Metabolite Ratios as Quality Indicators for Pre-Analytical Variation in Serum and EDTA Plasma
Abstract
:1. Introduction
2. Results
2.1. Targeted Metabolite Profiling of Serum and EDTA Plasma Samples from Healthy Individuals for TTC Quality Indicator Discovery
2.2. Validation of Candidate QIs for TTC in Serum and EDTA Plasma Samples from Healthy Volunteers
2.3. Validation of Candidate QIs for TTC in Serum and EDTA Plasma Samples from Patients with Rheumatic and Cardiovascular Diseases
3. Discussion
3.1. HI- and HG-Ratios as Potential Quality Indicators in Serum
3.2. Eicosanoids as Potential Quality Indicators in Serum
3.3. The Ratio of Ornithine to Arginine
4. Materials and Methods
4.1. Study Design and Pre-Analytical Conditions
4.2. Metabolite Profiling in Human Serum and EDTA Plasma
4.3. Quantitative Analysis of Nucleosides and Related Compounds
4.4. Quantitative Analysis of Eicosanoids
4.5. Quantitative Analysis of Amino Acids
4.6. Boinformatics and Statistics for QI Discovery by Targeted Metabolite Profiling
4.7. Statistical Analyses in Validation Samples
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirwan, J.A.; Brennan, L.; Broadhurst, D.; Fiehn, O.; Cascante, M.; Dunn, W.B.; Schmidt, M.A.; Velagapudi, V. Preanalytical processing and biobanking procedures of biological samples for metabolomics research: A white paper, community perspective (for “precision medicine and pharmacometabolomics task group”-the metabolomics society initiative). Clin. Chem. 2018, 64, 1158–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, P.; Peter, A.; Franken, H.; Zhao, X.; Neukamm, S.S.; Rosenbaum, L.; Lucio, M.; Zell, A.; Haring, H.U.; Xu, G.; et al. Preanalytical aspects and sample quality assessment in metabolomics studies of human blood. Clin. Chem. 2013, 59, 833–845. [Google Scholar] [CrossRef] [PubMed]
- Breier, M.; Wahl, S.; Prehn, C.; Fugmann, M.; Ferrari, U.; Weise, M.; Banning, F.; Seissler, J.; Grallert, H.; Adamski, J.; et al. Targeted metabolomics identifies reliable and stable metabolites in human serum and plasma samples. PLoS ONE 2014, 9, e89728. [Google Scholar] [CrossRef] [PubMed]
- Kamlage, B.; Maldonado, S.G.; Bethan, B.; Peter, E.; Schmitz, O.; Liebenberg, V.; Schatz, P. Quality markers addressing preanalytical variations of blood and plasma processing identified by broad and targeted metabolite profiling. Clin. Chem. 2014, 60, 399–412. [Google Scholar] [CrossRef] [PubMed]
- Jobard, E.; Tredan, O.; Postoly, D.; Andre, F.; Martin, A.L.; Elena-Herrmann, B.; Boyault, S. A systematic evaluation of blood serum and plasma pre-analytics for metabolomics cohort studies. Int. J. Mol. Sci. 2016, 17, 2035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, M.; Kennedy, A.D.; Elsea, S.H.; Miller, M.J. Analytes related to erythrocyte metabolism are reliable biomarkers for preanalytical error due to delayed plasma processing in metabolomics studies. Clin. Chim. Acta 2017, 466, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Kamlage, B.; Neuber, S.; Bethan, B.; Maldonado, S.G.; Wagner-Golbs, A.; Peter, E.; Schmitz, O.; Schatz, P. Impact of prolonged blood incubation and extended serum storage at room temperature on the human serum metabolome. Metabolites 2018, 8, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gottfried-Blackmore, A.; Rubin, S.J.S.; Bai, L.; Aluko, S.; Yang, Y.; Park, W.; Habtezion, A. Effects of processing conditions on stability of immune analytes in human blood. Sci. Rep. 2020, 10, 17328. [Google Scholar] [CrossRef]
- Thumfart, J.O.; Findeisen, P.; Neumaier, M. Systematic identification of endogenous decay-markers for quality assesment of serum specimens. Clin. Chem. Lab. Med. 2011, 49, S221. [Google Scholar]
- Anton, G.; Wilson, R.; Yu, Z.H.; Prehn, C.; Zukunft, S.; Adamski, J.; Heier, M.; Meisinger, C.; Romisch-Margl, W.; Wang-Sattler, R.; et al. Pre-analytical sample quality: Metabolite ratios as an intrinsic marker for prolonged room temperature exposure of serum samples. PLoS ONE 2015, 10, e0121495. [Google Scholar] [CrossRef] [PubMed]
