Plasma Metabolomics Reveals β-Glucan Improves Muscle Strength and Exercise Capacity in Athletes
Abstract
:1. Introduction
2. Material and Methods
2.1. Participants
2.2. Inclusion of Study Subjects
- (1)
- Inclusion criteria
- ①
- Professional table tennis players with a national certificate of Level 2 and above.
- ②
- Age: 18–23 years old.
- ③
- Body mass index: 18.5–23.9 kg/m2.
- ④
- Consent and sign the informed consent form.
- (2)
- Exclusion criteria
- ①
- Have cardiovascular, liver, kidney, respiratory diseases, and any chronic or malignant diseases.
- ②
- Allergies or intolerances.
- ③
- Participate in other nutrition studies.
2.3. Interventions
2.3.1. Randomization
2.3.2. Intervention Protocol
- (1)
- Health lectures
- (2)
- Nutritional supplement program
- (3)
- Dietary records
- (4)
- Exercise records
2.4. Test Indicators
2.4.1. Primary Outcome Measures
- (1)
- Muscle strength [27]
- ①
- Grip strength
- ②
- Deltoid strength
- ③
- Biceps strength of brachii
- ④
- Triceps muscle strength
- ⑤
- Quadriceps muscle strength
- (2)
- Muscle mass
2.4.2. Secondary Outcome Measures
- (1)
- Height and weight
- (2)
- Blood pressure
- (3)
- Body composition [28]
- (4)
- Aerobic endurance
- ①
- 1 min double shake jump
- ②
- Maximal oxygen consumption (VO2max)
- (5)
- Immune function
- (6)
- Blood lipids test
2.5. Sample Preparation and LC-MS/MS Analysis
2.6. Statistical Analysis
3. Results
3.1. Effects of β-Glucan on Muscle Strength in Athletes
3.2. Effects of β-Glucan Supplementation on Aerobic Endurance of Athletes
3.3. Plasma Metabolomic Profiling Reveals an Apparent Distinction between β-Glucan Treatment and Placebo Group
4. Discussion
5. Conclusions
6. Limitations of Study
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, X.; Yao, T.; Wang, R.; Guo, S.; Wang, X.; Zhou, Z.; Zhang, Y.; Zhuo, X.; Wang, R.; Li, J.Z.; et al. IRF4 in Skeletal Muscle Regulates Exercise Capacity via PTG/Glycogen Pathway. Adv. Sci. 2020, 7, 2001502. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Yao, T.; Zhou, P.; Kazak, L.; Tenen, D.; Lyubetskaya, A.; Dawes, B.A.; Tsai, L.; Kahn, B.B.; Spiegelman, B.M.; et al. Brown Adipose Tissue Controls Skeletal Muscle Function via the Secretion of Myostatin. Cell Metab. 2018, 28, 631–643.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.-C.; Jhang, W.-L.; Lee, C.-C.; Kan, N.-W.; Hsu, Y.-J.; Ho, C.-S.; Chang, C.-H.; Cheng, Y.-C.; Lin, J.-S.; Huang, C.-C. The Effect of Kefir Supplementation on Improving Human Endurance Exercise Performance and Antifatigue. Metabolites 2021, 11, 136. [Google Scholar] [CrossRef] [PubMed]
- McKendry, J.; Currier, B.S.; Lim, C.; McLeod, J.C.; Thomas, A.C.; Phillips, S.M. Nutritional Supplements to Support Resistance Exercise in Countering the Sarcopenia of Aging. Nutrients 2020, 12, 2057. [Google Scholar] [CrossRef]
