Comparison of Hepatic Metabolite Profiles between Infant and Adult Male Mice Using 1H-NMR-Based Untargeted Metabolomics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Serum Biochemical Analysis
2.3. 1H HR-MAS NMR Measurements
2.4. Spectral Pre-Processing
2.5. Statistical Analysis
3. Results
3.1. Body and Liver Weights of Infant and Adult Mice
3.2. Serum Biomarkers
3.3. Hepatic Metabolite Profiling Using 1H-NMR
3.4. Multivariate Analysis
3.5. Metabolic Pathway Analysis
4. Discussion
4.1. Carbohydrates
4.2. Amino Acids
4.3. Other Metabolites
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Piñeiro-Carrero, V.M.; Piñeiro, E.O. Liver. Pediatrics 2004, 113, 1097–1106. [Google Scholar] [CrossRef] [PubMed]
- Croom, E. Metabolism of xenobiotics of human environments. Prog. Mol. Biol. Transl. Sci. 2012, 112, 31–88. [Google Scholar] [PubMed]
- Gu, X.; Manautou, J.E. Molecular mechanisms underlying chemical liver injury. Expert. Rev. Mol. Med. 2012, 14, e4. [Google Scholar] [CrossRef] [PubMed]
- Tavill, A.S. The synthesis and degradation of liver-produced proteins. Gut 1972, 13, 225–241. [Google Scholar] [CrossRef] [PubMed]
- De Feo, P.; Lucidi, P. Liver protein synthesis in physiology and in disease states. Curr. Opin. Clin. Nutr. Metab. Care 2002, 5, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Charlton, M.R. Protein metabolism and liver disease. Baillieres Clin. Endocrinol. Metab. 1996, 10, 617–635. [Google Scholar] [CrossRef]
- Adeva-Andany, M.M.; Pérez-Felpete, N.; Fernández-Fernández, C.; Donapetry-García, C.; Pazos-García, C. Liver glucose metabolism in humans. Biosci. Rep. 2016, 36, e00416. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.G. Hepatic glucose and lipid metabolism. Diabetologia 2016, 59, 1098–1103. [Google Scholar] [CrossRef]
- Schmucker, D.L. Liver function and phase I drug metabolism in the elderly: A paradox. Drugs Aging 2001, 18, 837–851. [Google Scholar] [CrossRef]
- Klotz, U. Pharmacokinetics and drug metabolism in the elderly. Drug Metab. Rev. 2009, 41, 67–76. [Google Scholar] [CrossRef]
- Premoli, A.; Paschetta, E.; Hvalryg, M.; Spandre, M.; Bo, S.; Durazzo, M. Characteristics of liver diseases in the elderly: A review. Minerva Gastroenterol. Dietol. 2009, 55, 71–78. [Google Scholar]
- Anderson, G.D. Developmental pharmacokinetics. Semin. Pediatr. Neurol. 2010, 17, 208–213. [Google Scholar] [CrossRef]
- Durnas, C.; Loi, C.M.; Cusack, B.J. Hepatic drug metabolism and aging. Clin. Pharmacokinet. 1990, 19, 359–389. [Google Scholar] [CrossRef]
- Hellmuth, C.; Uhl, O.; Demmelmair, H.; Grunewald, M.; Auricchio, R.; Castillejo, G.; Korponay-Szabo, I.R.; Polanco, I.; Roca, M.; Vriezinga, S.L.; et al. The impact of human breast milk components on the infant metabolism. PLoS ONE 2018, 13, e0197713. [Google Scholar] [CrossRef]
- He, X.; Parenti, M.; Grip, T.; Domellöf, M.; Lönnerdal, B.; Hernell, O.; Timby, N.; Slupsky, C.M. Metabolic phenotype of breast-fed infants, and infants fed standard formula or bovine MFGM supplemented formula: A randomized controlled trial. Sci. Rep. 2019, 9, 339. [Google Scholar] [CrossRef]
- Jain, V.; Dhawan, A. Prognostic modeling in pediatric acute liver failure. Liver Transpl. 2016, 22, 1418–1430. [Google Scholar] [CrossRef]
