Mechanisms of Ardisia japonica in the Treatment of Hepatic Injury in Rats Based on LC-MS Metabolomics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Preparation of Aqueous Extracts of A. japonica
2.3. Grouping, Modeling and Administration of Experimental Animals
2.4. Detection of Biochemical Indicators and Oxidative Markers in Hepatocytes
2.5. Metabolites Extraction from Plasma
2.6. LC-MS Analysis
2.7. Data Processing and Statistical Analysis
3. Results
3.1. Therapeutic Effect of A. japonica on Con A-Induced Immune Liver Injury
3.2. Alleviating Oxidative Stress Induced by Acute Liver Injury
3.3. Stability of Equipment
3.4. Multivariate Statistical Analysis
3.4.1. PCA and PLS-DA Analysis
3.4.2. Orthogonal PLS-DA Analysis
3.5. Screening and Identification of Potential Biomarkers
3.6. Differential Metabolic Pathway Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krawitt, E.L. Medical progress-Autoimmune hepatitis. N. Engl. J. Med. 1996, 334, 897–903. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.X.; Yang, F.; Miao, Q.; Krawitt, E.L.; Gershwin, M.E.; Ma, X. The clinical phenotypes of autoimmune hepatitis: A comprehensive review. J. Autoimmun. 2016, 66, 98–107. [Google Scholar] [CrossRef]
- Feld, J.J.; Dinh, H.; Arenovich, T.; Marcus, V.A.; Wanless, I.R.; Heathcote, E.J. Autoimmune hepatitis: Effect of symptoms and cirrhosis on natural history and outcome. Hepatology 2005, 42, 53–62. [Google Scholar] [CrossRef]
- Yu, K.Y.; Gao, W.; Li, S.Z.; Wu, W.; Li, P.; Dou, L.L.; Wang, Y.Z.; Liu, E.H. Qualitative and quantitative analysis of chemical constituents in Ardisiae Japonicae Herba. J. Sep. Sci. 2017, 40, 4347–4356. [Google Scholar] [CrossRef]
- Yu, K.Y.; Wu, W.; Li, S.Z.; Dou, L.L.; Liu, L.L.; Li, P.; Liu, E.H. A new compound, methylbergenin along with eight known compounds with cytotoxicity and anti-inflammatory activity from Ardisia japonica. Nat. Prod. Res. 2017, 31, 2581–2586. [Google Scholar] [CrossRef]
- Chen, Y.; Du, K.Z.; Li, J.; Bai, Y.; An, M.R.; Tan, Z.J.; Chang, Y.X. A Green and Efficient Method for the Preconcentration and Determination of Gallic Acid, Bergenin, Quercitrin, and Embelin from Ardisia japonica Using Nononic Surfactant Genapol X-080 as the Extraction Solvent. Int. J. Anal. Chem. 2018, 2018, 1707853. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Li, W.; Hui, L.P.; Zhao, C.Y.; He, L.; Koike, K. 13,28-Epoxy triterpenoid saponins from Ardisia japonica selectively inhibit proliferation of liver cancer cells without affecting normal liver cells. Bioorg. Med. Chem. Lett. 2012, 22, 6120–6125. [Google Scholar] [CrossRef]
- Lee, I.S.; Cho, D.H.; Kim, K.S.; Kim, K.H.; Park, J.; Kim, Y.; Jung, J.H.; Kim, K.; Jung, H.J.; Jang, H.J. Anti-inflammatory effects of embelin in A549 cells and human asthmatic airway epithelial tissues. Immunopharmacol. Immunotoxicol. 2018, 40, 83–90. [Google Scholar] [CrossRef]
- Feng, S.X.; Han, X.X.; Zhao, D.; Li, R.R.; Liu, X.F.; Tian, Y.G.; Li, J.S. Simultaneous quantitation of 31 bioactive components in different parts of Ardisiae Japonicae Herba from different regions by UPLC-Orbitrap Fusion MS. J. Liq. Chromatogr. Relat. Technol. 2021, 44, 649–662. [Google Scholar] [CrossRef]
