The Metabolomic Response of Crucian Carp (Carassius carassius) to Anoxia and Reoxygenation Differs between Tissues and Hints at Uncharacterized Survival Strategies
Abstract
:1. Introduction
2. Results
2.1. Tissue-Specific Metabolic Profile
2.2. Purine Nucleotides and Energy State
2.3. Glycolysis
2.4. Tricarboxylic Acid Cycle
2.5. Amino Acids
2.6. Purine Nucleotide Catabolism
3. Discussion
3.1. Energy-Carrying Compounds
3.2. Metabolites from Glycolysis and the TCA Cycle
3.2.1. Lactate
3.2.2. Succinate
3.3. Amino Acids
3.4. Purine Metabolism
4. Materials and Methods
4.1. Animal Handling and Ethics
4.2. Anoxia and Reoxygenation Exposure
4.3. Sample Preparation
4.4. Metabolomics
4.5. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Supplementary Data
References
- Dashty, M. A Quick Look at Biochemistry: Carbohydrate Metabolism. Clin. Biochem. 2013, 46, 1339–1352. [Google Scholar] [CrossRef] [PubMed]
- Lutz, P.L. Interaction between Hypometabolism and Acid–Base Balance. Can. J. Zool. 2011, 67, 3018–3023. [Google Scholar] [CrossRef]
- Lutz, P.L.; Nilsson, G.E.; Prentice, H.M. The Brain without Oxygen: Causes of Failure—Physiological and Molecular Mechanisms for Survival; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003; ISBN 978-1-4020-1165-8. [Google Scholar]
- Prag, H.A.; Kula-Alwar, D.; Beach, T.E.; Gruszczyk, A.V.; Burger, N.; Murphy, M.P. Mitochondrial ROS Production During Ischemia-Reperfusion Injury. In Oxidative Stress; Sies, H., Ed.; Academic Press: Cambridge, MA, USA, 2020; Chapter 26; pp. 513–538. ISBN 978-0-12-818606-0. [Google Scholar]
- Toyokuni, S. Reactive Oxygen Species-Induced Molecular Damage and Its Application in Pathology. Pathol. Int. 1999, 49, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Jackson, R.M. Reactive Species Mechanisms of Cellular Hypoxia-Reoxygenation Injury. Am. J. Physiol. Cell Physiol. 2002, 282, C227–C241. [Google Scholar] [CrossRef] [Green Version]
- Bergamini, C.M.; Gambetti, S.; Dondi, A.; Cervellati, C. Oxygen, Reactive Oxygen Species and Tissue Damage. Curr. Pharm. Des. 2004, 10, 1611–1626. [Google Scholar] [CrossRef]
- Honda, H.M.; Korge, P.; Weiss, J.N. Mitochondria and Ischemia/Reperfusion Injury. Ann. N.Y. Acad. Sci. 2005, 1047, 248–258. [Google Scholar] [CrossRef]
- Mandic, M.; Regan, M.D. Can Variation among Hypoxic Environments Explain Why Different Fish Species Use Different Hypoxic Survival Strategies? J. Exp. Biol. 2018, 221, jeb161349. [Google Scholar] [CrossRef] [Green Version]
- Vornanen, M.; Stecyk, J.A.W.; Nilsson, G.E. The Anoxia-Tolerant Crucian Carp (Carassius carassius L.). In Fish Physiology; Richards, J.G., Farrell, A.P., Brauner, C.J., Eds.; Academic Press: Cambridge, MA, USA, 2009; Chapter 9; Volume 27, pp. 397–441. [Google Scholar]
- Shoubridge, E.A.; Hochachka, P.W. Ethanol: Novel End Product of Vertebrate Anaerobic Metabolism. Science 1980, 209, 308–309. [Google Scholar] [CrossRef]
- Fagernes, C.E.; Stensløkken, K.-O.; Røhr, Å.K.; Berenbrink, M.; Ellefsen, S.; Nilsson, G.E. Extreme Anoxia Tolerance in Crucian Carp and Goldfish through Neofunctionalization of Duplicated Genes Creating a New Ethanol-Producing Pyruvate Decarboxylase Pathway. Sci. Rep. 2017, 7, 7884. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, G.E. Long-Term Anoxia in Crucian Carp: Changes in the Levels of Amino Acid and Monoamine Neurotransmitters in the Brain, Catecholamines in Chromaffin Tissue, and Liver Glycogen. J. Exp. Biol. 1990, 150, 295–320. [Google Scholar] [CrossRef]
- Bundgaard, A.; James, A.M.; Gruszczyk, A.V.; Martin, J.; Murphy, M.P.; Fago, A. Metabolic Adaptations during Extreme Anoxia in the Turtle Heart and Their Implications for Ischemia-Reperfusion Injury. Sci. Rep. 2019, 9, 2850. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, G.E.; Lutz, P.L. Anoxia Tolerant Brains. J. Cereb. Blood Flow Metab. 2004, 24, 475–486. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Zhang, Q.; Tang, W.; Huang, Z.; Wang, G.; Wang, Y.; Shi, J.; Xu, H.; Lin, L.; Li, Z.; et al. The Evolutionary Origin and Domestication History of Goldfish (Carassius auratus). Proc. Natl. Acad. Sci. USA 2020, 117, 29775–29785. [Google Scholar] [CrossRef]
- Komiyama, T.; Kobayashi, H.; Tateno, Y.; Inoko, H.; Gojobori, T.; Ikeo, K. An Evolutionary Origin and Selection Process of Goldfish. Gene 2009, 430, 5–11. [Google Scholar] [CrossRef]
- Nilsson, G.E. Evidence for a Role of Gaba in Metabolic Depression During Anoxia in Crucian Carp (Carassius carassius). J. Exp. Biol. 1992, 164, 243–259. [Google Scholar] [CrossRef]
- Wilkie, M.P.; Pamenter, M.E.; Alkabie, S.; Carapic, D.; Shin, D.S.H.; Buck, L.T. Evidence of Anoxia-Induced Channel Arrest in the Brain of the Goldfish (Carassius auratus). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2008, 148, 355–362. [Google Scholar] [CrossRef]
- Johnston, I.A.; Dunn, J. Temperature Acclimation and Metabolism in Ectotherms with Particular Reference to Teleost Fish. Symp. Soc. Exp. Biol. 1987, 41, 67–93. [Google Scholar]
- Stecyk, J.A.W.; Stensløkken, K.-O.; Farrell, A.P.; Nilsson, G.E. Maintained Cardiac Pumping in Anoxic Crucian Carp. Science 2004, 306, 77. [Google Scholar] [CrossRef] [Green Version]
- Lardon, I.; Nilsson, G.E.; Stecyk, J.A.W.; Vu, T.N.; Laukens, K.; Dommisse, R.; De Boeck, G. 1H-NMR Study of the Metabolome of an Exceptionally Anoxia Tolerant Vertebrate, the Crucian Carp (Carassius carassius). Metabolomics 2013, 9, 311–323. [Google Scholar] [CrossRef]
- Johansson, D.; Nilsson, G.E.; Törnblom, E. Effects of Anoxia on Energy Metabolism in Crucian Carp Brain Slices Studied with Microcalorimetry. J. Exp. Biol. 1995, 198, 853–859. [Google Scholar] [CrossRef]
- Xia, J.; Psychogios, N.; Young, N.; Wishart, D.S. MetaboAnalyst: A Web Server for Metabolomic Data Analysis and Interpretation. Nucleic Acids Res. 2009, 37, W652–W660. [Google Scholar] [CrossRef] [Green Version]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef]
- Atkinson, D.E. Energy Charge of the Adenylate Pool as a Regulatory Parameter. Interaction with Feedback Modifiers. Biochemistry 1968, 7, 4030–4034. [Google Scholar] [CrossRef]
- Andersen, S.M.; Waagbø, R.; Espe, M. Functional Amino Acids in Fish Nutrition, Health and Welfare. Front. Biosci. Elite Ed. 2016, 8, 143–169. [Google Scholar] [CrossRef]
- Clark, J.F. Creatine and Phosphocreatine: A Review of Their Use in Exercise and Sport. J. Athl. Train. 1997, 32, 45–51. [Google Scholar]
- Garofalo, F.; Imbrogno, S.; Tota, B.; Amelio, D. Morpho-Functional Characterization of the Goldfish (Carassius auratus L.) Heart. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2012, 163, 215–222. [Google Scholar] [CrossRef]
- De la Fuente, I.M.; Cortés, J.M.; Valero, E.; Desroches, M.; Rodrigues, S.; Malaina, I.; Martínez, L. On the Dynamics of the Adenylate Energy System: Homeorhesis vs Homeostasis. PLoS ONE 2014, 9, e108676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, L.; Fall, L.; Walton, G.M.; Atkinson, D.E. Interaction between Energy Charge and Metabolite Modulation in the Regulation of Enzymes of Amphibolic Sequences. Phosphofructokinase and Pyruvate Dehydrogenase. Biochemistry 1968, 7, 4041–4045. [Google Scholar] [CrossRef] [PubMed]
- Waversveld, J.V.; Addink, A.D.F.; Thillart, G.V.D. Simultaneous Direct and Indirect Calorimetry on Normoxic and Anoxic Goldfish. J. Exp. Biol. 1989, 142, 325–335. [Google Scholar] [CrossRef]
- Vornanen, M.; Haverinen, J. Glycogen Dynamics of Crucian Carp (Carassius carassius) in Prolonged Anoxia. J. Comp. Physiol. B 2016, 186, 999–1007. [Google Scholar] [CrossRef]
- Storey, K.B. Comparative Enzymology—New Insights from Studies of an “Old” Enzyme, Lactate Dehydrogenase. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2016, 199, 13–20. [Google Scholar] [CrossRef]
- Smith, R.W.; Cash, P.; Ellefsen, S.; Nilsson, G.E. Proteomic Changes in the Crucian Carp Brain during Exposure to Anoxia. Proteomics 2009, 9, 2217–2229. [Google Scholar] [CrossRef]
- Smith, R.W.; Cash, P.; Hogg, D.W.; Buck, L.T. Proteomic Changes in the Brain of the Western Painted Turtle (Chrysemys picta bellii) during Exposure to Anoxia. Proteomics 2015, 15, 1587–1597. [Google Scholar] [CrossRef]
- Mráček, T.; Drahota, Z.; Houštěk, J. The Function and the Role of the Mitochondrial Glycerol-3-Phosphate Dehydrogenase in Mammalian Tissues. Biochim. Biophys. Acta BBA Bioenerg. 2013, 1827, 401–410. [Google Scholar] [CrossRef] [Green Version]
- Van Waarde, A.; van den Thillart, G.; Dobbe, F. Anaerobic Metabolism of Goldfish, Carassius auratus (L.). Influence of Anoxia on Mass-Action Ratios of Transaminase Reactions and Levels of Ammonia and Succinate. J. Comp. Physiol. 1982, 147, 53–59. [Google Scholar] [CrossRef]
- Duvaraka, K.A.; Prag Hiran, A.; Krieg, T. Targeting Succinate Metabolism in Ischemia/Reperfusion Injury. Circulation 2019, 140, 1968–1970. [Google Scholar] [CrossRef]
- Chinopoulos, C. Succinate in Ischemia: Where Does It Come From? Int. J. Biochem. Cell Biol. 2019, 115, 105580. [Google Scholar] [CrossRef]
- Chouchani, E.T.; Pell, V.R.; Gaude, E.; Aksentijević, D.; Sundier, S.Y.; Robb, E.L.; Logan, A.; Nadtochiy, S.M.; Ord, E.N.J.; Smith, A.C.; et al. Ischaemic Accumulation of Succinate Controls Reperfusion Injury through Mitochondrial ROS. Nature 2014, 515, 431–435. [Google Scholar] [CrossRef] [Green Version]
- Pell, V.R.; Chouchani, E.T.; Frezza, C.; Murphy, M.P.; Krieg, T. Succinate Metabolism: A New Therapeutic Target for Myocardial Reperfusion Injury. Cardiovasc. Res. 2016, 111, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Goodman, M.N.; Lowenstein, J.M. The Purine Nucleotide Cycle. Studies of Ammonia Production by Skeletal Muscle in Situ and in Perfused Preparations. J. Biol. Chem. 1977, 252, 5054–5060. [Google Scholar] [CrossRef]
- Martin, J.L.; Costa, A.S.H.; Gruszczyk, A.V.; Beach, T.E.; Allen, F.M.; Prag, H.A.; Hinchy, E.C.; Mahbubani, K.; Hamed, M.; Tronci, L.; et al. Succinate Accumulation Drives Ischaemia-Reperfusion Injury during Organ Transplantation. Nat. Metab. 2019, 1, 966–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Wang, Y.T.; Miller, J.H.; Day, M.M.; Munger, J.C.; Brookes, P.S. Accumulation of Succinate in Cardiac Ischemia Primarily Occurs via Canonical Krebs Cycle Activity. Cell Rep. 2018, 23, 2617–2628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohlhauer, M.; Dawkins, S.; Costa, A.S.H.; Lee, R.; Young, T.; Pell, V.R.; Choudhury, R.P.; Banning, A.P.; Kharbanda, R.K.; Oxford Acute Myocardial Infarction (OxAMI) Study; et al. Metabolomic Profiling in Acute ST-Segment–Elevation Myocardial Infarction Identifies Succinate as an Early Marker of Human Ischemia–Reperfusion Injury. J. Am. Heart Assoc. 2018, 7, e007546. [Google Scholar] [CrossRef] [PubMed]
- Prag, H.; Gruszczyk, A.; Huang, M.; Beach, T.; Young, T.; Tronci, L.; Nikitopoulou, E.; Mulvey, J.; Ascione, R.; Hadjihambi, A.; et al. Mechanism of Succinate Efflux upon Reperfusion of the Ischemic Heart. Cardiovasc. Res. 2021, 117, 1188–1201. [Google Scholar] [CrossRef]
- Michalopoulos, G.K.; DeFrances, M.C. Liver Regeneration. Science 1997, 276, 60–66. [Google Scholar] [CrossRef]
- Zhang, J.; Shen, H.; Wang, X.; Wu, J.; Xue, Y. Effects of Chronic Exposure of 2,4-Dichlorophenol on the Antioxidant System in Liver of Freshwater Fish Carassius auratus. Chemosphere 2004, 55, 167–174. [Google Scholar] [CrossRef]
- Lushchak, V.I.; Lushchak, L.P.; Mota, A.A.; Hermes-Lima, M. Oxidative Stress and Antioxidant Defenses in Goldfish Carassius auratus during Anoxia and Reoxygenation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 280, R100–R107. [Google Scholar] [CrossRef] [Green Version]
- Sautin, Y.Y.; Johnson, R.J. Uric Acid: The Oxidant-Antioxidant Paradox. Nucleosides Nucleotides Nucleic Acids 2008, 27, 608–619. [Google Scholar] [CrossRef] [Green Version]
- Van der Boon, J.; Eelkema, F.A.; Van den Thillart, G.E.E.J.M.; Addink, A.D.F. Influence of Anoxia on Free Amino Acid Levels in Blood, Liver and Skeletal Muscles of the Goldfish, Carassius auratus L. Comp. Biochem. Physiol. Part B Comp. Biochem. 1992, 101, 193–198. [Google Scholar] [CrossRef]
- Johnston, I.A.; Bernard, L.M. Utilization of the Ethanol Pathway in Carp Following Exposure to Anoxia. J. Exp. Biol. 1983, 104, 73–78. [Google Scholar] [CrossRef]
- Van Ginneken, V.; Nieveen, M.; Van Eersel, R.; Van den Thillart, G.; Addink, A. Neurotransmitter Levels and Energy Status in Brain of Fish Species with and without the Survival Strategy of Metabolic Depression. Comp. Biochem. Physiol. A Physiol. 1996, 114, 189–196. [Google Scholar] [CrossRef]
- Biggar, K.K.; Zhang, J.; Storey, K.B. Navigating Oxygen Deprivation: Liver Transcriptomic Responses of the Red Eared Slider Turtle to Environmental Anoxia. PeerJ 2019, 7, e8144. [Google Scholar] [CrossRef]