- Thumfart, J.O.; Abidi, N.; Mindt, S.; Costina, V.; Hofheinz, R.; Klawonn, F.; Neumaier, M.; Findeisen, P. Lc/ms based monitoring of endogenous decay markers for quality assessment of serum specimens. J. Proteomics Bioinform. 2015, 8, 91–97. [Google Scholar]
- Liu, X.; Hoene, M.; Yin, P.; Fritsche, L.; Plomgaard, P.; Hansen, J.S.; Nakas, C.T.; Niess, A.M.; Hudemann, J.; Haap, M.; et al. Quality control of serum and plasma by quantification of (4e,14z)-sphingadienine-c18-1-phosphate uncovers common preanalytical errors during handling of whole blood. Clin. Chem. 2018, 64, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwarz, N.; Knutti, N.; Rose, M.; Neugebauer, S.; Geiger, J.; Jahns, R.; Klopp, N.; Illig, T.; Mathay, C.; Betsou, F.; et al. Quality assessment of the preanalytical workflow in liquid biobanking: Taurine as a serum-specific quality indicator for preanalytical process variations. Biopreserv. Biobank. 2019, 17, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Stevens, V.L.; Hoover, E.; Wang, Y.; Zanetti, K.A. Pre-analytical factors that affect metabolite stability in human urine, plasma, and serum: A review. Metabolites 2019, 9, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teahan, O.; Gamble, S.; Holmes, E.; Waxman, J.; Nicholson, J.K.; Bevan, C.; Keun, H.C. Impact of analytical bias in metabonomic studies of human blood serum and plasma. Anal. Chem. 2006, 78, 4307–4318. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, A.; Sugimoto, M.; Suzuki, A.; Hatakeyama, Y.; Enomoto, A.; Harada, S.; Soga, T.; Tomita, M.; Takebayashi, T. Effects of processing and storage conditions on charged metabolomic profiles in blood. Electrophoresis 2015, 36, 2148–2155. [Google Scholar] [CrossRef] [PubMed]
- Barupal, D.K.; Fiehn, O. Chemical similarity enrichment analysis (chemrich) as alternative to biochemical pathway mapping for metabolomic datasets. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- del Campo, M.L.; Halitschke, R.; Short, S.M.; Lazzaro, B.P.; Kessler, A. Dietary plant phenolic improves survival of bacterial infection in manduca sexta caterpillars. Entomol. Exp. Appl. 2013, 146, 321–331. [Google Scholar] [CrossRef] [Green Version]
- Plebani, M.; Sciacovelli, L.; Aita, A.; Padoan, A.; Chiozza, M.L. Quality indicators to detect pre-analytical errors in laboratory testing. Clin. Chim. Acta 2014, 432, 44–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trezzi, J.P.; Bulla, A.; Bellora, C.; Rose, M.; Lescuyer, P.; Kiehntopf, M.; Hiller, K.; Betsou, F. Lacascore: A novel plasma sample quality control tool based on ascorbic acid and lactic acid levels. Metabolomics 2016, 12, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.S.; Aa, J.Y.; Wang, G.J.; Yan, B.; Zhang, Y.; Wang, X.W.; Zhao, C.Y.; Cao, B.; Shi, J.A.; Li, M.J.; et al. Differences in metabolite profile between blood plasma and serum. Anal. Biochem. 2010, 406, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Boulieu, R.; Bory, C.; Baltassat, P.; Gonnet, C. Hypoxanthine and xanthine levels determined by high-performance liquid-chromatography in plasma, erythrocyte, and urine samples from healthy-subjects—The problem of hypoxanthine level evolution as a function of time. Anal. Biochem. 1983, 129, 398–404. [Google Scholar] [CrossRef]
- Hiroshige, K.; Takasugi, M.; Yuu, K.; Kuroiwa, A. Studies on the purine-pyrimidine metabolism (2)—Effects of sample preparation and diet on the concentrations of oxypurines in blood and urine. J. UOEH 1994, 16, 167–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giuliani, P.; Zuccarini, M.; Buccella, S.; Rossini, M.; D’Alimonte, I.; Ciccarelli, R.; Marzo, M.; Marzo, A.; Di Iorio, P.; Caciagli, F. Development of a new hplc method using fluorescence detection without derivatization for determining purine nucleoside phosphorylase activity in human plasma. J. Chromatogr. B 2016, 1009, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Farthing, D.; Sica, D.; Gehr, T.; Wilson, B.; Fakhry, I.; Larus, T.; Farthing, C.; Karnes, H.T. An hplc method for determination of inosine and hypoxanthine in human plasma from healthy volunteers and patients presenting with potential acute cardiac ischemia. J. Chromatogr. B 2007, 854, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.S.; Dou, W.K.; Wang, C.; Sun, Y. Stiffness and atp recovery of stored red blood cells in serum. Microsyst. Nanoeng. 2019, 5, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Harkness, R.A. Hypoxanthine, xanthine and uridine in body-fluids, indicators of atp depletion. J. Chromatogr.-Biomed. 1988, 429, 255–278. [Google Scholar] [CrossRef]