- Wan, J.B.; Bai, X.; Cai, X.J.; Rao, Y.; Wang, Y.S.; Wang, Y.T. Chemical differentiation of Da-Cheng-Qi-Tang, a Chinese medicine formula, prepared by traditional and modern decoction methods using UPLC/Q-TOFMS-based metabolomics approach. J. Pharm. Biomed. Anal. 2013, 83, 34–42. [Google Scholar] [CrossRef]
- Wang, X.J.; Zhang, A.H.; Sun, H. Future Perspectives of Chinese Medical Formulae: Chinmedomics as an Effector. Omics-A J. Integr. Biol. 2012, 16, 414–421. [Google Scholar] [CrossRef]
- Gou, X.J.; Tao, Q.; Feng, Q.; Peng, J.H.; Sun, S.J.; Cao, H.J.; Zheng, N.N.; Zhang, Y.Y.; Hu, Y.Y.; Liu, P. Urinary metabonomics characterization of liver fibrosis induced by CCl4 in rats and intervention effects of Xia Yu Xue Decoction. J. Pharm. Biomed. Anal. 2013, 74, 62–65. [Google Scholar] [CrossRef]
- Liu, C.T.; Raghu, R.; Lin, S.H.; Wang, S.Y.; Kuo, C.H.; Tseng, Y.F.J.; Sheen, L.Y. Metabolomics of Ginger Essential Oil against Alcoholic Fatty Liver in Mice. J. Agric. Food Chem. 2013, 61, 11231–11240. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, A.H.; Zou, D.X.; Sun, W.J.; Wu, X.H.; Wang, X.J. Metabolomics Coupled with Pattern Recognition and Pathway Analysis on Potential Biomarkers in Liver Injury and Hepatoprotective Effects of Yinchenhao. Appl. Biochem. Biotechnol. 2014, 173, 857–869. [Google Scholar] [CrossRef]
- Wang, B.H.; Chen, D.Y.; Chen, Y.; Hu, Z.H.; Cao, M.; Xie, Q.; Chen, Y.F.; Xu, J.L.; Zheng, S.S.; Li, L.J. Metabonomic Profiles Discriminate Hepatocellular Carcinoma from Liver Cirrhosis by Ultraperformance Liquid Chromatography-Mass Spectrometry. J. Proteome Res. 2012, 11, 1217–1227. [Google Scholar] [CrossRef]
- Seo, H.; Kim, H. Effect of Chungkukjang power feeding and exercise training on blood lipids concentration and SOD activity, MDA content in Sprague-Dawley male rats. Korean Soc. Sports Sci. 2008, 17, 1571–1580. [Google Scholar]
- Want, E.J.; O’Maille, G.; Smith, C.A.; Brandon, T.R.; Uritboonthai, W.; Qin, C.; Trauger, S.A.; Siuzdak, G. Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal. Chem. 2006, 78, 743–752. [Google Scholar] [CrossRef]
- Barri, T.; Dragsted, L.O. UPLC-ESI-QTOF/MS and multivariate data analysis for blood plasma and serum metabolomics: Effect of experimental artefacts and anticoagulant. Anal. Chim. Acta 2013, 768, 118–128. [Google Scholar] [CrossRef]
- Want, E.J.; Masson, P.; Michopoulos, F.; Wilson, I.D.; Theodoridis, G.; Plumb, R.S.; Shockcor, J.; Loftus, N.; Holmes, E.; Nicholson, J.K. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat. Protoc. 2013, 8, 17–32. [Google Scholar] [CrossRef]
- Burak, K.W.; Swain, M.G.; Santodomino-Garzon, T.; Lee, S.S.; Urbanski, S.J.; Aspinall, A.I.; Coffin, C.S.; Myers, R.P. Rituximab for the treatment of patients with autoimmune hepatitis who are refractory or intolerant to standard therapy. Can. J. Gastroenterol. Hepatol. 2013, 27, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Burak, E.; Yogev, O.; Sheffer, S.; Schueler-Furman, O.; Pines, O. Evolving Dual Targeting of a Prokaryotic Protein in Yeast. Mol. Biol. Evol. 2013, 30, 1563–1573. [Google Scholar] [CrossRef]
- Krawitt, E.L. Medical progress: Autoimmune hepatitis. N. Engl. J. Med. 2006, 354, 54–66. [Google Scholar] [CrossRef] [Green Version]
- Czaja, A.J. Performance Parameters of the Diagnostic Scoring Systems for Autoimmune Hepatitis. Hepatology 2008, 48, 1540–1548. [Google Scholar] [CrossRef]
- Johnson, P.J.; McFarlane, I.G.; Alvarez, F.; Bianchi, F.B.; Bianchi, L.; Burroughs, A.; Chapman, R.W.; Czaja, A.J.; Desmet, V.; Eddleston, A.; et al. Meeting Report-International-Autoimmune-Hepatitis-GrOUP. Hepatology 1993, 18, 998–1005. [Google Scholar] [CrossRef]
- Alvarez, E.; Berg, P.A.; Bianchi, F.B.; Bianchi, L.; Burroughs, A.K.; Cancado, E.L.; Chapman, R.W.; Cooksley, W.G.E.; Czaja, A.J.; Desmet, V.J.; et al. International Autoimmune Hepatitis Group Report: Review of criteria for diagnosis of autoimmune hepatitis. J. Hepatol. 1999, 31, 929–938. [Google Scholar] [CrossRef]
- Hennes, E.M.; Zeniya, M.; Czaja, A.J.; Pares, A.; Dalekos, G.N.; Krawitt, E.L.; Bittencourt, P.L.; Porta, G.; Boberg, K.M.; Hofer, H.; et al. Simplified criteria for the diagnosis of autoimmune hepatitis. Hepatology 2008, 48, 169–176. [Google Scholar] [CrossRef]
- Zachou, K.; Muratori, P.; Koukoulis, G.K.; Granito, A.; Gatselis, N.; Fabbri, A.; Dalekos, G.N.; Muratori, L. Review article: Autoimmune hepatitis-current management and challenges. Aliment. Pharmacol. Ther. 2013, 38, 887–913. [Google Scholar] [CrossRef]
- Muratori, P.; Granito, A.; Quarneti, C.; Ferri, S.; Menichella, R.; Cassani, F.; Pappas, G.; Bianchi, F.B.; Lenzi, M.; Muratori, L. Autoimmune hepatitis in Italy: The Bologna experience. J. Hepatol. 2009, 50, 1210–1218. [Google Scholar] [CrossRef]
- Al-Chalabi, T.; Underhill, J.A.; Portmann, B.C.; McFarlane, I.G.; Heneghan, M.A. Impact of gender on the long-term outcome and survival of patients with autoimmune hepatitis. J. Hepatol. 2008, 48, 140–147. [Google Scholar] [CrossRef]
- Floreani, A.; Niro, G.; Rizzotto, E.R.; Antoniazzi, S.; Ferrara, F.; Carderi, I.; Baldo, V.; Premoli, A.; Olivero, F.; Morello, E.; et al. Type I autoimmune hepatitis: Clinical course and outcome in an Italian multicentre study. Aliment. Pharmacol. Ther. 2006, 24, 1051–1057. [Google Scholar] [CrossRef]
- Pan, C.W.; Zhou, G.Y.; Chen, W.L.; Lu, Z.G.; Jin, L.X.; Zheng, Y.; Lin, W.; Pan, Z.Z. Protective effect of forsythiaside A on lipopolysaccharide/D-galactosamine-induced liver injury. Int. Immunopharmacol. 2015, 26, 80–85. [Google Scholar] [CrossRef]
- Covelli, C.; Sacchi, D.; Sarcognato, S.; Cazzagon, N.; Grillo, F.; Baciorri, F.; Fanni, D.; Cacciatore, M.; Maffeis, V.; Guido, M. Pathology of autoimmune hepatitis. Pathologica 2021, 113, 185–193. [Google Scholar] [CrossRef]
- Adil, N.; Siddiqui, A.J.; Musharraf, S.G. Metabolomics-based researches in autoimmune liver disease: A mini-review. Scand. J. Immunol. 2022, 96, e13208. [Google Scholar] [CrossRef]
- Yang, F.; Zhou, L.; Shen, Y.; Zhao, S.; Zheng, Y.; Men, R.; Fan, X.; Yang, L. Metabolic heterogeneity caused by HLA-DRB1*04:05 and protective effect of inosine on autoimmune hepatitis. Front. Immunol. 2022, 13, 982186. [Google Scholar] [CrossRef]
- Zhou, M.X.; Cheng, C.; Han, Y.Z.; Huang, Y.; Niu, M.; He, X.; Liu, Y.; Xiao, X.H.; Wang, J.B.; Ma, Z.T. Metabolomic profiling and discrimination of autoimmune hepatitis, primary biliary cholangitis, and overlap syndrome. Chin. Sci. Bull.-Chin. 2022, 67, 2553–2564. [Google Scholar] [CrossRef]