- Srivastava, S. Emerging insights into the metabolic alterations in aging using metabolomics. Metabolites 2019, 9, 301. [Google Scholar] [CrossRef]
- Ellul, S.; Wake, M.; Clifford, S.A.; Lange, K.; Würtz, P.; Juonala, M.; Dwyer, T.; Carlin, J.B.; Burgner, D.P.; Saffery, R. Metabolomics: Population epidemiology and concordance in Australian children aged 11–12 years and their parents. BMJ Open 2019, 9, 106–117. [Google Scholar] [CrossRef]
- Gu, H.; Pan, Z.; Xi, B.; Hainline, B.E.; Shanaiah, N.; Asiago, V.; Gowda, G.A.; Raftery, D. 1H NMR metabolomics study of age profiling in children. NMR Biomed. 2009, 22, 826–833. [Google Scholar] [CrossRef]
- Chiu, C.Y.; Yeh, K.W.; Lin, G.; Chiang, M.H.; Yang, S.C.; Chao, W.J.; Yao, T.C.; Tsai, M.H.; Hua, M.C.; Liao, S.L.; et al. Metabolomics reveals dynamic metabolic changes associated with age in early childhood. PLoS ONE 2016, 11, e0149823. [Google Scholar] [CrossRef]
- Scalabre, A.; Jobard, E.; Demède, D.; Gaillard, S.; Pontoizeau, C.; Mouriquand, P.; Elena-Herrmann, B.; Mure, P.Y. Evolution of newborns’ urinary metabolomic profiles according to age and growth. J. Proteome. Res. 2017, 16, 3732–3740. [Google Scholar] [CrossRef] [Green Version]
- Lau, C.E.; Siskos, A.P.; Maitre, L.; Robinson, O.; Athersuch, T.J.; Want, E.J.; Urquiza, J.; Casas, M.; Vafeiadi, M.; Roumeliotaki, T.; et al. Determinants of the urinary and serum metabolome in children from six European populations. BMC Med. 2018, 16, 202. [Google Scholar] [CrossRef]
- Houtkooper, R.H.; Argmann, C.; Houten, S.M.; Cantó, C.; Jeninga, E.H.; Andreux, P.A.; Thomas, C.; Doenlen, R.; Schoonjans, K.; Auwerx, J. The metabolic footprint of aging in mice. Sci. Rep. 2011, 1, 134. [Google Scholar] [CrossRef]
- Tsutsui, H.; Maeda, T.; Min, J.Z.; Inagaki, S.; Higashi, T.; Kagawa, Y.; Toyo’oka, T. Biomarker discovery in biological specimens (plasma, hair, liver and kidney) of diabetic mice based upon metabolite profiling using ultra-performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry. Clin. Chim. Acta 2011, 412, 861–872. [Google Scholar] [CrossRef]
- Wu, S.; Liu, Y.; Zhu, L.; Han, D.; Bello Bodinga, M.; Yang, X. Hepatic metabolomic profiling changes along with postnatal liver maturation in breeder roosters. Biol. Open. 2018, 7, bio028944. [Google Scholar] [CrossRef]
- Mitchell, S.J.; Madrigal-Matute, J.; Scheibye-Knudsen, M.; Fang, E.; Aon, M.; González-Reyes, J.A.; Cortassa, S.; Kaushik, S.; Gonzalez-Freire, M.; Patel, B.; et al. Effects of Sex, Strain, and Energy Intake on Hallmarks of Aging in Mice. Cell Metab. 2016, 23, 1093–1112. [Google Scholar] [CrossRef]
- Jeong, T.B.; Kwon, D.; Son, S.W.; Kim, S.H.; Lee, Y.H.; Seo, M.S.; Kim, K.S.; Jung, Y.S. Weaning mice and adult mice exhibit differential carbon tetrachloride-induced acute hepatotoxicity. Antioxidants 2020, 9, 201. [Google Scholar] [CrossRef]
- Blagosklonny, M.V.; Hall, M.N. Growth and aging: A common molecular mechanism. Aging 2009, 1, 357–362. [Google Scholar] [CrossRef]
- Feltes, B.C.; de Faria Poloni, J.; Bonatto, D. Development and aging: Two opposite but complementary phenomena. Interdiscip. Top. Gerontol. 2015, 40, 74–84. [Google Scholar]
- Kalhan, S.C.; Kiliç, I. Carbohydrate as nutrient in the infant and child: Range of acceptable intake. Eur. J. Clin. Nutr. 1999, 53, S94–S100. [Google Scholar] [CrossRef]