- Farthing, D.E.; Farthing, C.A.; Xi, L. Inosine and hypoxanthine as novel biomarkers for cardiac ischemia: From bench to point-of-care. Exp. Biol. Med. 2015, 240, 821–831. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Moriwaki, Y.; Takahashi, S.; Tsutsumi, Z.; Yamakita, J.; Nasako, Y.; Hiroishi, K.; Higashino, K. Determination of human plasma xanthine oxidase activity by high-performance liquid chromatography. J. Chromatogr. B 1996, 681, 395–400. [Google Scholar] [CrossRef]
- Viegas, T.X.; Omura, G.A.; Stoltz, R.R.; Kisicki, J. Pharmacokinetics and pharmacodynamics of peldesine (bcx-34), a purine nucleoside phosphorylase inhibitor, following single and multiple oral doses in healthy volunteers. J. Clin. Pharmacol. 2000, 40, 410–420, Erratum in 2000, 40, 664–664. [Google Scholar] [CrossRef] [PubMed]
- Dudzinska, W.; Lubkowska, A.; Dolegowska, B.; Safranow, K. Blood uridine concentration may be an indicator of the degradation of pyrimidine nucleotides during physical exercise with increasing intensity. J. Physiol. Biochem. 2010, 66, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Dudzinska, W.; Suska, M.; Lubkowska, A.; Jakubowska, K.; Olszewska, M.; Safranow, K.; Chlubek, D. Comparison of human erythrocyte purine nucleotide metabolism and blood purine and pyrimidine degradation product concentrations before and after acute exercise in trained and sedentary subjects. J. Physiol. Sci. 2018, 68, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Farthing, D.; Xi, L.; Gehr, L.; Sica, D.; Larus, T.; Karnes, H.T. High-performance liquid chromatography (hplc) determination of inosine, a potential biomarker for initial cardiac ischaemia, using isolated mouse hearts. Biomarkers 2006, 11, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Tavazzi, B.; Batocchi, A.P.; Amorini, A.M.; Nociti, V.; D’Urso, S.; Longo, S.; Gullotta, S.; Picardi, M.; Lazzarino, G. Serum metabolic profile in multiple sclerosis patients. Mult. Scler. Int. 2011, 2011, 167156. [Google Scholar] [CrossRef] [PubMed]
- Sutton, J.; Fox, I.H. Alterations of purine metabolism during strenuous muscular exercise in man. Clin. Res. 1975, 23, A639. [Google Scholar]
- Bangsbo, J.; Sjodin, B.; Hellstenwesting, Y. Exchange of hypoxanthine in muscle during intense exercise in man. Acta Physiol. Scand. 1992, 146, 549–550. [Google Scholar] [CrossRef] [PubMed]
- Casali, E.; Berni, P.; Spisni, A.; Baricchi, R.; Pertinhez, T.A. Hypoxanthine: A new paradigm to interpret the origin of transfusion toxicity. Blood Transfus. 2016, 14, 555–556. [Google Scholar] [PubMed]
- Funk, C.D. Prostaglandins and leukotrienes: Advances in eicosanoid biology. Science 2001, 294, 1871–1875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazan, N.G.; Stark, D.T.; Petasis, N.A. Lipid mediators: Eicosanoids, docosanoids and platelet-activating factor. In Basic Neurochemistry, 8th ed.; Brady, S.T., Siegel, G.J., Albers, R.W., Price, D.L., Eds.; Academic Press: New York, NY, USA, 2012; pp. 643–662. [Google Scholar]