- Wang, J.B.; Pu, S.B.; Sun, Y.; Li, Z.F.; Niu, M.; Yan, X.Z.; Zhao, Y.L.; Wang, L.F.; Qin, X.M.; Ma, Z.J.; et al. Metabolomic Profiling of Autoimmune Hepatitis: The Diagnostic Utility of Nuclear Magnetic Resonance Spectroscopy. J. Proteome Res. 2014, 13, 3792–3801. [Google Scholar] [CrossRef]
- Dunn, W.B.; Broadhurst, D.; Begley, P.; Zelena, E.; Francis-McIntyre, S.; Anderson, N.; Brown, M.; Knowles, J.D.; Halsall, A.; Haselden, J.N.; et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2011, 6, 1060–1083. [Google Scholar] [CrossRef]
- Want, E.J.; Wilson, I.D.; Gika, H.; Theodoridis, G.; Plumb, R.S.; Shockcor, J.; Holmes, E.; Nicholson, J.K. Global metabolic profiling procedures for urine using UPLC-MS. Nat. Protoc. 2010, 5, 1005–1018. [Google Scholar] [CrossRef]
- Rao, G.D.; Sui, J.K.; Zhang, J.G. Metabolomics reveals significant variations in metabolites and correlations regarding the maturation of walnuts (Juglans regia L.). Biol. Open 2016, 5, 829–836. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, T.; Kessoku, T.; Ozaki, A.; Iwaki, M.; Honda, Y.; Ogawa, Y.; Imajo, K.; Yoneda, M.; Saito, S.; Nakajima, A. Vitamin B6 efficacy in the treatment of nonalcoholic fatty liver disease: An open-label, single-arm, single-center trial. J. Clin. Biochem. Nutr. 2021, 68, 181–186. [Google Scholar] [CrossRef]
- Leevy, C.M.; Cardi, L.; Frank, O.; Gellene, R.; Baker, H. Incidence and Significance of Hypovitaminemia in a Randomly Selected Municipal Hospital Population. Am. J. Clin. Nutr. 1965, 17, 259–271. [Google Scholar] [CrossRef]
- Leung, T.M.; Nieto, N. CYP2E1 and oxidant stress in alcoholic and non-alcoholic fatty liver disease. J. Hepatol. 2013, 58, 395–398. [Google Scholar] [CrossRef] [Green Version]
- Ciccarone, F.; Vegliante, R.; Di Leo, L.; Ciriolo, M.R. The TCA cycle as a bridge between oncometabolism and DNA transactions in cancer. Semin. Cancer Biol. 2017, 47, 50–56. [Google Scholar] [CrossRef]
- Hada, K.; Hirota, K.; Inanobe, A.; Kako, K.; Miyata, M.; Araoi, S.; Matsumoto, M.; Ohta, R.; Arisawa, M.; Daitoku, H.; et al. Tricarboxylic acid cycle activity suppresses acetylation of mitochondrial proteins during early embryonic development in Caenorhabditis elegans. J. Biol. Chem. 2019, 294, 3091–3099. [Google Scholar] [CrossRef] [Green Version]
- Hara, S.; Motohashi, K.; Arisaka, F.; Romano, P.G.N.; Hosoya-Matsuda, N.; Kikuchi, N.; Fusada, N.; Hisabori, T. Thioredoxin-h1 reduces and reactivates the oxidized cytosolic malate dehydrogenase dimer in higher plants. J. Biol. Chem. 2006, 281, 32065–32071. [Google Scholar] [CrossRef] [Green Version]
- Neufeld-Cohen, A.; Robles, M.S.; Aviram, R.; Manella, G.; Adamovich, Y.; Ladeuix, B.; Nir, D.; Rousso-Noori, L.; Kuperman, Y.; Golik, M.; et al. Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins. Proc. Natl. Acad. Sci. USA 2016, 113, E1673–E1682. [Google Scholar] [CrossRef] [Green Version]
- Tannahill, G.M.; Curtis, A.M.; Adamik, J.; Palsson-McDermott, E.M.; McGettrick, A.F.; Goel, G.; Frezza, C.; Bernard, N.J.; Kelly, B.; Foley, N.H.; et al. Succinate is an inflammatory signal that induces IL-1 beta through HIF-1 alpha. Nature 2013, 496, 238–242. [Google Scholar] [CrossRef] [Green Version]