- Luo, Z.; Ma, L.; Zhou, T.; Huang, Y.; Zhang, L.; Du, Z.; Yong, K.; Yao, X.; Shen, L.; Yu, S.; et al. Beta-Glucan Alters Gut Microbiota and Plasma Metabolites in Pre-Weaning Dairy Calves. Metabolites 2022, 12, 687. [Google Scholar] [CrossRef]
- Frampton, J.; Murphy, K.G.; Frost, G.; Chambers, E.S. Higher dietary fibre intake is associated with increased skeletal muscle mass and strength in adults aged 40 years and older. J. Cachex- Sarcopenia Muscle 2021, 12, 2134–2144. [Google Scholar] [CrossRef]
- Vetvicka, V.; Vetvickova, J. Physiological Effects of Different Types of Beta-Glucan. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech Repub. 2007, 151, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Barton, C.; Vigor, K.; Scott, R.; Jones, P.; Lentfer, H.; Bax, H.J.; Josephs, D.H.; Karagiannis, S.N.; Spicer, J.F. Beta-Glucan Contamination of Pharmaceutical Products: How Much Should We Accept? Cancer Immunol. Immunother. 2016, 65, 1289–1301. [Google Scholar] [CrossRef] [Green Version]
- Othman, R.A.; Moghadasian, M.H.; Jones, P.J. Cholesterol-Lowering Effects of Oat Beta-Glucan. Nutr. Rev. 2011, 69, 299–309. [Google Scholar] [CrossRef]
- Xiao, H.; Liang, J.; Liu, S.; Zhang, Q.; Xie, F.; Kong, X.; Guo, S.; Wang, R.; Fu, R.; Ye, Z.; et al. Proteomics and Organoid Culture Reveal the Underlying Pathogenesis of Hashimoto’s Thyroiditis. Front. Immunol. 2021, 12, 784975. [Google Scholar] [CrossRef]
- Liu, T.; Xu, Y.; Yi, C.-X.; Tong, Q.; Cai, D. The hypothalamus for whole-body physiology: From metabolism to aging. Protein Cell 2021, 13, 394–421. [Google Scholar] [CrossRef]
- Shi, H.; Yu, Y.; Lin, D.; Zheng, P.; Zhang, P.; Hu, M.; Wang, Q.; Pan, W.; Yang, X.; Hu, T.; et al. Beta-Glucan Attenuates Cognitive Impairment Via the Gut-Brain Axis in Diet-Induced Obese Mice. Microbiome 2020, 8, 143. [Google Scholar] [CrossRef]
- Bashir, K.M.I.; Choi, J.S. Clinical and Physiological Perspectives of Beta-Glucans: The Past, Present, and Future. Int. J. Mol. Sci. 2017, 18, 1906. [Google Scholar] [CrossRef] [Green Version]
- Murphy, E.J.; Rezoagli, E.; Major, I.; Rowan, N.J.; Laffey, J.G. Beta-Glucan Metabolic and Immunomodulatory Properties and Potential for Clinical Application. J. Fungi 2020, 6, 356. [Google Scholar] [CrossRef]
- Paudel, D.; Dhungana, B.; Caffe, M.; Krishnan, P. A Review of Health-Beneficial Properties of Oats. Foods 2021, 10, 2591. [Google Scholar] [CrossRef]
- Vetvicka, V.; Vannucci, L.; Sima, P.; Richter, J. Beta Glucan: Supplement or Drug? From Laboratory to Clinical Trials. Molecules 2019, 24, 1251. [Google Scholar] [CrossRef] [Green Version]
- Zabriskie, H.A.; Blumkaitis, J.C.; Moon, J.M.; Currier, B.S.; Stefan, R.; Ratliff, K.; Harty, P.S.; Stecker, R.A.; Rudnicka, K.; Jäger, R.; et al. Yeast Beta-Glucan Supplementation Downregulates Markers of Systemic Inflammation after Heated Treadmill Exercise. Nutrients 2020, 12, 1144. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Ding, Y.; Yang, Y.; Gao, Y.; Sun, Q.; Liu, J.; Yang, X.; Wang, J.; Zhang, J. Beta-Glucan Salecan Improves Exercise Performance and Displays Anti-Fatigue Effects through Regulating Energy Metabolism and Oxidative Stress in Mice. Nutrients 2018, 10, 858. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Lv, J.; Lo, Y.M.; Cui, S.W.; Hu, X.; Fan, M. Effects of Oat Beta-Glucan on Endurance Exercise and Its Anti-Fatigue Properties in Trained Rats. Carbohydr. Polym. 2013, 92, 1159–1165. [Google Scholar] [CrossRef]
- Hong, H.; Kim, C.J.; Kim, J.D.; Seo, J.H. Beta-Glucan Reduces Exercise-Induced Stress through Downregulation of C-Fos and C-Jun Expression in the Brains of Exhausted Rats. Mol. Med. Rep. 2014, 9, 1660–1666. [Google Scholar] [CrossRef]
- Li, Y.; Fan, Y.; Pan, H.; Qian, H.; Qi, X.; Wu, G.; Zhang, H.; Xu, M.; Rao, Z.; Wang, L.; et al. Effects of functional β-glucan on proliferation, differentiation, metabolism and its anti-fibrosis properties in muscle cells. Int. J. Biol. Macromol. 2018, 117, 287–293. [Google Scholar] [CrossRef]
- Xia, Z.; Cholewa, J.M.; Dardevet, D.; Huang, T.; Zhao, Y.; Shang, H.; Yang, Y.; Ding, X.; Zhang, C.; Wang, H.; et al. Effects of Oat Protein Supplementation on Skeletal Muscle Damage, Inflammation and Performance Recovery Following Downhill Running in Untrained Collegiate Men. Food Funct. 2018, 9, 4720–4729. [Google Scholar] [CrossRef]
- Haggard, L.; Andersson, M.; Punga, A.R. Beta-Glucans Reduce Ldl Cholesterol in Patients with Myasthenia Gravis. Eur. J. Clin. Nutr. 2013, 67, 226–227. [Google Scholar] [CrossRef] [Green Version]
- Mah, E.; Kaden, V.N.; Kelley, K.M.; Liska, D.J. Soluble and Insoluble Yeast Beta-Glucan Differentially Affect Upper Respiratory Tract Infection in Marathon Runners: A Double-Blind, Randomized Placebo-Controlled Trial. J. Med. Food 2020, 23, 416–419. [Google Scholar] [CrossRef]
- Nieman, D.C.; Henson, D.A.; McMahon, M.; Wrieden, J.L.; Davis, J.M.; Murphy, E.A.; Gross, S.J.; McAnulty, L.S.; Dumke, C.L. β-Glucan, Immune Function, and Upper Respiratory Tract Infections in Athletes. Med. Sci. Sports Exerc. 2008, 40, 1463–1471. [Google Scholar] [CrossRef]
- Sasaki, J.E.; John, D.; Freedson, P.S. Validation and comparison of ActiGraph activity monitors. J. Sci. Med. Sport 2011, 14, 411–416. [Google Scholar] [CrossRef]
- Videler, A.J.; Beelen, A.; Aufdemkampe, G.; De Groot, I.J.; Van Leemputte, M. Hand strength and fatigue in patients with hereditary motor and sensory neuropathy (types I and II). Arch. Phys. Med. Rehabilitation 2002, 83, 1274–1278. [Google Scholar] [CrossRef]
- Damilakis, J.; Solomou, G.; Manios, G.E.; Karantanas, A. Pediatric Radiation Dose and Risk from Bone Density Measurements Using a Ge Lunar Prodigy Scanner. Osteoporos. Int. 2013, 24, 2025–2031. [Google Scholar] [CrossRef]
- Miyaguchi, K.; Demura, S.; Omoya, M. Relationship between Jump Rope Double Unders and Sprint Performance in Elementary Schoolchildren. J. Strength Cond. Res. 2015, 29, 3229–3233. [Google Scholar] [CrossRef]
- Bruce, O.L.; Ramsay, M.; Kennedy, G.; Edwards, W.B. Lower-limb joint kinetics in jump rope skills performed by competitive athletes. Sports Biomech. 2020, 28, 1–14. [Google Scholar] [CrossRef]
- Wu, H.; Tremaroli, V.; Schmidt, C.; Lundqvist, A.; Olsson, L.M.; Krämer, M.; Gummesson, A.; Perkins, R.; Bergström, G.; Bäckhed, F. The Gut Microbiota in Prediabetes and Diabetes: A Population-Based Cross-Sectional Study. Cell Metab. 2020, 32, 379–390.e3. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. Metaboanalyst 4.0: Towards More Transparent and Integrative Metabolomics Analysis. Nucleic Acids Res. 2018, 46, W486–W494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kley, R.A.; Tarnopolsky, M.A.; Vorgerd, M. Creatine for treating muscle disorders. Cochrane Database Syst. Rev. 2013, 2013, CD004760. [Google Scholar] [CrossRef] [PubMed]
- Mitsou, E.K.; Saxami, G.; Stamoulou, E.; Kerezoudi, E.; Terzi, E.; Koutrotsios, G.; Bekiaris, G.; Zervakis, G.I.; Mountzouris, K.C.; Pletsa, V.; et al. Effects of Rich in Beta-Glucans Edible Mushrooms on Aging Gut Microbiota Characteristics: An in Vitro Study. Molecules 2020, 25, 2806. [Google Scholar] [CrossRef]
- Vos, A.P.; M’Rabet, L.; Stahl, B.; Boehm, G.; Garssen, J. Immune-Modulatory Effects and Potential Working Mechanisms of Orally Applied Nondigestible Carbohydrates. Crit. Rev. Immunol. 2007, 27, 97–140. [Google Scholar] [CrossRef]
- Hong, F.; Yan, J.; Baran, J.T.; Allendorf, D.J.; Hansen, R.D.; Ostroff, G.R.; Xing, P.X.; Cheung, N.-K.V.; Ross, G.D. Mechanism by Which Orally Administered β-1,3-Glucans Enhance the Tumoricidal Activity of Antitumor Monoclonal Antibodies in Murine Tumor Models. J. Immunol. 2004, 173, 797–806. [Google Scholar] [CrossRef] [Green Version]
- Bao, K.; Cui, Z.; Wang, H.; Xiao, H.; Li, T.; Kong, X.; Liu, T. Pseudotime Ordering Single-Cell Transcriptomic of β Cells Pancreatic Islets in Health and Type 2 Diabetes. Phenomics 2021, 1, 199–210. [Google Scholar] [CrossRef]
- Shen, X.L.; Zhao, T.; Zhou, Y.; Shi, X.; Zou, Y.; Zhao, G. Effect of Oat Beta-Glucan Intake on Glycaemic Control and Insulin Sensitivity of Diabetic Patients: A Meta-Analysis of Randomized Controlled Trials. Nutrients 2016, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Ahlquist, L.E.; Bassett, D.R., Jr.; Sufit, R.; Nagle, F.J.; Thomas, D.P. The Effect of Pedaling Frequency on Glycogen Depletion Rates in Type I and Type Ii Quadriceps Muscle Fibers During Submaximal Cycling Exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1992, 65, 360–364. [Google Scholar] [CrossRef]