- Pasqualini, M.E.; Mohn, C.E.; Petiti, J.P.; Manzo, P.; Eynard, A.R. Cox and lox eicosanoids modulate platelet activation and procoagulation induced by two murine cancer cells. Prostaglandins Leukot. Essent. Fat. Acids (PLEFA) 2000, 63, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Dolegowska, B.; Blogowski, W.; Kedzierska, K.; Safranow, K.; Jakubowska, K.; Olszewska, M.; Rac, M.; Chlubek, D.; Ciechanowski, K. Platelets arachidonic acid metabolism in patients with essential hypertension. Platelets 2009, 20, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Rund, K.M.; Nolte, F.; Doricic, J.; Greite, R.; Schott, S.; Lichtinghagen, R.; Gueler, F.; Schebb, N.H. Clinical blood sampling for oxylipin analysis—Effect of storage and pneumatic tube transport of blood on free and total oxylipin profile in human plasma and serum. Analyst 2020, 145, 2378–2388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorow, J.; Becker, S.; Kortz, L.; Thiery, J.; Hauschildt, S.; Ceglarek, U. Preanalytical investigation of polyunsaturated fatty acids and eicosanoids in human plasma by liquid chromatography-tandem mass spectrometry. Biopreserv. Biobank. 2016, 14, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Spector, E.B.; Rice, S.C.H.; Kern, R.M.; Hendrickson, R.; Cederbaum, S.D. Comparison of arginase activity in red-blood-cells of lower mammals, primates, and man—Evolution to high-activity in primates. Am. J. Hum. Genet. 1985, 37, 1138–1145. [Google Scholar] [PubMed]
- Saito, K.; Maekawa, K.; Pappan, K.; Urata, M.; Ishikawa, M.; Kumagai, Y.; Saito, Y. The difference in the metabolite profiles between plasma and serum, ages or sexes, and their inter-individual variations in human subjects. Drug Metab. Rev. 2014, 45, 47. [Google Scholar]
- Liu, C.; Li, R.H.; Liu, Y.; Li, Z.G.; Sun, Y.J.; Yin, P.Y.; Huang, R.H. Characteristics of blood metabolic profile in coronary heart disease, dilated cardiomyopathy and valvular heart disease induced heart failure. Front. Cardiovasc. Med. 2021, 7, 622236. [Google Scholar] [CrossRef]
- Ishikawa, M.; Maekawa, K.; Saito, K.; Senoo, Y.; Urata, M.; Murayama, M.; Tajima, Y.; Kumagai, Y.; Saito, Y. Plasma and serum lipidomics of healthy white adults shows characteristic profiles by subjects’ gender and age. PLoS ONE 2014, 9, e91806. [Google Scholar] [CrossRef] [Green Version]
- Minami, Y.; Kasukawa, T.; Kakazu, Y.; Iigo, M.; Sugimoto, M.; Ikeda, S.; Yasui, A.; van der Horst, G.T.J.; Soga, T.; Ueda, H.R. Measurement of internal body time by blood metabolomics. Proc. Natl. Acad. Sci. USA 2009, 106, 9890–9895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibney, M.J.; Walsh, M.; Brennan, L.; Roche, H.M.; German, B.; van Ommen, B. Metabolomics in human nutrition: Opportunities and challenges. Am. J. Clin. Nutr. 2005, 82, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Weigert, C.; Lehmann, R.; Hartwig, S.; Lehr, S. The secretome of the working human skeletal muscle-a promising opportunity to combat the metabolic disaster? Proteom. Clin. Appl. 2014, 8, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Brauer, R.; Leichtle, A.B.; Fiedler, G.M.; Thiery, J.; Ceglarek, U. Preanalytical standardization of amino acid and acylcarnitine metabolite profiling in human blood using tandem mass spectrometry. Metabolomics 2011, 7, 344–352. [Google Scholar] [CrossRef]
- Gillio-Meina, C.; Cepinskas, G.; Cecchini, E.L.; Fraser, D.D. Translational research in pediatrics ii: Blood collection, processing, shipping, and storage. Pediatrics 2013, 131, 754–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beuchel, C.; Becker, S.; Dittrich, J.; Kirsten, H.; Toenjes, A.; Stumvoll, M.; Loeffler, M.; Thiele, H.; Beutner, F.; Thiery, J.; et al. Clinical and lifestyle related factors influencing whole blood metabolite levels—A comparative analysis of three large cohorts. Mol. Metab. 2019, 29, 76–85. [Google Scholar] [CrossRef] [PubMed]
- MacNee, W.; Rabinovich, R.A.; Choudhury, G. Ageing and the border between health and disease. Eur. Respir. J. 2014, 44, 1332–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, A.M.; Bridgewater, B.R.; Liu, Q.; Mitchell, M.W.; Robinson, R.J.; Dai, H.; Stewart, S.J.; DeHaven, C.D.; Miller, L.A.D. High resolution mass spectrometry improves data quantity and quality as compared to unit mass resolution mass spectrometry in high-throughput profiling metabolomics. J. Metab. JOM 2014, 4, 1. [Google Scholar]
- Evans, A.M.; DeHaven, C.D.; Barrett, T.; Mitchell, M.; Milgram, E. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal. Chem. 2009, 81, 6656–6667. [Google Scholar] [CrossRef] [PubMed]