- Lampropoulou, V.; Sergushichev, A.; Bambouskova, M.; Nair, S.; Vincent, E.E.; Loginicheva, E.; Cervantes-Barragan, L.; Ma, X.C.; Huang, S.C.C.; Griss, T.; et al. Itaconate Links Inhibition of Succinate Dehydrogenase with Macrophage Metabolic Remodeling and Regulation of Inflammation. Cell Metab. 2016, 24, 158–166. [Google Scholar] [CrossRef] [Green Version]
- Murphy, M.P.; O’Neill, L.A.J. Krebs Cycle Reimagined: The Emerging Roles of Succinate and Itaconate as Signal Transducers. Cell 2018, 174, 780–784. [Google Scholar] [CrossRef] [Green Version]
- Kelly, B.; O’Neill, L.A.J. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 2015, 25, 771–784. [Google Scholar] [CrossRef] [Green Version]
- Littlewood-Evans, A.; Sarret, S.; Apfel, V.; Loesle, P.; Dawson, J.; Zhang, J.; Muller, A.; Tigani, B.; Kneuer, R.; Patel, S.; et al. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. J. Exp. Med. 2016, 213, 1655–1662. [Google Scholar] [CrossRef]
- Cordes, T.; Wallace, M.; Michelucci, A.; Divakaruni, A.S.; Sapcariu, S.C.; Sousa, C.; Koseki, H.; Cabrales, P.; Murphy, A.N.; Hiller, K.; et al. Immunoresponsive Gene 1 and Itaconate Inhibit Succinate Dehydrogenase to Modulate Intracellular Succinate Levels. J. Biol. Chem. 2016, 291, 14274–14284. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.W.; Meyers, A.; Long, D.; Ingram, B.; Liu, T.F.; Yoza, B.K.; Vachharajani, V.; McCall, C.E. Frontline Science: Monocytes sequentially rewire metabolism and bioenergetics during an acute inflammatory response. J. Leukoc. Biol. 2019, 105, 215–228. [Google Scholar] [CrossRef]
- Patil, N.K.; Bohannon, J.K.; Hernandez, A.; Patil, T.K.; Sherwood, E.R. Regulation of leukocyte function by citric acid cycle intermediates. J. Leukoc. Biol. 2019, 106, 105–117. [Google Scholar] [CrossRef]
No. | ESI Mode | Metabolites | Formula | Molecular Weight | RT [min] | m/z | Normal vs. Model Trend | Model vs. EJA Trend |
---|---|---|---|---|---|---|---|---|
1 | + | 2,5-Furandicarboxylic acid | C6H4O5 | 156.0062 | 2.077 | 157.0135 | Down | Up |
2 | + | L-Pyroglutamic acid | C5 H7 NO3 | 129.0428 | 2.152 | 130.0501 | Up | Down |
3 | + | Docosapentaenoic acid | C22H34O2 | 330.256 | 10.248 | 331.2632 | Up | Down |
4 | + | Sinapinic acid | C11H12O5 | 208.0945 | 1.393 | 247.0577 | Up | Down |
5 | + | Adrenic acid | C22H36O2 | 332.2716 | 10.72 | 333.279 | Up | Down |
6 | + | Glycerol-3-phosphate | C3 H9 O6 P | 172.0139 | 1.408 | 173.0213 | Up | Down |
7 | + | D-Galactosamine | C6H14ClNO5 | 215.0561 | 1.285 | 216.0633 | Up | Down |
8 | + | 2-(acetylamino)-3-[4-(acetylamino) phenyl] acrylic acid | C13H14N2O4 | 262.0957 | 5.447 | 263.1031 | Down | Up |
9 | + | 18-HETE | C20H32O3 | 302.2247 | 9.57 | 303.232 | Down | Up |
10 | + | TQH | C15H24N6O6 | 384.1753 | 10.25 | 385.1826 | Up | Down |
11 | − | ®-3-Hydroxy myristic acid | C14H28O3 | 244.2034 | 8.453 | 243.1962 | Up | Down |
12 | − | Estriol | C18H24O3 | 288.1755 | 7.509 | 287.1682 | Down | Up |
13 | − | LPE 14:0 | C19H40NO7P | 425.2535 | 8.625 | 424.2463 | Down | Up |
14 | − | Glutathione | C10H17N3O6S | 307.0832 | 1.886 | 306.0759 | Up | Down |
