AmmoniaA/HEBC, ↓ [192]
Pyrophosphate-3O > Lsputum [184]
A, asthmatics; H, healthy controls; O, obese asthmatics; L, lean asthmatics; ON, obese non-asthmatics; E, eosinophilic asthma; N, non-eosinophilic asthma; SA, severe asthma; T2, type 2 inflammation marker; ↓, lower in asthma; ↑, higher in asthma.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Sim, S.; Choi, Y.; Park, H.-S. Potential Metabolic Biomarkers in Adult Asthmatics. Metabolites 2021, 11, 430. https://doi.org/10.3390/metabo11070430

AMA Style

Sim S, Choi Y, Park H-S. Potential Metabolic Biomarkers in Adult Asthmatics. Metabolites. 2021; 11(7):430. https://doi.org/10.3390/metabo11070430

Chicago/Turabian Style

Sim, Soyoon, Youngwoo Choi, and Hae-Sim Park. 2021. "Potential Metabolic Biomarkers in Adult Asthmatics" Metabolites 11, no. 7: 430. https://doi.org/10.3390/metabo11070430

APA Style

Sim, S., Choi, Y., & Park, H. -S. (2021). Potential Metabolic Biomarkers in Adult Asthmatics. Metabolites, 11(7), 430. https://doi.org/10.3390/metabo11070430

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop