Can Persistent Homology Features Capture More Intrinsic Information about Tumors from 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Images of Head and Neck Cancer Patients?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Cases
2.2. Overall Workflow
2.3. Persistent Homology Images
2.4. Calculating Conventional and Persistent Homology Features
2.5. Building Prediction Models Using Signatures
2.6. Calculation of Rad-Scores and Evaluation of Prediction Models
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vigneswaran, N.; Williams, M.D. Epidemiological trends in head and neck cancer and aids in diagnosis. Oral Maxillofac. Surg. Clin. N. Am. 2014, 26, 123–141. [Google Scholar] [CrossRef] [PubMed]
- Yeh, S.A. Radiotherapy for head and neck cancer. Semin. Plast. Surg. 2010, 24, 127–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferlito, A.; Shaha, A.R.; Silver, C.E.; Rinaldo, A.; Mondin, V. Incidence and sites of distant metastases from head and neck cancer. ORL 2001, 63, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Baxi, S.S.; Pinheiro, C.L.; Patil, M.S.; Pfister, D.G.; Oeffinger, K.C.; Elkin, E.B. Causes of death in long-term survivors of head and neck cancer. Cancer 2014, 120, 1507–1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lassen, P.; Eriksen, J.; Alsner, J.; Hamilton-Dutoit, S.; Overgaard, J. Effect of HPV-associated p16 expression on response to radiotherapy and survival in squamous cell carcinoma of the head and neck. J. Clin. Oncol. 2009, 27, 1992–1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mroz, E.A.; Tward, A.D.; Pickering, C.R.; Myers, J.N.; Ferris, R.L.; Rocco, J.W. High intratumor genetic heterogeneity is related to worse outcome in patients with head and neck squamous cell carcinoma. Cancer 2013, 119, 3034–3042. [Google Scholar] [CrossRef] [PubMed]
- Mroz, E.A.; Tward, A.D.; Hammon, R.J.; Ren, Y.; Rocco, J.W. Intra-tumor genetic heterogeneity and mortality in head and neck cancer: Analysis of data from the Cancer Genome Atlas. PLoS Med. 2015, 12, e1001786, Erratum in: PLoS Med. 2015, 12, e1001818; Erratum in: PLoS Med. 2015, 12, e1001844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mroz, E.A.; Patel, K.B.; Rocco, J.W. Intratumor heterogeneity could inform the use and type of postoperative adjuvant therapy in patients with head and neck squamous cell carcinoma. Cancer 2020, 126, 1895–1904. [Google Scholar] [CrossRef] [PubMed]
- Nitsch, J.; Sack, J.; Halle, M.W.; Moltz, J.H.; Wall, A.; Rutherford, A.E.; Kikinis, R.; Meine, H. MRI-based radiomic feature analysis to end-stage liver disease for severity stratification. Int. J. CARS 2021, 16, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Aerts, H.J.W.L.; Velazquez, E.R.; Leijenaar, R.T.H.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef] [Green Version]
- El Naqa, I.; Grigsby, P.W.; Apte, A.; Kidd, E.; Donnelly, E.; Khullar, D.; Chaudhari, S.; Yang, D.; Schmitt, M.; Laforest, R.; et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recogn. 2009, 42, 1162–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou, D.; Blanchard, P.; Rosellini, S.; Levy, A.; Nguyen, F.; Leijenaar, R.T.H.; Garberis, I.; Gorphe, P.; Bidault, F.; Ferte, C.; et al. Predictive and prognostic value of CT based radiomics signature in locally advanced head and neck cancers patients treated with concurrent chemoradiotherapy or bioradiotherapy and its added value to human papillomavirus status. Oral Oncol. 2017, 71, 150–155. [Google Scholar] [CrossRef]