15 | − | LPE 17:0 | C22H46NO7P | 467.3004 | 9.89 | 466.2933 | Down | Up |
16 | − | Pregnenolone | C21H32O2 | 316.2397 | 9.904 | 315.2325 | Up | Down |
17 | − | FAHFA (16:0/22:5) | C38H64O4 | 584.4773 | 10.464 | 583.47 | Up | Down |
18 | − | LPE 18:2 | C23H44NO7P | 477.2853 | 9.152 | 476.2779 | Down | Up |
19 | − | LPE 18:1 | C23H46NO7P | 479.3009 | 9.69 | 478.2936 | Down | Up |
20 | − | AcylGlcADG (14:0-14:0–18:1) | C55H100O12 | 952.7035 | 10.714 | 951.695 | Up | Down |
21 | − | PC (16:0/20:5) | C44H78NO8P | 825.5531 | 10.883 | 824.546 | Down | Up |
22 | − | 2-chloro-4-(dimethylamino) benzaldehyde 1-(2-quinoxalinyl) hydrazone | C17H16ClN5 | 325.1101 | 8.069 | 324.1027 | Up | Down |
23 | − | (±)11(12)-EET | C20H32O3 | 320.2345 | 9.102 | 319.2272 | Up | Down |
24 | − | NSI-189 | C22H30N4O | 366.2402 | 6.701 | 365.2329 | Up | Down |
25 | − | PE (18:0/20:5) | C43H76NO8P | 765.5305 | 10.867 | 764.5229 | Down | Up |
26 | − | Docosatrienoic Acid | C22H38O2 | 334.2866 | 11.252 | 333.2794 | Up | Down |
27 | − | LPE 18:0 | C23H48NO7P | 481.3168 | 10.295 | 480.3094 | Down | Up |
28 | − | 2,6-Dihydroxybenzoic acid | C7H6O4 | 154.0264 | 5.385 | 153.0191 | Down | Up |
29 | − | N-benzyl-3-(4-chlorophenyl)-4,5-dihydro-5-isoxazolecarboxamide | C17H15ClN2O2 | 314.0816 | 7.23 | 313.0745 | Up | Down |
30 | − | Cer-NP (t18:0/16:0) | C34H69NO4 | 601.5279 | 9.819 | 600.5206 | Down | Up |
31 | − | N-Oleoyl Glycine | C20H37NO3 | 339.2771 | 9.906 | 338.2699 | Up | Down |
32 | − | Androsterone | C19H30O2 | 290.224 | 9.733 | 289.2167 | Up | Down |
33 | − | all-cis-4,7,10,13,16-Docosapentaenoic acid | C22H34O2 | 330.2558 | 10.256 | 329.2481 | Up | Down |
34 | − | PE (16:0/16:0) | C37H74NO8P | 691.5156 | 11.441 | 690.5097 | Down | Up |
35 | − | PE (16:0e/20:4) | C41H76NO7P | 725.5358 | 11.462 | 724.529 | Down | Up |
36 | − | Glycerol 3-phosphate | C3H9O6P | 172.0134 | 1.418 | 171.0061 | Up | Down |
37 | − | LPE 15:0 | C20H42NO7P | 439.269 | 9.053 | 438.2615 | Down | Up |
38 | − | LPE 19:0 | C24H50NO7P | 495.3317 | 10.563 | 494.3244 | Down | Up |
39 | − | N-Formylkynurenine | C11H12N2O4 | 236.0792 | 5.186 | 235.072 | Down | Up |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, T.; Qin, S.; He, H.; Zhang, K.; Zhang, W.; Tang, X.; Wu, W. Mechanisms of Ardisia japonica in the Treatment of Hepatic Injury in Rats Based on LC-MS Metabolomics. Metabolites 2022, 12, 981. https://doi.org/10.3390/metabo12100981
Fu T, Qin S, He H, Zhang K, Zhang W, Tang X, Wu W. Mechanisms of Ardisia japonica in the Treatment of Hepatic Injury in Rats Based on LC-MS Metabolomics. Metabolites. 2022; 12(10):981. https://doi.org/10.3390/metabo12100981
Chicago/Turabian StyleFu, Tian, Shuiling Qin, Huajuan He, Kefeng Zhang, Wei Zhang, Xin Tang, and Wei Wu. 2022. "Mechanisms of Ardisia japonica in the Treatment of Hepatic Injury in Rats Based on LC-MS Metabolomics" Metabolites 12, no. 10: 981. https://doi.org/10.3390/metabo12100981
APA StyleFu, T., Qin, S., He, H., Zhang, K., Zhang, W., Tang, X., & Wu, W. (2022). Mechanisms of Ardisia japonica in the Treatment of Hepatic Injury in Rats Based on LC-MS Metabolomics. Metabolites, 12(10), 981. https://doi.org/10.3390/metabo12100981