Associated Effect of SLC40A1 and TMPRSS6 Polymorphisms on Iron Overload
Abstract
:1. Introduction
- Most patients presenting classical hemochromatosis are homozygous for the missense mutation c.845G>A (C282Y) in the HFE gene, but due to incomplete penetrance of this genotype and other environmental or genetic factors, a wide spectrum of phenotypic expression occurs for the c.845G>A homozygous condition. Diet, alcohol, gender, and viral hepatitis influence the clinical presentation of hemochromatosis [3]. Several studies were conducted to determine the role of putative genetic modifiers in iron overload and found that the ferroportin gene polymorphic variants play a key role.
- Altès et al. [9] studied hemochromatosis patients with the classical HFE homozygous mutation and the c.44–24G>C SLC40A1 polymorphism (rs1439816) and associated this FPN gene polymorphism with the amount of iron overload, the presence of liver disease, and, consequently, clinical aggressiveness. In another study, the presence of at least one C allele of the c.44–24G>C SLC40A1 polymorphism was found to modulate the biochemical phenotype, specifically serum iron and transferrin saturation, in classical hemochromatosis patients [10].
- Another study on patients from the South African population identified significant associations between c.44–24G>C and c.663T>C SLC40A1 polymorphisms and iron overload [11]. The c.44–24G>C SNP, located in the 5′ untranslated region within 24 nucleotides upstream of the start of exon 2, affects the splicing machinery, as shown by the in silico analysis conducted using Mutation Taster (https://www.mutationtaster.org (accessed on 9 August 2022)). The c.663T>C polymorphism classified as rs2304704 (also known as V221V) does not change the amino acid sequence in the protein but alters the splice site, as determined by prediction tools (https://www.mutationtaster.org (accessed on 9 August 2022)).
- Interestingly, the allelic frequencies of the c.44–24G>C and c.663T>C SLC40A1 SNPs were found to be significantly higher in Italian blood donors with mild-to-moderate iron overload compared to the control group. This supported the idea that polymorphisms in the ferroportin gene are important contributors to iron storage and load in apparently healthy subjects [12].
2. Materials and Methods
2.1. Study Population
2.2. Collection of DNA Samples
2.3. Genotyping for Common Polymorphisms in Ferroportin and Matriptase-2 Genes
2.4. Biochemical Analyses
2.5. Statistical Analysis
3. Results
3.1. Patients
3.2. Genetic Analysis
3.3. Biochemical Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Camaschella, C.; Nai, A.; Silvestri, L. Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica 2020, 31, 260–272. [Google Scholar] [CrossRef] [PubMed]
- Valore, E.V.; Ganz, T. Posttranslational processing of hepcidin in human hepatocytes is mediated by the prohormone convertase furin. Blood Cells Mol. Dis. 2008, 40, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Camaschella, C.; Roetto, A.; De Gobbi, M. Genetic haemochromatosis: Genes and mutations associated with iron loading. Best Pract. Res. Clin. Haematol. 2002, 15, 261–276. [Google Scholar] [CrossRef] [PubMed]
- Rice, A.E.; Mendez, M.J.; Hokanson, C.A.; Rees, D.C.; Björkman, P.J. Investigation of the biophysical and cell biological properties of ferroportin, a multipass integral membrane protein iron exporter. J. Mol. Biol. 2009, 386, 717–732. [Google Scholar] [CrossRef]