- Mills, S.; Candow, D.G.; Forbes, S.C.; Neary, J.P.; Ormsbee, M.J.; Antonio, J. Effects of Creatine Supplementation during Resistance Training Sessions in Physically Active Young Adults. Nutrients 2020, 12, 1880. [Google Scholar] [CrossRef]
- Wang, R.; Guo, S.; Tian, H.; Huang, Y.; Yang, Q.; Zhao, K.; Kuo, C.-H.; Hong, S.; Chen, P.; Liu, T. Hypoxic Training in Obese Mice Improves Metabolic Disorder. Front. Endocrinol. 2019, 10, 527. [Google Scholar] [CrossRef] [Green Version]
- Luan, X.; Tian, X.; Zhang, H.; Huang, R.; Li, N.; Chen, P.; Wang, R. Exercise as a Prescription for Patients with Various Diseases. J. Sport Health Sci. 2019, 8, 422–441. [Google Scholar] [CrossRef]
- Rawson, E.S.; Volek, J.S. Effects of Creatine Supplementation and Resistance Training on Muscle Strength and Weightlifting Performance. J. Strength Cond. Res. 2003, 17, 822–831. [Google Scholar]
- Devries, M.C.; Phillips, S.M. Creatine Supplementation during Resistance Training in Older Adults—A Meta-analysis. Med. Sci. Sports Exerc. 2014, 46, 1194–1203. [Google Scholar] [CrossRef]
- Chilibeck, P.D.; Kaviani, M.; Candow, D.G.; Zello, G.A. Effect of creatine supplementation during resistance training on lean tissue mass and muscular strength in older adults: A meta-analysis. Open Access J. Sports Med. 2017, 8, 213–226. [Google Scholar] [CrossRef] [Green Version]
- Candow, D.G.; Chilibeck, P.D.; Forbes, S.C. Creatine supplementation and aging musculoskeletal health. Endocrine 2013, 45, 354–361. [Google Scholar] [CrossRef]
- Branch, J.D. Effect of Creatine Supplementation on Body Composition and Performance: A Meta-analysis. Int. J. Sport Nutr. Exerc. Metab. 2003, 13, 198–226. [Google Scholar] [CrossRef]
- Bazzucchi, I.; Felici, F.; Sacchetti, M. Effect of Short-Term Creatine Supplementation on Neuromuscular Function. Med. Sci. Sports Exerc. 2009, 41, 1934–1941. [Google Scholar] [CrossRef]
- Maki, K.C.; Galant, R.; Samuel, P.; Tesser, J.; Witchger, M.S.; Ribaya-Mercado, J.D.; Blumberg, J.B.; Geohas, J. Effects of consuming foods containing oat β-glucan on blood pressure, carbohydrate metabolism and biomarkers of oxidative stress in men and women with elevated blood pressure. Eur. J. Clin. Nutr. 2006, 61, 786–795. [Google Scholar] [CrossRef] [Green Version]
- Cloetens, L.; Ulmius, M.; Johansson-Persson, A.; Åkesson, B.; Önning, G. Role of dietary beta-glucans in the prevention of the metabolic syndrome. Nutr. Rev. 2012, 70, 444–458. [Google Scholar] [CrossRef]
- Raj, P.; Ames, N.; Thandapilly, S.J.; Yu, L.; Netticadan, T. The Effects of Oat Ingredients on Blood Pressure in Spontaneously Hypertensive Rats. J. Food Biochem. 2020, 44, e13402. [Google Scholar] [CrossRef]