- Rui, L. Energy metabolism in the liver. Compr. Physiol. 2014, 4, 177–197. [Google Scholar] [PubMed]
- Chia, C.W.; Egan, J.M.; Ferrucci, L. Age-related changes in glucose metabolism, hyperglycemia, and cardiovascular risk. Circ. Res. 2018, 123, 886–904. [Google Scholar] [CrossRef] [PubMed]
- Uaariyapanichkul, J.; Chomtho, S.; Suphapeetiporn, K.; Shotelersuk, V.; Punnahitananda, S.; Chinjarernpan, P.; Suteerojntrakool, O. Age-related reference intervals for blood amino acids in thai pediatric population measured by liquid chromatography tandem mass spectrometry. J. Nutr. Metab. 2018, 2018, 5124035. [Google Scholar] [CrossRef] [PubMed]
- Pontzer, H.; Yamada, Y.; Sagayama, H.; Ainslie, P.N.; Andersen, L.F.; Anderson, L.J.; Arab, L.; Baddou, I.; Bedu-Addo, K.; Blaak, E.E.; et al. Daily energy expenditure through the human life course. Science 2021, 373, 808–812. [Google Scholar] [CrossRef]
- Goran, M.I.; Martin, A.A.; Alderete, T.L.; Fujiwara, H.; Fields, D.A. Fructose in breast milk is positively associated with infant body composition at 6 months of age. Nutrients 2017, 9, 146. [Google Scholar] [CrossRef]
- Berger, P.K.; Plows, J.F.; Demerath, E.W.; Fields, D.A. Carbohydrate composition in breast milk and its effect on infant health. Curr. Opin. Clin. Nutr. Metab. Care 2020, 23, 277–281. [Google Scholar] [CrossRef]
- Güemes, M.; Rahman, S.A.; Hussain, K. What is a normal blood glucose? Arch. Dis. Child. 2016, 101, 569–574. [Google Scholar] [CrossRef]
- Sharma, V.; Ichikawa, M.; Freeze, H.H. Mannose metabolism: More than meets the eye. Biochem. Biophys. Res. Commun. 2014, 453, 220–228. [Google Scholar] [CrossRef]
- Brown, L.D.; Cheung, A.; Harwood, J.E.; Battaglia, F.C. Inositol and mannose utilization rates in term and late-preterm infants exceed nutritional intakes. J. Nutr. 2009, 139, 1648–1652. [Google Scholar] [CrossRef]
- Leroy, J.G. Congenital disorders of N-glycosylation including diseases associated with O- as well as N-glycosylation defects. Pediatr. Res. 2006, 60, 643–656. [Google Scholar] [CrossRef]
- Davis, J.A.; Freeze, H.H. Studies of mannose metabolism and effects of long-term mannose ingestion in the mouse. Biochim. Biophys. Acta 2001, 1528, 116–126. [Google Scholar] [CrossRef]
- Qi, X.; Tester, R.F. Lactose, maltose, and sucrose in health and disease. Mol. Nutr. Food. Res. 2020, 64, e1901082. [Google Scholar] [CrossRef]
- Canfield, C.A.; Bradshaw, P.C. Amino acids in the regulation of aging and aging-related diseases. Transl. Med. Aging 2019, 3, 70–89. [Google Scholar] [CrossRef]
- Görs, S.; Kucia, M.; Langhammer, M.; Junghans, P.; Metges, C.C. Technical note: Milk composition in mice--methodological aspects and effects of mouse strain and lactation day. J. Dairy Sci. 2009, 92, 632–637. [Google Scholar] [CrossRef]
- Meier, H.; Hoag, W.G.; Mcburney, J.J. Chemical Characterization of inbred-strain mouse milk. I. Gross composition and amino acid analysis. J. Nutr. 1965, 85, 305–308. [Google Scholar] [CrossRef]
- Rath, E.A.; Thenen, S.W. Use of tritiated water for measurement of 24-hour milk intake in suckling lean and genetically obese (ob/ob) mice. J. Nutr. 1979, 109, 840–847. [Google Scholar] [CrossRef]
- Imura, K.; Okada, A. Amino acid metabolism in pediatric patients. Nutrition 1998, 14, 143–148. [Google Scholar] [CrossRef]
- Uauy, R.; Kurpad, A.; Tano-Debrah, K.; Otoo, G.E.; Aaron, G.A.; Toride, Y.; Ghosh, S. Role of protein and amino acids in infant and young child nutrition: Protein and amino acid needs and relationship with child growth. J. Nutr. Sci. Vitaminol 2015, 61, S192–S194. [Google Scholar] [CrossRef]
- Yu, Z.; Zhai, G.; Singmann, P.; He, Y.; Xu, T.; Prehn, C.; Römisch-Margl, W.; Lattka, E.; Gieger, C.; Soranzo, N.; et al. Human serum metabolic profiles are age dependent. Aging Cell 2012, 11, 960–967. [Google Scholar] [CrossRef]
- Harrisonm, F.E. A critical review of vitamin C for the prevention of age-related cognitive decline and Alzheimer’s disease. J. Alzheimer’s Dis. 2012, 29, 711–726. [Google Scholar] [CrossRef]
- Hampl, J.S.; Taylor, C.A.; Johnston, C.S. Vitamin C deficiency and depletion in the United States: The Third National Health and Nutrition Examination Survey, 1988 to 1994. Am. J. Public Health 2004, 94, 870–875. [Google Scholar] [CrossRef]
- Gabbay, K.H.; Bohren, K.M.; Morello, R.; Bertin, T.; Liu, J.; Vogel, P. Ascorbate synthesis pathway: Dual role of ascorbate in bone homeostasis. J. Biol. Chem. 2010, 285, 19510–19520. [Google Scholar] [CrossRef] [Green Version]
- Harrison, F.E.; May, J.M. Vitamin C function in the brain: Vital role of the ascorbate transporter SVCT2. Free Radic. Biol. Med. 2009, 46, 719–730. [Google Scholar] [CrossRef] [PubMed]
- Smirnoff, N. Ascorbic acid metabolism and functions: A comparison of plants and mammals. Free Radic. Biol. Med. 2018, 122, 116–129. [Google Scholar] [CrossRef]
- Figueroa-Soto, C.G.; Valenzuela-Soto, E.M. Glycine betaine rather than acting only as an osmolyte also plays a role as regulator in cellular metabolism. Biochimie 2018, 147, 89–97. [Google Scholar] [CrossRef]
- Sakamoto, A.; Ono, H.; Mizoguchi, N.; Sakura, N. Betaine and homocysteine concentrations in infant formulae and breast milk. Pediatr. Int. 2001, 43, 637–640. [Google Scholar] [CrossRef]
- Must, A.; Jacques, P.F.; Rogers, G.; Rosenberg, I.H.; Selhub, J. Serum total homocysteine concentrations in children and adolescents: Results from the third National Health and Nutrition Examination Survey (NHANES III). J. Nutr. 2003, 133, 2643–2649. [Google Scholar] [CrossRef]
- Wiedeman, A.M.; Chau, C.M.Y.; Grunau, R.E.; McCarthy, D.; Yurko-Mauro, K.; Dyer, R.A.; Innis, S.M.; Devlin, A.M. Plasma Betaine Is Positively Associated with Developmental Outcomes in Healthy Toddlers at Age 2 Years Who Are Not Meeting the Recommended Adequate Intake for Dietary Choline. J. Nutr. 2018, 148, 1309–1314. [Google Scholar] [CrossRef]
- Patel, D.; Witt, S.N. Ethanolamine and phosphatidylethanolamine: Partners in health and disease. Oxid. Med. Cell Longev. 2017, 2017, 4829180. [Google Scholar] [CrossRef] [Green Version]
Nutrients | Weight (%) | Calories (%) |
---|---|---|
Protein | 22.02 | 21.6 |
Carbohydrates | 65.96 | 64.85 |
Fat | 6.10 | 13.49 |
Calcium | 0.81 | - |
Phosphorus | 0.70 | - |
Ash | 4.41 | - |
Total | 100 | 100 |
Infant | Adult | Percent Change(%) | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | ± | SE | Mean | ± | SE | ||||
Acetate | 2.203 | ± | 0.066 | 2.201 | ± | 0.163 | −0.10 | 0.991 | |
Alanine | 0.444 | ± | 0.021 | 0.656 | ± | 0.068 | 47.66 | 0.009 | ** |
Ascorbate | 1.721 | ± | 0.061 | 1.469 | ± | 0.097 | −14.67 | 0.042 | * |