- Borst, P. The Malate–Aspartate Shuttle (Borst Cycle): How It Started and Developed into a Major Metabolic Pathway. IUBMB Life 2020, 72, 2241–2259. [Google Scholar] [CrossRef]
- Hochachka, P.W.; Owen, T.G.; Allen, J.F.; Whittow, G.C. Multiple End Products of Anaerobiosis in Diving Vertebrates. Comp. Biochem. Physiol. Part B Comp. Biochem. 1975, 50, 17–22. [Google Scholar] [CrossRef]
- Ruderman, N.B. Muscle Amino Acid Metabolism and Gluconeogenesis. Annu. Rev. Med. 1975, 26, 245–258. [Google Scholar] [CrossRef]
- Ballantyne, J.S. Amino Acid Metabolism. Fish Physiol. 2001, 20, 77–107. [Google Scholar] [CrossRef]
- Exton, J.H. Gluconeogenesis. Metabolism 1972, 21, 945–990. [Google Scholar] [CrossRef]
- Shekhovtsov, S.V.; Bulakhova, N.A.; Tsentalovich, Y.P.; Zelentsova, E.A.; Yanshole, L.V.; Meshcheryakova, E.N.; Berman, D.I. Metabolic Response of the Siberian Wood Frog Rana amurensis to Extreme Hypoxia. Sci. Rep. 2020, 10, 14604. [Google Scholar] [CrossRef]
- Maiuolo, J.; Oppedisano, F.; Gratteri, S.; Muscoli, C.; Mollace, V. Regulation of Uric Acid Metabolism and Excretion. Int. J. Cardiol. 2016, 213, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Dykens, J.A. Purineolytic Capacity and Origin of Hemolymph Urate in Carcinus Maenas during Hypoxia. Comp. Biochem. Physiol. Part B Comp. Biochem. 1991, 98, 579–582. [Google Scholar] [CrossRef]
- Cvancara, V. Comparative Study of Liver Uricase Activity in Fresh-Water Teleosts. Comp. Biochem. Physiol. 1969, 28, 725–732. [Google Scholar] [CrossRef]
- Wright, P.A.; Land, M.D. Urea Production and Transport in Teleost Fishes. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 1998, 119, 47–54. [Google Scholar] [CrossRef]
- Zimmer, A.M.; Wright, P.A.; Wood, C.M. Ammonia and Urea Handling by Early Life Stages of Fishes. J. Exp. Biol. 2017, 220, 3843–3855. [Google Scholar] [CrossRef] [Green Version]
- Felskie, A.K.; Anderson, P.M.; Wright, P.A. Expression and Activity of Carbamoyl Phosphate Synthetase III and Ornithine Urea Cycle Enzymes in Various Tissues of Four Fish Species. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1998, 119, 355–364. [Google Scholar] [CrossRef]
- Wilkie, M.P.; Stecyk, J.A.W.; Couturier, C.S.; Sidhu, S.; Sandvik, G.K.; Nilsson, G.E. Reversible Brain Swelling in Crucian Carp (Carassius carassius) and Goldfish (Carassius auratus) in Response to High External Ammonia and Anoxia. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2015, 184, 65–75. [Google Scholar] [CrossRef]
- Goldstein, L.; Forster, R.P. The Role of Uricolysis in the Production of Urea by Fishes and Other Aquatic Vertebrates. Comp. Biochem. Physiol. 1965, 14, 567–576. [Google Scholar] [CrossRef]
- Yu, H.; Iyer, R.K.; Kern, R.M.; Rodriguez, W.I.; Grody, W.W.; Cederbaum, S.D. Expression of Arginase Isozymes in Mouse Brain. J. Neurosci. Res. 2001, 66, 406–422. [Google Scholar] [CrossRef]
- Hoseini, S.M.; Khan, M.A.; Yousefi, M.; Costas, B. Roles of Arginine in Fish Nutrition and Health: Insights for Future Researches. Rev. Aquac. 2020, 12, 2091–2108. [Google Scholar] [CrossRef]
- LeMoine, C.M.R.; Walsh, P.J. Evolution of Urea Transporters in Vertebrates: Adaptation to Urea’s Multiple Roles and Metabolic Sources. J. Exp. Biol. 2015, 218, 1936–1945. [Google Scholar] [CrossRef] [Green Version]