- Vallières, M.; Kay-Rivest, E.; Perrrin, L.J.; Xavier, L.; Furstoss, C.; Aerts, H.J.W.L.; Khaouam, N.; Nguyen-Tan, P.F.; Wang, C.S.W.; Sultanem, K.; et al. Radiomics strategy for risk assessment of tumour failure in head-and-neck cancer. Sci. Rep. 2017, 7, 10117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edelsbrunner, H.; Harer, J. Computational Topology: An Introduction; American Mathematical Society: Washington, DC, USA, 2010. [Google Scholar]
- Ninomiya, K.; Arimura, H.; Yoshitake, T.; Hirose, T.; Shioyama, Y. Synergistic combination of a topologically invariant imaging signature and a biomarker for the accurate prediction of symptomatic radiation pneumonitis before stereotactic ablative radiotherapy for lung cancer: A retrospective analysis. PLoS ONE 2022, 17, e0263292. [Google Scholar] [CrossRef] [PubMed]
- Kodama, T.; Arimura, H.; Shirakawa, Y.; Ninomiya, K.; Yoshitake, T.; Shioyama, Y. Relapse predictability of topological signature on pretreatment planning CT images of stage I non-small cell lung cancer patients before treatment with stereotactic ablative radiotherapy. Thoracic. Cancer 2022, 13, 2117–2126. [Google Scholar] [CrossRef] [PubMed]
- Zomorodian, A.; Carlsson, G. Computing persistent homology. Discret. Comput. Geom. 2005, 33, 249–274. [Google Scholar] [CrossRef] [Green Version]
- Edelsbrunner, H.; Harer, J. Persistent homology—A survey. Contemp. Math. 2008, 453, 257–282. [Google Scholar] [CrossRef] [Green Version]
- Herman, G.T.; Zheng, J.; Bucholtz, C.A. Shape-based interpolation. IEEE Comput. Graph. Appl. 1992, 12, 69–79. [Google Scholar] [CrossRef]
- Zhao, B.; James, L.P.; Moskowitz, C.S.; Guo, P.; Ginsberg, M.S.; Lefkowitz, R.A.; Qin, Y.; Riely, G.J.; Kris, M.G.; Schwartz, L.H. Evaluating variability in tumor measurement from same-day repeat CT scan of patients with non-small cell lung cancer. Radiology 2009, 252, 263–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, D.R. Regression models and life tables (with discussion). J. R. Statist. Soc. B 1972, 34, 187–220. [Google Scholar] [CrossRef]
- Ninomiya, K.; Arimura, H. Homological radiomics analysis for prognostic prediction in lung cancer patients. Phys. Medica. 2020, 69, 90–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soufi, M.; Arimura, H.; Nagami, N. Identification of optimal mother wavelets in survival prediction of lung cancer patients using wavelet decomposition-based radiomic features. Med. Phys. 2018, 45, 5116–5128. [Google Scholar] [CrossRef] [PubMed]
- Le, Q.C.; Arimura, H.; Ninomiya, K.; Kabata, Y. Radiomic features based on Hessian index for prediction of prognosis in head-and-neck cancer patients. Sci. Rep. 2020, 10, 21301. [Google Scholar] [CrossRef] [PubMed]
- Oyama, A.; Hiraoka, Y.; Obayashi, I.; Saikawa, Y.; Furui, S.; Shiraishi, K.; Kumagai, S.; Hayashi, T.; Kotoku, J. Hepatic tumor classification using texture and topology analysis of non-contrast-enhance three-dimensional T1-weighted MR images with a radiomics approach. Sci. Rep. 2019, 9, 8764. [Google Scholar] [CrossRef] [Green Version]