- DeHaven, C.; Evans, A.M.; Dai, H.; Lawton, K.A. Software techniques for enabling high-throughput analysis of metabolomic datasets. Metabolomics 2012, 10, 167–192. [Google Scholar] [CrossRef] [Green Version]
- Dehaven, C.D.; Evans, A.M.; Dai, H.; Lawton, K.A. Organization of gc/ms and lc/ms metabolomics data into chemical libraries. J. Cheminform. 2010, 2, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doneanu, C.E.; Chen, W.; Mazzeo, J.R. Uplc/ms monitoring of water-soluble vitamin bs in cell culture media in minutes. Waters Appl. Note 2011, 1–7. Available online: https://www.waters.com/waters/library.htm?locale=en_US&lid=134636355 (accessed on 17 September 2021).
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Oresic, M. Mzmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kortz, L.; Dorow, J.; Becker, S.; Thiery, J.; Ceglarek, U. Fast liquid chromatography-quadrupole linear ion trap-mass spectrometry analysis of polyunsaturated fatty acids and eicosanoids in human plasma. J. Chromatogr. B 2013, 927, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.M.; Wang, J.Y.; Jia, E.; Chen, T.L.; Ni, Y.; Jia, W. Gsimp: A gibbs sampler based left-censored missing value imputation approach for metabolomics studies. PLoS Comput. Biol. 2018, 14, e1005973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storey, J.D. The positive false discovery rate: A bayesian interpretation and the q-value. Ann. Stat. 2003, 31, 2013–2035. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate—A practical and powerful approach to multiple testing. J. R. Stat. Soc. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.Z.; Bourque, G.; Wishart, D.S.; Xia, J.G. Metaboanalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, W486–W494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, J.; Wishart, D.S. Using metaboanalyst 3.0 for comprehensive metabolomics data analysis. Curr. Protoc. Bioinform. 2016, 55, 14.10.1–14.10.91. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.G.; Sinelnikov, I.V.; Han, B.; Wishart, D.S. Metaboanalyst 3.0-making metabolomics more meaningful. Nucleic Acids Res. 2015, 43, W251–W257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khatri, P.; Draghici, S. Ontological analysis of gene expression data: Current tools, limitations, and open problems. Bioinformatics 2005, 21, 3587–3595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aittokallio, T.; Schwikowski, B. Graph-based methods for analysing networks in cell biology. Brief Bioinform. 2006, 7, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Barupal, D.K.; Fan, S.L.; Fiehn, O. Integrating bioinformatics approaches for a comprehensive interpretation of metabolomics datasets. Curr Opin Biotech 2018, 54, 1–9. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.A.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the “tidyverse”. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Kuhn, M. Caret: Classification and Regression Training. 2021. Available online: https://rdrr.io/cran/caret/f/vignettes/caret.Rmd (accessed on 30 June 2020).
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.C.; Müller, M. Proc: An open-source package for r and s+ to analyze and compare roc curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Sing, T.; Sander, O.; Beerenwinkel, N.; Lengauer, T. Rocr: Visualizing classifier performance in r. Bioinformatics 2005, 21, 7881. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. World medical association declaration of helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar]
- World Medical Association. WMA Declaration of Taipei on Ethical Considerations Regarding Health Databases and Biobanks. Secondary WMA Declaration of Taipei on Ethical Considerations Regarding Health Databases and Biobanks. 2016. Available online: https://www.wma.net/policies-post/wma-declaration-of-taipei-on-ethical-considerations-regarding-health-databases-and-biobanks/ (accessed on 30 June 2020).