- McKie, A.T.; Marciani, P.; Rolfs, A.; Brennan, K.; Wehr, K.; Barrow, D.; Miret, S.; Bomford, A.; Peters, T.J.; Farzaneh, F.; et al. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol. Cell 2000, 5, 299–309. [Google Scholar] [CrossRef]
- Cazzola, M. Role of ferritin and ferroportin genes in unexplained hyperferritinaemia. Best Pract. Res. Clin. Haematol. 2005, 18, 251–263. [Google Scholar] [CrossRef]
- Donovan, A.; Lima, C.A.; Pinkus, J.L.; Pinkus, G.S.; Zon, L.I.; Robine, S.; Andrews, N.C. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab. 2005, 1, 191–200. [Google Scholar] [CrossRef]
- Pietrangelo, A. The ferroportin disease. Blood Cells Mol. Dis. 2004, 32, 131–138. [Google Scholar] [CrossRef]
- Altès, A.; Bach, V.; Ruiz, A.; Esteve, A.; Remacha, A.F.; Sardà, M.P.; Felez, J.; Baiget, M. Does the SLC40A1 gene modify HFE-related haemochromatosis phenotypes? Ann. Hematol. 2009, 88, 341–345. [Google Scholar] [CrossRef]
- Radio, F.C.; Majore, S.; Aurizi, C.; Sorge, F.; Biolcati, G.; Bernabini, S.; Giotti, I.; Torricelli, F.; Giannarelli, D.; De Bernardo, C.; et al. Hereditary hemochromatosis type 1 phenotype modifiers in Italian patients. The controversial role of variants in HAMP, BMP2, FTL and SLC40A1 genes. Blood Cell Mol. Dis. 2015, 55, 71–75. [Google Scholar] [CrossRef]
- Zaahl, M.G.; Merryweather-Clarke, A.T.; Kotze, M.J.; van der Merwe, S.; Warnich, L.; Robson, K.J. Analysis of genes implicated in iron regulation in individuals presenting with primary iron overload. Hum. Genet. 2004, 115, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Duca, L.; Delbini, P.; Nava, I.; Vaja, V.; Fiorelli, G.; Cappellini, M.D. Mutation analysis of hepcidin and ferroportin genes in italian prospective blood donors with iron overload. Am. J. Hematol. 2009, 84, 592–593. [Google Scholar] [CrossRef] [PubMed]
- Finberg, K.E. Iron-Refractory Iron Deficiency Anemia. Semin. Hematol. 2009, 46, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Finberg, K.E.; Heeney, M.M.; Campagna, D.R.; Aydınok, Y.; Pearson, H.A.; Hartman, K.R.; Mayo, M.M.; Samuel, S.M.; Strouse, J.J.; Markianos, K.; et al. Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA). Nat. Genet. 2008, 40, 569–571. [Google Scholar] [CrossRef] [PubMed]
- Tchou, I.; Diepold, M.; Pilotto, P.A.; Swinkels, D.; Neerman-Arbez, M.; Beris, P. Haematologic data, iron parameters and molecular findings in two new cases of iron-refractory iron deficiency anaemia. Eur. J. Haematol. 2009, 83, 595–602. [Google Scholar] [CrossRef]
- Pellegrino, R.M.; Coutinho, M.; D’Ascola, D.; Lopes, A.M.; Palmieri, A.; Carnucci, F.; Costa, M.; Zecchin, G.; Saglio, G.; Costa, E.; et al. Two novel mutations in the tmprss6 gene associated with iron-refractory iron-deficiency anaemia (IRIDA) and partial expression in the heterozygous form. Brit. J. Haematol. 2012, 158, 668–672. [Google Scholar] [CrossRef]
- Meynard, D.; Vaja, V.; Sun, C.C.; Corradini, E.; Chen, S.; Lòpez-Otín, C.; Grgurevic, L.; Hong, C.C.; Stirnberg, M.; Gu¨tschow, M.; et al. Regulation of TMPRSS6 by BMP6 and iron in human cells and mice. Blood 2011, 118, 747–756. [Google Scholar] [CrossRef]
- Zhang, A.S.; Anderson, S.A.; Wang, J.; Yang, F.; DeMaster, K.; Ahmed, R.; Nizzi, C.P.; Eisenstein, R.S.; Tsukamoto, H.; Caroline, A. Suppression of hepatic hepcidin expression in response to acute iron deprivation is associated with an increase of matriptase-2 protein. Blood 2011, 117, 1687–1699. [Google Scholar] [CrossRef]