- Navarro-Ledesma, S.; Gonzalez-Muñoz, A.; Ríos, M.C.G.; de la Serna, D.; Pruimboom, L. Circadian Variation of Blood Pressure in Patients with Chronic Musculoskeletal Pain: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 6481. [Google Scholar] [CrossRef]
Index | Placebo Group (n = 13) | β-Glucan Group (n = 14) | t | p |
---|---|---|---|---|
Baseline information | ||||
Age (years) | 19.38 ± 0.96 | 19.79 ± 0.89 | 1.124 | 0.271 |
Height (cm) | 170.45 ± 8.98 | 173.29 ± 8.62 | 0.836 | 0.411 |
Body weight (kg) | 67.44 ± 12.64 | 66.6 ± 7.16 | −0.214 | 0.832 |
Systolic pressure (mmHg) | 124.46 ± 15.59 | 120.71 ± 11.59 | −0.712 | 0.483 |
Diastolic blood pressure (mmHg) | 70.46 ± 8.39 | 71.86 ± 12.18 | 0.344 | 0.734 |
Years of exercise (year) | 12.85 ± 1.34 | 12.14 ± 2.14 | −1.012 | 0.403 |
Nutrition | ||||
Total energy (kJ) | 8267.78 ± 1877.55 | 7746.94 ± 1858.54 | −0.724 | 0.476 |
Protein (g) | 90.68 ± 16.07 | 74.87 ± 23.33 | −2.351 | 0.055 |
Fat (g) | 81.68 ± 21.73 | 73.99 ± 21.63 | −0.921 | 0.366 |
Carbohydrate (g) | 201.81 ± 72.47 | 187.77 ± 61.64 | −0.543 | 0.592 |
Dietary fiber (g) | 7.13 ± 3.07 | 5.84 ± 2.63 | −1.17 | 0.252 |
Activity | ||||
Total physical activity (min/day) | 731.99 ± 77.30 | 769.96 ± 122.42 | 0.955 | 0.349 |
Light physical activity (min/day) | 639.24 ± 78.96 | 657.52 ± 121.44 | 0.460 | 0.650 |
Moderate physical activity (min/day) | 79.70 ± 21.77 | 87.69 ± 33.06 | 0.735 | 0.482 |
High physical activity (min/day) | 8.23 ± 9.56 | 5.12 ± 7.19 | −0.960 | 0.610 |
Index | Placebo Group (n = 13) | β-Glucan Group (n = 14) | Change | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Before | After | t | p | Before | After | t | p | t | p | |
Average Grip Strength Index | 0.44 ± 0.09 | 0.43 ± 0.09 | −0.890 | 0.391 | 0.45 ± 0.11 | 0.46 ± 0.09 | 2.133 | 0.053 | 2.039 | 0.052 |
Average grip strength (kg) | 29.49 ± 7.69 | 28.69 ± 7.85 | −1.645 | 0.126 | 29.64 ± 7.63 | 30.99 ± 6.96 ** | 3.623 | 0.003 | 3.547 | 0.002 |
Right-hand grip (kg) | 31.56 ± 7.77 | 31.07 ± 8.48 | −0.753 | 0.466 | 30.45 ± 6.83 | 32.85 ± 5.78 *** | 4.837 | <0.001 | 3.555 | 0.002 |
Left-hand grip (kg) | 27.42 ± 8.02 | 26.32 ± 7.72 | −1.863 | 0.087 | 28.82 ± 8.87 | 29.14 ± 8.6 | 0.574 | 0.576 | 1.759 | 0.091 |
Average deltoid strength (kg) | 21.13 ± 7.03 | 19.72 ± 5.37 | −1.348 | 0.203 | 21.69 ± 4.98 | 21.98 ± 5.87 | 0.338 | 0.741 | 1.261 | 0.219 |
Right Deltoid Strength (kg) | 21.92 ± 7.52 | 20.67 ± 5.73 | −1.165 | 0.267 | 21.69 ± 4.98 | 22.65 ± 5.48 | 1.379 | 0.191 | 0.229 | 0.821 |
Left deltoid muscle strength (kg) | 20.34 ± 6.94 | 18.77 ± 5.29 | −1.348 | 0.203 | 21.04 ± 5.82 | 21.31 ± 6.68 | 0.341 | 0.738 | 0.932 | 0.360 |
Average biceps strength (kg) | 25.12 ± 8.33 | 23.97 ± 7.35 | −0.863 | 0.405 | 23.43 ± 6.69 | 23.98 ± 6.15 | 0.489 | 0.383 | 1.124 | 0.272 |