Potential QIs | Median Opt. Cutoff | Specificity n+/n > 1 h | Sensitivity 1-(n-/n) < 1 h | Median Opt. Cutoff | Specificity n+/n > 2 h | Sensitivity 1-(n-/n) < 2 h |
---|---|---|---|---|---|---|
Purines and Pyrimidines in serum of validation sample 1 | ||||||
Guanosine # | 0.50 µmol/L | 100% | 80% | 0.28 µmol/L | 100% | 83% |
Hypoxanthine | 32 µmol/L | 75% | 83% | 37 µmol/L | 86% | 80% |
Xanthine | 1.5 µmol/L | 75% | 67% | 1.6 µmol/L | 80% | 67% |
Inosine # | 1.25 µmol/L | 86% | 75% | 1.13 µmol/L | 100% | 67% |
Dihydroorotic acid | 32 µmol/L | 83% | 75% | 38 µmol/L | 94% | 75% |
XG-ratio | 0.61 | 80% | 80% | 0.93 | 89% | 75% |
HI-ratio | 1.41 | 83% | 86% | 1.57 | 78% | 100% |
HG-ratio | 2.06 | 100% | 80% | 2.25 | 88% | 75% |
XI-ratio | 0.14 | 78% | 83% | 0.24 | 73% | 100% |
Eicosanoids in serum of validation sample 1 | ||||||
Tetranor-12(S)-HETE | - | - | - | 0.45 ng/mL | 88% | 90% |
12(S)-HEPE | - | - | - | 8.17 ng/mL | 100% | 100% |
(±)13-HODE | - | - | - | 6.83 ng/mL | 83% | 100% |
(±)9-HODE | - | - | - | 5.31 ng/mL | 62% | 67% |
15(S)-HETE | - | - | - | 3.36 ng/mL | 100% | 100% |
11-HETE | - | - | - | 3.84 ng/mL | 86% | 75% |
8(S)-HETE | - | - | - | 2.22 ng/mL | 100% | 100% |
12-HETE | - | - | - | 15.14 ng/mL | 100% | 100% |
5-HETE | - | - | - | 2.63 ng/mL | 60% | 60% |
12-oxo-ETE | - | - | - | 2.62 ng/mL | 100% | 100% |
Amino acids in serum of validation sample 2 | ||||||
Arginine # | 86.15 µmol/L | 64% | 67% | 83.4 µmol/L | 70% | 65% |
Ornithine | 91.24 µmol/L | 67% | 69% | 106.31 µmol/L | 74% | 67% |
OA-ratio | 0.01 | 78% | 77% | 0.05 | 75% | 75% |
Purines and Pyrimidines in EDTA plasma of validation sample 1 | ||||||
Hypoxanthine | 12 µmol/L | 50% | 71% | 11.5 µmol/L | 80% | 75% |
Inosine # | 0.5 µmol/L | 100% | 33% | 0.5 µmol/L | 89% | 0% |
Dihydroorotic acid | 12.2 µmol/L | 50% | 75% | 12.65 µmol/L | 67% | 71% |
HI-ratio | 1.54 | 40% | 75% | 1.51 | 67% | 80% |
Eicosanoids in EDTA plasma of validation sample 1 | ||||||
(±)13-HODE | - | - | - | 5.45 ng/mL | 78% | 67% |
(±)9-HODE | - | - | - | 2.49 ng/mL | 88% | 67% |
5-HETE | - | - | - | 0.41 ng/mL | 67% | 50% |
Amino acids in EDTA plasma of validation sample 2 | ||||||
Arginine # | 51.24 µmol/L | 73% | 69% | 46.62 µmol/L | 75% | 65% |
Ornithine | 87.94 µmol/L | 71% | 67% | 110.38 µmol/L | 88% | 67% |
OA-ratio | 0.23 | 85% | 73% | 0.3 | 78% | 83% |
Potential QIs | Median Opt. Cutoff | Specificity n+/n > 1 h | Sensitivity 1-(n-/n) < 1 h | Median Opt. Cutoff | Specificity n+/n > 2 h | Sensitivity 1-(n-/n) < 2 h |
---|---|---|---|---|---|---|
Purines and Pyrimidines in serum of validation sample 3 | ||||||
Guanosine # | 0.50 µmol/L | 43% (6/14) | 96% (25/26) | 0.28 µmol/L | 65% (15/23) | 71% (12/17) |
Hypoxanthine | 32 µmol/L | 86% (12/14) | 65% (17/26) | 37 µmol/L | 87% (20/23) | 47% (8/17) |
Xanthine | 1.5 µmol/L | 7% (1/14) | 85% (22/26) | 1.6 µmol/L | 22% (5/23) | 82% (15/26) |
Inosine # | 1.25 µmol/L | 57% (8/14) | 88% (23/26) | 1.13 µmol/L | 43% (10/23) | 88% (15/17) |