- Meynard, D.; Sun, C.C.; Wu, Q.; Chen, W.; Chen, S.; Nelson, C.N.; Waters, M.J.; Babitt, J.L.; Lin, H.Y. Inflammation Regulates TMPRSS6 Expression via STAT5. PLoS ONE 2013, 8, e82127. [Google Scholar] [CrossRef]
- Lakhal, S.; Schö del, J.; Townsend, A.R.M.; Pugh, C.W.; Ratcliffe, P.J.; Mole, D.R. Regulation of Type II Transmembrane Serine Proteinase TMPRSS6 by Hypoxia-inducible Factors. J. Biol. Chem. 2011, 286, 4090–4097. [Google Scholar] [CrossRef] [Green Version]
- Maurer, E.; Gütschow, M.; Stirnberg, M. Matriptase-2 (TMPRSS6) is directly up-regulated by hypoxia inducible factor-1: Identification of a hypoxia-responsive element in the TMPRSS6 promoter region. Biol. Chem. 2012, 393, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Truksa, J.; Lee, P. EPO-mediated reduction in Hamp expression in vivo corrects iron deficiency anaemia in TMPRSS6 deficiency. Br. J. Haematol. 2010, 151, 106–109. [Google Scholar] [CrossRef] [PubMed]
- Al-Amer, O.; Hawasawi, Y.; Oyouni, A.A.A.; Alshehri, M.; Alasmari, A.; Alzahrani, O.; Aljohani, S.A.S. Study the association of transmembrane serine protease 6 gene polymorphisms with iron deficiency status in Saudi Arabia. Gene 2020, 751, 144767. [Google Scholar] [CrossRef] [PubMed]
- Chambers, J.; Zhang, W.; Li, Y.; Sehmi, J.; Wass, M.N.; Zabaneh, D.; Hoggart, C.; Bayele, H.; McCarthy, M.I.; Peltonen, L.; et al. Genome-wide association study identifies variants in TMPRSS6 associated with hemoglobin levels. Nat. Genet. 2009, 41, 1170–1172. [Google Scholar] [CrossRef]
- Gichohi-Wainaina, W.N.; Towers, G.W.; Swinkels, D.W.; Zimmermann, M.B.; Feskens, E.J.; Melse-Boonstra, A. Inter-ethnic differences in genetic variants within the transmembrane protease, serine 6 (TMPRSS6) gene associated with iron status indicators: A systematic review with meta-analyses. Genes Nutr. 2015, 10, 442. [Google Scholar] [CrossRef]
- Read, R.W.; Schlauch, K.A.; Elhanan, G.; Metcalf, W.J.; Slonim, A.D.; Aweti, R.; Borkowski, R.; Grzymski, J.J. GWAS and PheWAS of red blood cell components in a Northern Nevadan cohort. PLoS ONE 2019, 13, e0218078. [Google Scholar] [CrossRef]
- An, P.; Wu, Q.; Wang, H.; Guan, Y.; Mu, M.; Liao, Y.; Zhou, D.; Song, P.; Wang, C.; Meng, L.; et al. TMPRSS6, but not TF, TFR2 or BMP2 variants are associated with increased risk of iron-deficiency anemia. Hum. Mol. Genet. 2012, 21, 2124–2131. [Google Scholar] [CrossRef]
- Poggiali, E.; Andreozzi, F.; Nava, I.; Consonni, D.; Graziadei, G.; Cappellini, M.D. The role of TMPRSS6 polymorphisms in iron deficiency anemia partially responsive to oral iron treatment. Am. J. Hemat. 2015, 90, 306–309. [Google Scholar] [CrossRef]
- Lone, N.M.; Shah, S.H.S.; Farooq, M.; Arif, M.; Younis, S.; Riaz, S. Role of TMPRSS6 rs855791 (T>C) polymorphism in reproductive age women with iron deficiency anemia from Lahore, Pakistan. Saudi. J. Biol. Sci. 2021, 28, 748–753. [Google Scholar] [CrossRef]
- Drakesmith, H.; Nemeth, E.; Ganz, T. Iron Ferroportin. Cell. Metab. 2015, 22, 777–787. [Google Scholar] [CrossRef] [Green Version]
- Benyamin, B.; Ferreira, M.A.; Willemsen, G.; Gordon, S.; Middelberg, R.P.; McEvoy, B.P.; Hottenga, J.J.; Henders, A.K.; Campbell, M.J.; Wallace, L.; et al. Common variants in TMPRSS6 are associated with iron status and erythrocyte volume. Nat. Genet. 2009, 41, 1173–1175. [Google Scholar] [CrossRef] [PubMed]