Betaine | 5.317 | ± | 0.520 | 1.742 | ± | 0.125 | −67.24 | 0.000 | *** |
Carnitine | 0.702 | ± | 0.036 | 0.687 | ± | 0.026 | −2.20 | 0.735 | |
Carnosine | 0.610 | ± | 0.023 | 0.561 | ± | 0.038 | −7.95 | 0.290 | |
Choline | 0.926 | ± | 0.051 | 0.985 | ± | 0.072 | 6.30 | 0.519 | |
Creatine | 0.228 | ± | 0.006 | 0.203 | ± | 0.011 | −10.83 | 0.077 | |
Dimethylamine | 0.086 | ± | 0.005 | 0.081 | ± | 0.007 | −5.17 | 0.602 | |
Ethanolamine | 0.628 | ± | 0.020 | 0.519 | ± | 0.039 | −17.38 | 0.023 | * |
Fumarate | 0.360 | ± | 0.019 | 0.361 | ± | 0.035 | 0.18 | 0.987 | |
Glucose | 50.511 | ± | 2.770 | 42.517 | ± | 3.250 | −15.83 | 0.080 | |
Glutamate | 3.341 | ± | 0.216 | 2.948 | ± | 0.190 | −11.77 | 0.191 | |
Glutamine | 1.301 | ± | 0.097 | 1.629 | ± | 0.117 | 25.19 | 0.047 | * |
Glutathione | 1.592 | ± | 0.068 | 1.713 | ± | 0.151 | 7.57 | 0.477 | |
Glycine | 2.305 | ± | 0.072 | 2.185 | ± | 0.125 | −5.20 | 0.420 | |
Inosine | 0.297 | ± | 0.027 | 0.521 | ± | 0.071 | 75.58 | 0.009 | ** |
Isoleucine | 0.329 | ± | 0.014 | 0.382 | ± | 0.025 | 15.90 | 0.088 | |
Lactate | 11.171 | ± | 0.694 | 10.909 | ± | 0.726 | −2.35 | 0.797 | |
Leucine | 0.631 | ± | 0.031 | 0.940 | ± | 0.068 | 49.03 | 0.001 | *** |
Lysine | 0.963 | ± | 0.047 | 0.870 | ± | 0.039 | −9.66 | 0.149 | |
Maltose | 17.348 | ± | 0.718 | 7.568 | ± | 0.778 | −56.37 | 0.000 | *** |
Mannose | 2.347 | ± | 0.084 | 1.835 | ± | 0.096 | −21.84 | 0.001 | ** |
Methionine | 0.152 | ± | 0.009 | 0.217 | ± | 0.019 | 42.84 | 0.006 | ** |
Niacinamide | 0.939 | ± | 0.053 | 1.074 | ± | 0.058 | 14.33 | 0.105 | |
O-Phosphocholine | 2.086 | ± | 0.155 | 2.764 | ± | 0.190 | 32.49 | 0.014 | * |
Ornithine | 0.591 | ± | 0.026 | 0.593 | ± | 0.073 | 0.36 | 0.979 | |
Phenylalanine | 0.368 | ± | 0.020 | 0.446 | ± | 0.018 | 21.33 | 0.010 | ** |
Sarcosine | 0.216 | ± | 0.006 | 0.158 | ± | 0.017 | −26.79 | 0.005 | ** |
Taurine | 12.938 | ± | 1.435 | 20.146 | ± | 2.175 | 55.71 | 0.014 | * |
Tyrosine | 0.335 | ± | 0.011 | 0.385 | ± | 0.013 | 14.85 | 0.011 | * |
Uridine | 0.561 | ± | 0.017 | 0.565 | ± | 0.029 | 0.62 | 0.919 | |
Valine | 0.441 | ± | 0.024 | 0.595 | ± | 0.052 | 34.87 | 0.017 | * |
sn-Glycero−3-phosphocholine | 1.007 | ± | 0.056 | 0.881 | ± | 0.063 | −12.53 | 0.153 | |
β-Alanine | 0.461 | ± | 0.064 | 0.418 | ± | 0.059 | −9.30 | 0.629 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, D.; Lee, W.; Kim, S.H.; Jung, Y.-S. Comparison of Hepatic Metabolite Profiles between Infant and Adult Male Mice Using 1H-NMR-Based Untargeted Metabolomics. Metabolites 2022, 12, 910. https://doi.org/10.3390/metabo12100910
Kwon D, Lee W, Kim SH, Jung Y-S. Comparison of Hepatic Metabolite Profiles between Infant and Adult Male Mice Using 1H-NMR-Based Untargeted Metabolomics. Metabolites. 2022; 12(10):910. https://doi.org/10.3390/metabo12100910
Chicago/Turabian StyleKwon, Doyoung, Wonho Lee, Sou Hyun Kim, and Young-Suk Jung. 2022. "Comparison of Hepatic Metabolite Profiles between Infant and Adult Male Mice Using 1H-NMR-Based Untargeted Metabolomics" Metabolites 12, no. 10: 910. https://doi.org/10.3390/metabo12100910
APA StyleKwon, D., Lee, W., Kim, S. H., & Jung, Y. -S. (2022). Comparison of Hepatic Metabolite Profiles between Infant and Adult Male Mice Using 1H-NMR-Based Untargeted Metabolomics. Metabolites, 12(10), 910. https://doi.org/10.3390/metabo12100910