- Obayashi, I.; Hiraoka, Y.; Kimura, M. Persistence diagrams with linear machine learning models. J. Appl. Comput. Topol. 2018, 1, 421–449. [Google Scholar] [CrossRef] [Green Version]
- Kimura, M.; Obayashi, L.; Takeichi, Y.; Murao, R.; Hiraoka, Y. Non-empirical identification of trigger sites in heterogeneous processes using persistent homology. Sci. Rep. 2018, 8, 3553. [Google Scholar] [CrossRef]
- Adams, H.; Emerson, T.; Kirby, M.; Neville, R.; Peterson, C.; Shipman, P. Persistence images: A stable vector representation of persistent homology. J. Mach. Learn. Res. 2017, 18, 1–35. [Google Scholar]
- Zeppelzauer, M.; Zieliński, B.; Juda, M.; Seidl, M. Topological descriptors for 3D surface analysis. In Proceedings of the Computational Topology in Image Context: 6th International Workshop Proceedings, Marseille, France, 2 June 2016. [Google Scholar]
- Vallières, M.; Freeman, C.R.; Skamene, S.R.; El Naqa, I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys. Med. Biol. 2015, 60, 5471–5496. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, N.; Friedman, J.; Hastie, T.; Tibshirani, R. Regularization paths for Cox’s proportional hazards model via coordinate descent. J. Stat. Soft. 2011, 39, 1–13. [Google Scholar] [CrossRef]
- Tang, C.; Murphy, J.D.; Khong, B.; La, T.H.; Kong, C.; Fischbein, N.J.; Colevas, A.D.; Iagaru, A.H.; Graves, E.E.; Loo, B.W.; et al. Validation that metabolic tumor volume predicts outcome in head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 1514–1520. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.K.; Duin, R.P.W.; Mao, J. Statistical pattern recognition: A review. IEEE Trans. Pattern. Anal. Mach. Intell. 2000, 22, 4–37. [Google Scholar] [CrossRef] [Green Version]
- Fakhry, C.; Westra, H.W.; Li, S.; Cmelak, A.; Ridge, J.A.; Pinto, H.; Forastiere, A.; Gillison, M.L. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J. Natl. Cancer Inst. 2008, 100, 261–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ang, K.K.; Harris, J.; Wheeler, R.; Weber, R.; Rosenthal, D.I.; Nguyen-Tan, P.F.; Westra, W.H.; Chung, C.H.; Jordan, R.C.; Lu, C.; et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N. Engl. J. Med. 2010, 363, 24–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatt, M.; Majdoub, M.; Vallieres, M.; Tixier, F.; Rest, C.C.L.; Groheux, D.; Elif, H.; Martineau, A.; Pradier, O.; Hustinx, R.; et al. 18F-FDG PET uptake characterization through texture analysis: Investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J. Nucl. Med. 2015, 56, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Moons, K.G.M.; Altman, D.G.; Reitsma, J.B.; Ioannidis, J.P.A.; Macaskill, P.; Steyerberg, E.W.; Vickers, A.J.; Ransohoff, D.F.; Collins, G.S. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): Explanation and elaboration. Ann. Intern. Med. 2015, 162, W1–W73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackin, D.; Fave, X.; Zhang, L.; Fried, D.; Yang, J.; Taylor, B.; Rodriguez-Rivera, E.; Dodge, C.; Jones, A.K.; Court, L. Measuring CT scanner variability of radiomics features. Investig. Radiol. 2015, 50, 757–765. [Google Scholar] [CrossRef]