Gene Polymorphism | Primer Sequences (Forward and Reverse) | Amplicon Length (bp) | Annealing Temperature (°C) |
---|---|---|---|
SLC40A1 c.44–24G>C (rs1439816) | 5′-GTGGGCAGAGCAGGAGAGAAG-3′ 5′-GATGTGAGCAAAGGGCCAGAC-3′ | 371 | 61 |
SLC40A1 c.663T>C (rs2304704) | 5′-AACGAAATACATCGGTTCATAGG-3′ 5′-ATTAAAGCATGTGTACTTGGATG-3′ | 495 | 58 |
TMPRSS6 c.2207T>C (rs855791) | 5′-GGAATCTATACTCTTGGTTTACAG-3′ 5′-CTTGCCTCGTCTACCAAAGCG-3′ | 337 | 61 |
Genotype of Subjects Carrying Only SLC40A1 Polymorphism: 44 (100) | |
---|---|
c.[44–24G>C];[44–24G>C] | 3 (6.8) |
c.[44–24G>C];[=] | 2 (4.5) |
c.[663T>C];[663T>C] | 7 (16) |
c.[663T>C];[=] | 7 (16) |
c.[44–24G>C];[44–24G>C] c.[663T>C];[663T>C] | 9 (20.4) |
c.[44–24G>C];[44–24G>C] c.[663T>C];[=] | 14 (32) |
c.[44–24G>C];[=] c.[663T>C];[663T>C] | 0 (0) |
c.[44–24G>C];[=] c.[663T>C];[=] | 2 (4.5) |
Genotype of Subjects Carrying Both SLC40A1 and TMPRSS6 Polymorphisms: 35 (100) | ||
---|---|---|
TMPRSS6 | ||
c.[2207T>C];[2207T>C] | c.[2207T>C];[=] | |
SLC40A1 | ||
c.[44–24G>C];[44–24G>C] | 1 (2.9) | 2 (5.7) |
c.[44–24G>C];[=] | 0 (0) | 1 (2.9) |
c.[663T>C];[663T>C] | 0 (0) | 1 (2.9) |
c.[663T>C];[=] | 0 (0) | 0 (0) |
c.[44–24G>C];[44–24G>C] c.[663T>C];[663T>C] | 4 (11.2) | 5 (14.3) |
c.[44–24G>C];[44–24G>C] c.[663T>C];[=] | 7 (20.0) | 9 (25.7) |
c.[44–24G>C];[=] c.[663T>C];[663T>C] | 0 (0) | 1 (2.9) |
c.[44–24G>C];[=] c.[663T>C];[=] | 3 (8.6) | 1 (2.9) |
Polymorphisms | Study Population | 1000 Genomes Study Global Population | ALFA Project Total Population | TOPMED Program |
---|---|---|---|---|
SLC40A1 c.44–24G>C rs1439816 | G 0.74683 | G = 0.6595 | G = 0.78005 | G = 0.682670 |
C 0.25317 | C = 0.3405 | C = 0.21995 | C = 0.317330 | |
SLC40A1 c.663T>C rs2304704 | T 0.38608 | T = 0.4499 | T = 0.392810 | T = 0.477706 |
C 0.61392 | C = 0.5501 | C = 0.607190 | C = 0.522294 | |
TMPRSS6 c.2207T>C rs855791 | T 0.6835 | T = 0.3954 | T = 0.439967 | T = 0.361479 |
C 0.3165 | C = 0.6046 | C = 0.560033 | C = 0.638521 |
Polymorphisms | Number of Subjects | Serum Ferritin (μg/L) | Transferrin Saturation % | Hemoglobin (g/dL) |
---|---|---|---|---|
SLC40A1 | 44 | 702 ± 57 * | 40.2 ± 2.2 ^ | 13.5 ± 0.2 •#° |
SLC40A1 and TMPRSS6 | 35 | 108 ± 23 °# | 25.7 ± 2.9 °# | 12.8 ± 0.4 ° |
TMPRSS6 | 47 | 8 ± 1 √ | 7.1 ± 0.7 √ | 10.5 ± 0.3 ∞ |
Wild-type | 35 | 49 ± 7 | 19.6 ± 1.4 | 12.5 ± 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duca, L.; Granata, F.; Di Pierro, E.; Brancaleoni, V.; Graziadei, G.; Nava, I. Associated Effect of SLC40A1 and TMPRSS6 Polymorphisms on Iron Overload. Metabolites 2022, 12, 919. https://doi.org/10.3390/metabo12100919
Duca L, Granata F, Di Pierro E, Brancaleoni V, Graziadei G, Nava I. Associated Effect of SLC40A1 and TMPRSS6 Polymorphisms on Iron Overload. Metabolites. 2022; 12(10):919. https://doi.org/10.3390/metabo12100919
Chicago/Turabian StyleDuca, Lorena, Francesca Granata, Elena Di Pierro, Valentina Brancaleoni, Giovanna Graziadei, and Isabella Nava. 2022. "Associated Effect of SLC40A1 and TMPRSS6 Polymorphisms on Iron Overload" Metabolites 12, no. 10: 919. https://doi.org/10.3390/metabo12100919
APA StyleDuca, L., Granata, F., Di Pierro, E., Brancaleoni, V., Graziadei, G., & Nava, I. (2022). Associated Effect of SLC40A1 and TMPRSS6 Polymorphisms on Iron Overload. Metabolites, 12(10), 919. https://doi.org/10.3390/metabo12100919