- Withers, P.C. Urea: Diverse Functions of a “waste” Product. Clin. Exp. Pharmacol. Physiol. 1998, 25, 722–727. [Google Scholar] [CrossRef]
- Costanzo, J.P.; Lee, R.E., Jr. Cryoprotection by Urea in a Terrestrially Hibernating Frog. J. Exp. Biol. 2005, 208, 4079–4089. [Google Scholar] [CrossRef] [Green Version]
- Costanzo, J.P.; Lee, R.E., Jr. Urea Loading Enhances Freezing Survival and Postfreeze Recovery in a Terrestrially Hibernating Frog. J. Exp. Biol. 2008, 211, 2969–2975. [Google Scholar] [CrossRef] [Green Version]
- D’Apolito, M.; Du, X.; Pisanelli, D.; Pettoello-Mantovani, M.; Campanozzi, A.; Giacco, F.; Maffione, A.B.; Colia, A.L.; Brownlee, M.; Giardino, I. Urea-Induced ROS Cause Endothelial Dysfunction in Chronic Renal Failure. Atherosclerosis 2015, 239, 393–400. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wu, L.; Aouffen, M.; Mateescu, M.-A.; Nadeau, R.; Wang, R. Novel Cardiac Protective Effects of Urea: From Shark to Rat. Br. J. Pharmacol. 1999, 128, 1477–1484. [Google Scholar] [CrossRef]
- Soga, T.; Heiger, D.N. Amino Acid Analysis by Capillary Electrophoresis Electrospray Ionization Mass Spectrometry. Anal. Chem. 2000, 72, 1236–1241. [Google Scholar] [CrossRef]
- Soga, T.; Ueno, Y.; Naraoka, H.; Ohashi, Y.; Tomita, M.; Nishioka, T. Simultaneous Determination of Anionic Intermediates for Bacillus subtilis Metabolic Pathways by Capillary Electrophoresis Electrospray Ionization Mass Spectrometry. Anal. Chem. 2002, 74, 2233–2239. [Google Scholar] [CrossRef]
- Soga, T.; Ohashi, Y.; Ueno, Y.; Naraoka, H.; Tomita, M.; Nishioka, T. Quantitative Metabolome Analysis Using Capillary Electrophoresis Mass Spectrometry. J. Proteome Res. 2003, 2, 488–494. [Google Scholar] [CrossRef]
- Xia, J.; Wishart, D.S. Web-Based Inference of Biological Patterns, Functions and Pathways from Metabolomic Data Using MetaboAnalyst. Nat. Protoc. 2011, 6, 743–760. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dahl, H.-A.; Johansen, A.; Nilsson, G.E.; Lefevre, S. The Metabolomic Response of Crucian Carp (Carassius carassius) to Anoxia and Reoxygenation Differs between Tissues and Hints at Uncharacterized Survival Strategies. Metabolites 2021, 11, 435. https://doi.org/10.3390/metabo11070435
Dahl H-A, Johansen A, Nilsson GE, Lefevre S. The Metabolomic Response of Crucian Carp (Carassius carassius) to Anoxia and Reoxygenation Differs between Tissues and Hints at Uncharacterized Survival Strategies. Metabolites. 2021; 11(7):435. https://doi.org/10.3390/metabo11070435
Chicago/Turabian StyleDahl, Helge-Andre, Anette Johansen, Göran E. Nilsson, and Sjannie Lefevre. 2021. "The Metabolomic Response of Crucian Carp (Carassius carassius) to Anoxia and Reoxygenation Differs between Tissues and Hints at Uncharacterized Survival Strategies" Metabolites 11, no. 7: 435. https://doi.org/10.3390/metabo11070435
APA StyleDahl, H. -A., Johansen, A., Nilsson, G. E., & Lefevre, S. (2021). The Metabolomic Response of Crucian Carp (Carassius carassius) to Anoxia and Reoxygenation Differs between Tissues and Hints at Uncharacterized Survival Strategies. Metabolites, 11(7), 435. https://doi.org/10.3390/metabo11070435