- Li, Y.; Lu, L.; Xiao, M.; Dercle, L.; Huang, Y.; Zhang, Z.; Schwartz, L.H.; Li, D.; Zhao, B. CT slice thickness and convolutional kernel affect performance of a radiomic model for predicting EGFR status in non-small cell lung cancer: A preliminary study. Sci. Rep. 2018, 8, 17913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albano, D.; Gatta, R.; Marini, M.; Rodella, C.; Camoni, L.; Dondi, F.; Giubbini, R.; Bertagna, F. Role of 18F-FDG PET/CT Radiomics Features in the Differential Diagnosis of Solitary Pulmonary Nodules: Diagnostic Accuracy and Comparison between Two Different PET/CT Scanners. J. Clin. Med. 2021, 10, 5064. [Google Scholar] [CrossRef] [PubMed]
- Dondi, F.; Pasinetti, N.; Gatta, R.; Albano, D.; Giubbini, R.; Bertagna, F. Comparison between Two Different Scanners for the Evaluation of the Role of 18F-FDG PET/CT Semiquantitative Parameters and Radiomics Features in the Prediction of Final Diagnosis of Thyroid Incidentalomas. J. Clin. Med. 2022, 11, 615. [Google Scholar] [CrossRef]
- Wei, L.; Rosen, B.; Vallières, M.; Chotchutipan, T.; Mierzwa, M.; Eisbruch, A.; El Naqa, I. Automatic recognition and analysis of metal streak artifacts in head and neck computed tomography for radiomics modeling. Phys. Imaging Radiat. Oncol. 2019, 10, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Assefa, D.; Keller, H.; Ménard, C.; Laperriere, N.; Ferrari, R.J.; Yeung, I. Robust texture features for response monitoring of glioblastoma multiforme on T1-weighted and T2-FLAIR MR images: A preliminary investigation in terms of identification and segmentation. Med. Phys. 2010, 34, 722–736. [Google Scholar] [CrossRef] [PubMed]
- Thibault, G. Indices de Formes et de Textures: De la 2D vers la 3D Application au Classement de Noyaux de Cellules. Ph.D. Thesis, University AIX-Marseille, Marseille, France, 2009. [Google Scholar]
- Galloway, M.M. Texture analysis using gray level run lengths. Comput. Graph. Image Process. 1975, 4, 172–179. [Google Scholar] [CrossRef]
- Chu, A.; Sehgal, C.; Greenleaf, J. Use of gray level distribution of run lengths for texture analysis. Pattern Recognit. Lett. 1990, 11, 415–419. [Google Scholar] [CrossRef]
- Dasarathy, B.; Holder, E. Image characterizations based on joint gray-level run length distributions. Pattern Recogn. Lett. 1991, 12, 497–502. [Google Scholar] [CrossRef]
- Thibault, G.; Fertil, B.; Navarro, C.; Pereira, S.; Cau, P.; Levy, N.; Sequeira, J.; Mari, J. Texture indexes and gray level size zone matrix: Application to cell nuclei Classification. In Proceedings of the 10th International Conference on Pattern Recognition and Information Processing, Minsk, Belarus, 19–21 May 2009. [Google Scholar]
- Amadasun, M.; King, R. Textural features corresponding to textural properties. IEEE Trans. Syst. Man Cybern. 1989, 19, 1264–1274. [Google Scholar] [CrossRef]
- Sun, C.; Wee, W.G. Neighboring gray level dependence matrix for texture classification. Comput. Vis. Graph. Image Process. 1983, 23, 341–352. [Google Scholar] [CrossRef]
Training Cohort (n = 134) | Test Cohort (n = 73) | |
---|---|---|
Age [years] () | 18–84 (62) | 44–90 (64) |
Sex (Male/Female) | 103/31 | 54/19 |
Tumor volume [cm3] (median) | 1.98–348.62 (37.06) | 3.31–245.45 (36.42) |
Human papilloma virus (HPV) status (positive/negative/no information) | 41/24/69 | 16/2/55 |
T stage (T1/T2/T3/T4/T4A/T4B) | 20/42/49/14/6/3 | 6/35/17/11/2/2 |
N stage (N0/N1/N2/N2A/N2B/N2C/N3/N3B) | 31/19/31/7/27/15/4/0 | 7/11/29/0/9/10/6/1 |