Dihydroorotic acid | 32 µmol/L | 79% (11/14) | 69% (18/26) | 38 µmol/L | 91% (21/23) | 41% (7/17) |
XG-ratio | 0.61 | 36% (5/14) | 96% (25/26) | 0.93 | 70% (16/23) | 71% (12/17) |
HI-ratio | 0.14 | 29% (4/14) | 92% (24/26) | 0.24 | 30% (7/23) | 94% (16/17) |
HG-ratio | 1.41 | 79% (11/14) | 85% (22/26) | 1.57 | 70% (16/23) | 82% (14/17) |
XI-ratio | 2.06 | 100% (14/14) | 73% (19/26) | 2.25 | 100% (23/23) | 35% (6/17) |
Eicosanoids in serum of validation sample 3 | ||||||
Tetranor-12(S)-HETE | - | - | - | 0.45 ng/mL | 92% (12/13) | 100% (7/7) |
12(S)-HEPE | - | - | - | 8.17 ng/mL | 100% (13/13) | 86% (6/7) |
(±)13-HODE | - | - | - | 6.83 ng/mL | 62% (8/13) | 71% (5/7) |
(±)9-HODE | - | - | - | 5.31 ng/mL | 46% (6/13) | 43% (3/7) |
15(S)-HETE | - | - | - | 3.36 ng/mL | 85% (11/13) | 71% (5/7) |
11-HETE | - | - | - | 3.84 ng/mL | 77% (10/13) | 14% (1/7) |
8(S)-HETE | - | - | - | 2.22 ng/mL | 100% (13/13) | 86% (6/7) |
12-HETE | - | - | - | 15.14 ng/mL | 92% (12/13) | 86% (6/7) |
5-HETE | - | - | - | 2.63 ng/mL | 69% (9/13) | 43% (3/7) |
12-oxo-ETE | - | - | - | 2.62 ng/mL | 100% (13/13) | 86% (6/7) |
Amino acids in serum of validation sample 4 | ||||||
Arginine # | 86.15 µmol/L | 54% (14/26) | 61% (27/44) | 83.4 µmol/L | 51% (24/47) | 52% (12/23) |
Ornithine | 91.24 µmol/L | 54% (10/26) | 61% (27/44) | 106.31 µmol/L | 72% (34/47) | 48% (11/23) |
OA-ratio | 0.01 | 46% (12/26) | 73% (32/44) | 0.05 | 51% (24/47) | 70% (16/23) |
Purines and Pyrimidines in EDTA plasma of validation sample 3 | ||||||
Hypoxanthine | 12 µmol/L | 62% (8/13) | 89% (24/27) | 11.5 µmol/L | 32% (9/28) | 83% (10/12) |
Inosine # | 0.5 µmol/L | 23% (3/13) | 89% (24/27) | 0.5 µmol/L | 11% (3/28) | 75% (9/12) |
Dihydroorotic acid | 12.2 µmol/L | 62% (8/13) | 89% (24/27) | 12.65 µmol/L | 36% (10/28) | 83% (10/12) |
HI-ratio | 1.54 | 85% (11/13) | 81% (22/27) | 1.51 | 43% (12/28) | 75% (9/12) |
Eicosanoids in EDTA plasma of validation sample 3 | ||||||
(±)13-HODE | - | - | - | 5.45 ng/mL | 62% (8/13) | 43% (4/7) |
(±)9-HODE | - | - | - | 2.49 ng/mL | 38% (5/13) | 29% (2/7) |
5-HETE | - | - | - | 0.41 ng/mL | 54% (7/13) | 43% (3/7) |
Amino acids in EDTA plasma of validation sample 4 | ||||||
Arginine # | 51.24 µmol/L | 60% (3/5) | 75% (33/44) | 46.62 µmol/L | 48% (11/23) | 81% (21/26) |
Ornithine | 87.94 µmol/L | 80% (4/5) | 68% (30/44) | 110.38 µmol/L | 70% (16/23) | 38% (10/26) |
OA-ratio | 0.23 | 60% (3/5) | 84% (37/44) | 0.3 | 43% (10/23) | 69% (18/26) |
Potential QIs in Serum | Median Opt. Cutoff | Specificity n+/n > 1 h | Sensitivity 1-(n-/n) < 1 h |
---|---|---|---|
HG-ratio | 1.41 | 79% (11/14) | 85% (22/26) |
XI-ratio | 2.06 | 100% (14/14) | 73% (19/26) |
Specificity n+/n > 2 h | Sensitivity 1-(n-/n) < 2 h | ||
Tetranor-12(S)-HETE | 0.45 ng/mL | 92% (12/13) | 100% (7/7) |
12(S)-HEPE | 8.17 ng/mL | 100% (13/13) | 86% (6/7) |
8(S)-HETE | 2.22 ng/mL | 100% (13/13) | 86% (6/7) |
12-HETE | 15.14 ng/mL | 92% (12/13) | 86% (6/7) |
12-oxo-ETE | 2.62 ng/mL | 100% (13/13) | 86% (6/7) |
