Physiological and Metabolic Adaptation to Heat Stress at Different Altitudes in Yaks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Environmental and Physiological Parameter Measurements
2.3. Sample Collection and Preparation
2.4. UHPLC−QTOF-MS Analysis
2.5. Data Deconvolution and Processing
2.6. Metabolite Validation by Targeted Metabolomics
3. Results
3.1. The Impacts of HS on Physiological Parameters
3.2. Hematologic Parameters of Yaks Raised under Different HS Conditions
3.3. Metabolic Profiles of Yaks under Different HS Conditions
3.4. Plasma Metabolic Differences of Yaks under Different HS Conditions
3.5. Characterization and Functional Analysis of Metabolic Pathways
3.6. Validation of Differential Metabolites with Targeted Metabolomics
4. Discussion
4.1. The Impact of HS on Physiological and Hematologic Parameters
4.2. The Impacts of HS on Vasodilatation for Heat Dissipation
4.3. The Impacts of HS on TCA Cycle Intermediates
4.4. The Impacts of HS on Glucose Metabolites and Free Fatty Acids in Plasma
4.5. The Impacts of HS on Changes in Plasma Antioxidants
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goshu, H.A.; Chu, M.; Wu, X.Y.; Bao, P.J.; Zhi, D.X.; Yan, P. Genomic copy number variation of the chkb gene alters gene expression and affects growth traits of Chinese domestic yak (Bos grunniens) breeds. Mol. Gene Genom. 2019, 294, 549–561. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, M.; Prakash, B.S. Timing of ovulation in relation to onset of estrus and LH peak in yak (Poephagus grunniens L). Anim. Reprod. Sci. 2005, 86, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Pourouchottamane, R.; Kataktalware, M.A.; Ramesha, K.P.; Saravanan, B.C.; Ghosh, M.K.; Sarkar, M.; Mishra, A.; Pankaj, P.K. Lactation performance and milk characteristics of yak (Poephagus grunniess L.) under sub-alpine temperate zone of North-Eastern India. Vet. Pract. 2011, 12, 229–232. [Google Scholar]
- Xue, B.; Zhao, X.Q.; Zhang, Y.S. Seasonal changes in weight and body composition of yak grazing on alpinemeadow grassland in the Qinghai-Tibetan plateau of China. J. Anim. Sci. 2005, 83, 1908–1913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuo, Y.F.; Gan, B.Z.; Huang, F.; Song, X. Analysis of fatty acids in white yak’s milk from areas in Gansu’s Tianzhu. Dairy Sci. Technol. 2013, 36, 23–27. [Google Scholar]
- Wen, Y.L.; Wang, Y.; Qi, S.; Wang, Y.H.; Ma, L. Determination of plasma melatonin of female yaks with different reproductive rhythms by reversed-phase high-performance liquid chromatography in warm and cold seasons. Acta Vet. Zootech. Sin. 2008, 39, 302–308. [Google Scholar]
- Sarkar, M.; Borah, B.; Bandopadhayay, S.; Meyer, H.; Prakash, B.S. Season of the year influences semen output and concentrations of testosterone in circulation of yaks (Poephagus grunniens L.). Anim. Reprod. Sci. 2009, 115, 300–305. [Google Scholar] [CrossRef]
- Zi, X.D. Reproduction in female yaks (Bos grunniens) and opportunities for improvement. Theriogenology 2003, 59, 1303–1312. [Google Scholar] [CrossRef]
- Dong, S.K.; Long, R.J.; Hu, Z.Z.; Kang, M.Y.; Pu, X.P. Productivity and nutritive value of some cultivated perennial grasses and mixtures in the alpine region of the Tibetan plateau. Grass Forage Sci. 2010, 58, 302–308. [Google Scholar] [CrossRef]
- Long, R.J.; Zhang, D.G.; Wang, X.; Hu, Z.Z.; Dong, S.K. Effect of strategic feed supplementation on productive and reproductive performance in yak cows. Prev. Vet. Med. 1999, 38, 195–206. [Google Scholar] [CrossRef]
- Krishnan, G.; Paul, V.; Biswas, T.K.; Chouhan, V.S.; Das, P.J.; Sejian, V. Adaptation strategies of yak to seasonally driven environmental temperatures in its natural habitat. Int. J. Biometeorol. 2018, 62, 1497–1506. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.W.; Zhou, Q.; Yu, M.J.; Liu, Y.H.; Teng, X.H.; Gu, X.H. 4-tert-butylphenol triggers common carp hepatocytes ferroptosis via oxidative stress, iron overload, SLC7A11/GSH/GPX4 axis, and ATF4/HSPA5/GPX4 axis. Ecotoxicol. Environ. Saf. 2022, 242, 113944. [Google Scholar] [CrossRef]
- Miao, Z.Y.; Miao, Z.R.; Teng, X.H.; Xu, S.W. Chlorpyrifos triggers epithelioma papulosum cyprini cell pyroptosis via miR-124-3p/CAPN1 axis. J. Hazard. Mater. 2022, 424, 127318. [Google Scholar] [CrossRef] [PubMed]
- Tucker, C.B.; Rogers, A.R.; Schütz, K.E. Effect of solar radiation on dairy cattlebehaviour: Use of shade and body temperature in a pasture-based system. Appl. Anim. Behav. Sci. 2008, 109, 141–154. [Google Scholar] [CrossRef]