M stage (M0) | 134 | 73 |
TNM stage (I/II/IIB/III/IV/IVA/IVB) | 2/11/1/36/0/76/8 | 0/4/1/10/36/17/5 |
Survival censorship (Event/Censor) | 111/23 | 20/53 |
Site (Larynx/Oropharynx/ Nasopharynx/Hypopharynx) | 22/94/16/2 | 6/55/6/6 |
1 Clinical Signature | 3 Conventional Signatures | 3 PH Signatures | 6 Combined Signatures |
---|---|---|---|
Clinical | Conventional CT | PH-CT | Conventional CT + clinical |
Conventional PET | PH-PET | Conventional PET + clinical | |
Conventional PET/CT | PH-PET/CT | Conventional PET/CT + clinical | |
PH-CT + clinical | |||
PH-PET + clinical | |||
PH-PET/CT + clinical |
Training Cohort | Test Cohort | |||
---|---|---|---|---|
p-Value | C-Index (95% CI) | p-Value | C-Index (95% CI) | |
Clinical signature | 1.18 10−3 | 0.77 (0.75–0.79) | 2.30 10−4 | 0.75 (0.73–0.78) |
Conventional CT signature | 2.03 10−4 | 0.75 (0.73–0.76) | 2.24 10−3 | 0.35 (0.32–0.39) |
Conventional PET signature | 9.65 10−1 | 0.53 (0.51–0.55) | 2.32 10−2 | 0.66 (0.63–0.69) |
Conventional PET/CT signature | 4.96 10−3 | 0.72 (0.70–0.74) | 1.68 10−2 | 0.71 (0.68–0.74) |
PH-CT signature | 1.62 10−2 | 0.64 (0.63–0.66) | 1.39 10−3 | 0.34 (0.32–0.36) |
PH-PET signature | 1.08 10−2 | 0.73 (0.71–0.75) | 7.96 10−4 | 0.75 (0.73–0.78) |
PH-PET/CT signature | 7.83 10−4 | 0.68 (0.66–0.69) | 4.25 10−4 | 0.66 (0.63–0.68) |
Clinical + Conventional CT signature | 4.46 10−3 | 0.8 (0.78–0.81) | 3.52 10−2 | 0.39 (0.36–0.43) |
Clinical + Conventional PET signature | 1.18 10−3 | 0.77 (0.75–0.79) | 4.72 10−4 | 0.75 (0.73–0.78) |
Clinical + Conventional PET/CT signature | 5.26 10−4 | 0.82 (0.81–0.83) | 1.47 10−4 | 0.79 (0.77–0.81) |
Clinical + PH-CT signature | 4.89 10−3 | 0.77 (0.75–0.79) | 1.15 10−4 | 0.73 (0.71–0.76) |
Clinical + PH-PET signature | 8.53 10−6 | 0.82 (0.81–0.83) | 3.30 10−5 | 0.80 (0.78–0.82) |
Clinical + PH-PET/CT signature | 3.79 10−4 | 0.78 (0.76–0.79) | 5.69 10−4 | 0.78 (0.76–0.80) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, Q.C.; Arimura, H.; Ninomiya, K.; Kodama, T.; Moriyama, T. Can Persistent Homology Features Capture More Intrinsic Information about Tumors from 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Images of Head and Neck Cancer Patients? Metabolites 2022, 12, 972. https://doi.org/10.3390/metabo12100972
Le QC, Arimura H, Ninomiya K, Kodama T, Moriyama T. Can Persistent Homology Features Capture More Intrinsic Information about Tumors from 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Images of Head and Neck Cancer Patients? Metabolites. 2022; 12(10):972. https://doi.org/10.3390/metabo12100972
Chicago/Turabian StyleLe, Quoc Cuong, Hidetaka Arimura, Kenta Ninomiya, Takumi Kodama, and Tetsuhiro Moriyama. 2022. "Can Persistent Homology Features Capture More Intrinsic Information about Tumors from 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Images of Head and Neck Cancer Patients?" Metabolites 12, no. 10: 972. https://doi.org/10.3390/metabo12100972
APA StyleLe, Q. C., Arimura, H., Ninomiya, K., Kodama, T., & Moriyama, T. (2022). Can Persistent Homology Features Capture More Intrinsic Information about Tumors from 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Images of Head and Neck Cancer Patients? Metabolites, 12(10), 972. https://doi.org/10.3390/metabo12100972