Right biceps strength (kg) | 27.28 ± 8.8 | 26.19 ± 8.46 | −0.805 | 0.436 | 25.11 ± 7.82 | 25.86 ± 5.8 | 0.578 | 0.573 | 0.174 | 0.863 |
Left biceps strength (kg) | 22.96 ± 8.48 | 21.74 ± 7.07 | −0.818 | 0.429 | 21.74 ± 6.43 | 22.09 ± 7.72 | 0.391 | 0.702 | 0.517 | 0.610 |
Average triceps strength (kg) | 21.12 ± 5.31 | 20.85 ± 5.43 | −0.376 | 0.714 | 20.41 ± 5.71 | 21.18 ± 5.38 | 1.324 | 0.208 | 1.133 | 0.268 |
Right triceps strength (kg) | 21.45 ± 5.52 | 20.97 ± 5.67 | −0.516 | 0.616 | 20.41 ± 5.71 | 21.31 ± 4.95 | 1.528 | 0.151 | −0.392 | 0.699 |
Left triceps strength (kg) | 20.78 ± 5.59 | 20.72 ± 5.43 | −0.087 | 0.932 | 18.74 ± 6.15 | 21.05 ± 6.1 * | 2.571 | 0.023 | −1.949 | 0.063 |
Average Quadriceps Strength (kg) | 31.28 ± 6.7 | 32.81 ± 6.07 | 1.234 | 0.241 | 32.54 ± 5.09 | 33.23 ± 8.14 | 0.278 | 0.786 | −0.295 | 0.771 |
Right quadriceps strength (kg) | 32.7 ± 7.05 | 34.42 ± 6.33 | 1.262 | 0.231 | 32.54 ± 5.09 | 34.54 ± 8.78 | 0.763 | 0.459 | −1.230 | 0.230 |
Left quadriceps strength (kg) | 29.85 ± 7.33 | 31.2 ± 6.28 | 0.781 | 0.450 | 31.69 ± 6.75 | 31.91 ± 7.87 | 0.093 | 0.927 | −0.526 | 0.603 |
Index | Placebo Group (n = 13) | β-Glucan Group (n = 14) | Change | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Before | After | t | p | Before | After | t | p | t | p | |
Total lean body mass (kg) | 49.5 ± 9.59 | 49.29 ± 10.02 | −0.708 | 0.492 | 50.26 ± 8.14 | 50.66 ± 8.58 | 1.528 | 0.151 | 1.540 | 0.136 |
Upper body lean body mass (kg) | 5.34 ± 1.46 | 5.36 ± 1.54 | 0.359 | 0.726 | 5.58 ± 1.47 | 5.60 ± 1.41 | 2.167 | 0.049 * | 1.846 | 0.077 |
Lower extremity lean body mass (kg) | 17.2 ± 3.51 | 17.09 ± 3.73 | −0.646 | 0.531 | 17.44 ± 3.05 | 17.56 ± 3.13 | 0.997 | 0.337 | 1.123 | 0.272 |
Trunk lean body mass (kg) | 23.07 ± 4.21 | 22.98 ± 4.35 | −0.513 | 0.617 | 23.46 ± 3.46 | 23.71 ± 3.86 | 1.080 | 0.300 | 1.155 | 0.259 |
Android_lean body mass (kg) | 3.03 ± 0.59 | 3.05 ± 0.66 | 0.486 | 0.635 | 3.14 ± 0.54 | 3.17 ± 0.59 | 0.947 | 0.361 | 0.272 | 0.788 |
Gynoid_lean body mass content (kg) | 7.71 ± 1.81 | 7.64 ± 1.87 | −0.917 | 0.377 | 7.86 ± 1.39 | 7.97 ± 1.44 | 1.675 | 0.118 | 1.803 | 0.083 |
Body fat percentage (%) | 0.22 ± 0.08 | 0.22 ± 0.08 | 0.339 | 0.741 | 0.20 ± 0.08 | 0.20 ± 0.08 | 1.396 | 0.186 | 0.594 | 0.558 |
Total fat content (kg) | 14.69 ± 6.49 | 14.58 ± 6.55 | −0.891 | 0.391 | 13.19 ± 5.21 | 13.17 ± 5.05 | 2.086 | 0.057 | 0.369 | 0.715 |
Upper limb fat content (kg) | 1.36 ± 0.70 | 1.35 ± 0.70 | −0.337 | 0.742 | 1.22 ± 0.60 | 1.22 ± 0.62 | 0.107 | 0.917 | 0.312 | 0.758 |
Lower extremity fat content (kg) | 4.66 ± 1.62 | 4.64 ± 1.72 | −0.403 | 0.694 | 4.71 ± 1.96 | 4.72 ± 2.01 | 0.090 | 0.929 | 0.310 | 0.759 |
