Special Issue: Development and Application of Statistical Methods for Analyzing Metabolomics Data
Funding
Acknowledgments
Conflicts of Interest
References
- Nam, S.L.; de la Mata, A.P.; Dias, R.P.; Harynuk, J.J. Towards Standardization of Data Normalization Strategies to Improve Urinary Metabolomics Studies by GC×GC-TOFMS. Metabolites 2020, 10, 376. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, M.; Bro, R. Can We Trust Score Plots? Metabolites 2020, 10, 278. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Nakayama, Y.; Tsugawa, H. OS-PCA: Orthogonal Smoothed Principal Component Analysis Applied to Metabolome Data. Metabolites 2021, 11, 149. [Google Scholar] [CrossRef] [PubMed]
- Tinnevelt, G.H.; Engelke, U.F.H.; Wevers, R.A.; Veenhuis, S.; Willemsen, M.A.; Coene, K.L.M.; Kulkarni, P.; Jansen, J.J. Variable Selection in Untargeted Metabolomics and the Danger of Sparsity. Metabolites 2020, 10, 470. [Google Scholar] [CrossRef] [PubMed]
- Brini, A.; Avagyan, V.; de Vos, R.C.H.; Vossen, J.H.; van den Heuvel, E.R.; Engel, J. Improved One-Class Modeling of High-Dimensional Metabolomics Data via Eigenvalue-Shrinkage. Metabolites 2021, 11, 237. [Google Scholar] [CrossRef] [PubMed]
- Gillies, C.E.; Jennaro, T.S.; Puskarich, M.A.; Sharma, R.; Ward, K.R.; Fan, X.; Jones, A.E.; Stringer, K.A. A Multilevel Bayesian Approach to Improve Effect Size Estimation in Regression Modeling of Metabolomics Data Utilizing Imputation with Uncertainty. Metabolites 2020, 10, 319. [Google Scholar] [CrossRef]
- McLuskey, K.; Wandy, J.; Vincent, I.; van der Hooft, J.J.J.; Rogers, S.; Burgess, K.; Daly, R. Ranking Metabolite Sets by Their Activity Levels. Metabolites 2021, 11, 103. [Google Scholar] [CrossRef]
- Jahagirdar, S.; Saccenti, E. On the Use of Correlation and MI as a Measure of Metabolite—Metabolite Association for Network Differential Connectivity Analysis. Metabolites 2020, 10, 171. [Google Scholar] [CrossRef] [PubMed]
- Iacovacci, J.; Peluso, A.; Ebbels, T.; Ralser, M.; Glen, R.C. Extraction and Integration of Genetic Networks from Short-Profile Omic Data Sets. Metabolites 2020, 10, 435. [Google Scholar] [CrossRef] [PubMed]
- Jendoubi, T. Approaches to Integrating Metabolomics and Multi-Omics Data: A Primer. Metabolites 2021, 11, 184. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hageman, J.; Engel, J. Special Issue: Development and Application of Statistical Methods for Analyzing Metabolomics Data. Metabolites 2021, 11, 451. https://doi.org/10.3390/metabo11070451
Hageman J, Engel J. Special Issue: Development and Application of Statistical Methods for Analyzing Metabolomics Data. Metabolites. 2021; 11(7):451. https://doi.org/10.3390/metabo11070451
Chicago/Turabian StyleHageman, Jos, and Jasper Engel. 2021. "Special Issue: Development and Application of Statistical Methods for Analyzing Metabolomics Data" Metabolites 11, no. 7: 451. https://doi.org/10.3390/metabo11070451
APA StyleHageman, J., & Engel, J. (2021). Special Issue: Development and Application of Statistical Methods for Analyzing Metabolomics Data. Metabolites, 11(7), 451. https://doi.org/10.3390/metabo11070451