Potential Qis in EDTA Plasma | Median Opt. Cutoff | Specificity n+/n > 1 h | Sensitivity 1-(n-/n) < 1 h |
HI-ratio | 1.54 | 85% (11/13) | 81% (22/27) |
Characteristics | Data | |
Discovery sample 1 | ||
No. of healthy volunteers | 10 | |
Age (years) median, range | 33 (28–38) | |
Sex male/female | 10/0 | |
Fasting before blood draw (12 h) | yes | |
Non-smokers | yes | |
Timepoints | TTC 0.5 and 2 h | |
Validation sample 1 | ||
No. of healthy volunteers | 10 | |
Age (years) median, range | 29 (21–54) | |
Sex male/female | 7/3 | |
Fasting before blood draw (12 h) | yes | |
Non-smokers | yes | |
Timepoints | TTC 0 (only EDTA plasma), 0.5, 1, 2 and 4 h | |
Validation sample 2 | ||
No. of healthy volunteers | 23 | |
Age (years) median, range | 43 (25–60) | |
Sex male/female | 6/17 | |
Fasting before blood draw (12 h) | no | |
Non-smokers | yes | |
Timepoints | TTC 0.5, 1, 2 and 4 h | |
Validation sample 3 | ||
No. of rheumatologic patients | 20 | |
Age (years) median, range | 70.5 (21–82) | |
Sex male/female | 14/6 | |
Disease | rheumatic | |
Fasting before blood draw (12 h) | no | |
Validation sample 3 | ||
No. of cardilogic patients | 20 | |
Age (years) median, range | 64.5 (32–82) | |
Sex male/female | 10/10 | |
Disease | cardiovascular | |
Fasting before blood draw (12 h) | no | |
Validation sample 4 | ||
No. of cardiologic patients | 40 | |
Age (years) median, range | 73 (48–89) | |
Sex male/female | 20/20 | |
Disease | cardiovascular | |
Fasting before blood draw (12 h) | no | |
Validation sample 4 | Serum | EDTA plasma |
No. of rheumatologic patients | 30 | 49 |
Age (years) median, range | 63 (32–88) | 65 (20–90) |
Sex male/female | 14/16 | 23/26 |
Disease | rheumatic | rheumatic |
Fasting before blood draw (12 h) | no | no |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heiling, S.; Knutti, N.; Scherr, F.; Geiger, J.; Weikert, J.; Rose, M.; Jahns, R.; Ceglarek, U.; Scherag, A.; Kiehntopf, M. Metabolite Ratios as Quality Indicators for Pre-Analytical Variation in Serum and EDTA Plasma. Metabolites 2021, 11, 638. https://doi.org/10.3390/metabo11090638
Heiling S, Knutti N, Scherr F, Geiger J, Weikert J, Rose M, Jahns R, Ceglarek U, Scherag A, Kiehntopf M. Metabolite Ratios as Quality Indicators for Pre-Analytical Variation in Serum and EDTA Plasma. Metabolites. 2021; 11(9):638. https://doi.org/10.3390/metabo11090638
Chicago/Turabian StyleHeiling, Sven, Nadine Knutti, Franziska Scherr, Jörg Geiger, Juliane Weikert, Michael Rose, Roland Jahns, Uta Ceglarek, André Scherag, and Michael Kiehntopf. 2021. "Metabolite Ratios as Quality Indicators for Pre-Analytical Variation in Serum and EDTA Plasma" Metabolites 11, no. 9: 638. https://doi.org/10.3390/metabo11090638
APA StyleHeiling, S., Knutti, N., Scherr, F., Geiger, J., Weikert, J., Rose, M., Jahns, R., Ceglarek, U., Scherag, A., & Kiehntopf, M. (2021). Metabolite Ratios as Quality Indicators for Pre-Analytical Variation in Serum and EDTA Plasma. Metabolites, 11(9), 638. https://doi.org/10.3390/metabo11090638