Trunk fat content (kg) | 8.08 ± 4.21 | 8.01 ± 4.11 | −0.699 | 0.498 | 6.72 ± 2.61 | 6.84 ± 2.61 | 1.238 | 0.238 | 1.356 | 0.187 |
Android_fat content (kg) | 1.38 ± 0.72 | 1.40 ± 0.75 | 0.878 | 0.397 | 1.08 ± 0.37 | 1.10 ± 0.34 | 0.632 | 0.539 | 0.068 | 0.947 |
Gynoid_fat content (kg) | 2.81 ± 0.96 | 2.84 ± 0.99 | 0.907 | 0.382 | 2.82 ± 1.14 | 2.82 ± 1.13 | −0.133 | 0.896 | −0.635 | 0.531 |
1 min double shake (pcs) | 78.27 ± 19.42 | 83.63 ± 18.75 | 1.90 | 0.087 | 76.86 ± 19.37 | 86.36 ± 15.52 | 2.735 | 0.017 * | 0.427 | 0.673 |
VO2max (ml/kg·min) | 41.03 ± 4.62 | 42.05 ± 4.22 | 1.93 | 0.082 | 41.95 ± 4.83 | 43.62 ± 4.34 | 2.394 | 0.038 * | 0.728 | 0.475 |
Index | Placebo Group (n = 13) | β-Glucan Group (n = 14) | Change | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Before | After | t | p | Before | After | t | p | t | p | |
TG (mmol/L) | 0.90 ± 0.41 | 0.97 ± 0.38 | 0.660 | 0.522 | 0.89 ± 0.26 | 1.00 ± 0.59 | 0.740 | 0.472 | 0.247 | 0.807 |
CHOL (mmol/L) | 4.29 ± 0.69 | 4.24 ± 0.64 | −0.509 | 0.620 | 4.31 ± 0.49 | 4.35 ± 0.61 | 0.266 | 0.795 | 0.499 | 0.622 |
HDL-C (mmol/L) | 1.44 ± 0.29 | 1.39 ± 0.28 | −1.469 | 0.168 | 1.67 ± 0.33 | 1.72 ± 0.37 | 0.871 | 0.400 | 1.418 | 0.168 |
LDL-C (mmol/L) | 2.61 ± 0.56 | 2.70 ± 0.61 | 0.919 | 0.376 | 2.41 ± 0.31 | 2.54 ± 0.46 | 1.180 | 0.259 | 0.273 | 0.787 |
IL-6 (pg/mL) | 2.16 ± 0.28 | 2.81 ± 1.29 | 1.740 | 0.107 | 2.54 ± 1.50 | 2.56 ± 0.87 | 0.061 | 0.952 | −1.230 | 0.270 |
IgM (g/L) | 1.25 ± 0.66 | 1.30 ± 0.71 | 1.723 | 0.110 | 1.39 ± 0.56 | 1.46 ± 0.61 | 1.727 | 0.108 | 0.213 | 0.833 |
TNF-α (pg/mL) | 5.61 ± 1.34 | 5.14 ± 1.00 | −1.976 | 0.072 | 5.52 ± 0.86 | 4.51 ± 0.73 *** | −5.576 | <0.001 | −1.852 | 0.076 |
CRP (mg/L) | 0.97 ± 0.42 | 0.64 ± 0.46 | −2.164 | 0.051 | 1.34 ± 1.11 | 0.79 ± 1.23 | −1.160 | 0.267 | −0.424 | 0.675 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Wu, X.; Lin, K.; Guo, S.; Hou, Y.; Ma, R.; Wang, Q.; Wang, R. Plasma Metabolomics Reveals β-Glucan Improves Muscle Strength and Exercise Capacity in Athletes. Metabolites 2022, 12, 988. https://doi.org/10.3390/metabo12100988
Wang R, Wu X, Lin K, Guo S, Hou Y, Ma R, Wang Q, Wang R. Plasma Metabolomics Reveals β-Glucan Improves Muscle Strength and Exercise Capacity in Athletes. Metabolites. 2022; 12(10):988. https://doi.org/10.3390/metabo12100988
Chicago/Turabian StyleWang, Ruwen, Xianmin Wu, Kaiqing Lin, Shanshan Guo, Yuning Hou, Renyan Ma, Qirong Wang, and Ru Wang. 2022. "Plasma Metabolomics Reveals β-Glucan Improves Muscle Strength and Exercise Capacity in Athletes" Metabolites 12, no. 10: 988. https://doi.org/10.3390/metabo12100988
APA StyleWang, R., Wu, X., Lin, K., Guo, S., Hou, Y., Ma, R., Wang, Q., & Wang, R. (2022). Plasma Metabolomics Reveals β-Glucan Improves Muscle Strength and Exercise Capacity in Athletes. Metabolites, 12(10), 988. https://doi.org/10.3390/metabo12100988