- Benezra, M.V. A new index measuring the adaptability of cattle to tropical conditions. J. Anim. Sci. 1954, 13, 1015. [Google Scholar]
- Wang, X.Y.; Wang, Z.S.; Xu, B.; Wang, L.Z.; Peng, Q.H.; Zou, H.W.; Zhu, Y.X.; Zhou, X.Y.; Cao, G.; Dai, Q.D.; et al. Effect of niacin on growth performance, nutrient digestibility and blood biochemical index of Xia Nan cattle. Chin. J. Anim. Nutr. 2020, 32, 2228–2240. [Google Scholar]
- Haque, N.; Ludri, A.; Hossain, S.A.; Ashutosh, M. Impact on hematological parameters in young and adult Murrah buffaloes exposed to acute heat stress. Buffalo Bull. 2013, 32, 321–326. [Google Scholar]
- Gulick, A.K.; Garry, F.B.; Holt, T.N.; Retallick-Trennepohl, K.; Enns, R.M.; Thomas, M.G.J.; Neary, M. Angus calves born and raised at high altitude adapt to hypobaric hypoxia by increasing alveolar ventilation rate but not hematocrit. J. Anim. Sci. 2016, 94, 4167–4171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; You, G.X.; Liao, F.L.; Kan, X.M.; Wang, B.; Sun, Q.M.; Xu, H.B.; Han, D.; Zhou, H. Sodium alginate as viscosity modifier may induce aggregation of red blood cells. Artif. Cells Blood Substit. Biotechnol. 2010, 38, 267–276. [Google Scholar] [CrossRef]
- Ogoh, S.; Sato, K.; Okazaki, K.; Miyamoto, T.; Hirasawa, A.; Morimoto, K.; Shibasaki, M. Blood flow distribution during heat stress: Cerebral and systemic blood flow. J. Cereb. Blood Flow Metab. 2013, 33, 1915–1920. [Google Scholar] [CrossRef] [Green Version]
- Chaseling, G.K.; Crandall, C.G.; Gagnon, D. Skin blood flow measurements during heat stress: Technical and analytical considerations. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2019, 318, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Yin, L.Y.; Li, D.F.; Kim, S.W.; Wu, G.Y. Amino acids and immune function. Br. J. Nutr. 2007, 98, 237–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Floc’h, N.L.; Wessels, A.; Corrent, E.; Wu, G.Y.; Bosi, P. The relevance of functional amino acids to support the health of growing pigs. Anim. Feed Sci. Technol. 2018, 245, 104–116. [Google Scholar] [CrossRef]
- Mahootchi, E.; Homaei, S.C.; Kleppe, R.; Winge, I.; Hegvik, T.A.; Megias, R.; Totland, C.; Mogavero, F.; Baumann, A.; Glennon, J.; et al. GADL1 is a multifunctional decarboxylase with tissue specific roles in β-alanine and carnosine production. Sci. Adv. 2020, 6, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Esquerra, R.; Leeson, S. Physiological and metabolic responses of broilers to heat stress-implications for protein and amino acid nutrition. World’s Poult. Sci. J. 2019, 62, 282–295. [Google Scholar] [CrossRef]
- Niijima, A.; Meguid, M.M. Influence of systemic arginine-lysine on immune organ function: An electrophysiological study. Brain Res. Bull. 1998, 45, 437–441. [Google Scholar] [CrossRef]
- Ma, H.; Ma, Y.D.; Zhang, Z.X.; Zhao, Z.Y.; Lin, R.; Zhu, J.M.; Guo, Y.; Li, X. L-arginine enhances resistance against oxidative stress and heat stress in Caenorhabditis elegans. Int. J. Environ. Res. Public Health 2016, 13, 969. [Google Scholar] [CrossRef] [Green Version]
- Moura, C.S.; Lollo, P.C.B.; Morato, P.N.; Risso, E.M.; Amaya-Farfan, J. Modulatory effects of arginine, glutamine and branched-chain amino acids on heat shock proteins, immunity and antioxidant response in exercised rats. Food Funct. 2017, 8, 3228–3238. [Google Scholar] [CrossRef]
- Durand, S.; Davis, S.L.; Cui, J.; Crandall, C.G. Exogenous nitric oxide inhibits sympathetically mediated vasoconstriction in human skin. J. Physiol. 2005, 562, 629–634. [Google Scholar] [CrossRef]
- Matés, J.M.; Segura, J.A.; Campos-Sandoval, J.A.; Lobo, C.; Alonso, L.; Alonso, F.J.; Márquez, J. Glutamine homeostasis and mitochondrial dynamics. Int. J. Biochem. Cell B 2009, 41, 2051–2061. [Google Scholar] [CrossRef]
- Yin, F.; Jiang, W.; Guan, S.; Pan, Z.; Chen, X. Glutamine and animal immune function. J. Food Agric. Environ. 2010, 8, 135–141. [Google Scholar]
- Han, X.T.; Xie, A.Y.; Bi, X.C.; Liu, S.J.; Hu, L.H. Effects of altitude, ambient temperature and solar radiation on fasting heat production in yellow cattle (Bos taurus). Br. J. Nutr. 2003, 89, 399–407. [Google Scholar] [CrossRef] [Green Version]
- Roosterman, D.; Cottrell, G.S. The two-cell model of glucose metabolism: A hypothesis of schizophrenia. Mol. Psychiatry 2021, 26, 1738–1747. [Google Scholar] [CrossRef] [PubMed]
- West, J.W. Nutritional strategies for managing the heat-stressed dairy cow. J. Anim. Sci. 1999, 77, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Wheelock, J.B.; Rhoads, R.P.; VanBaale, M.J.; Sanders, S.R.; Baumgard, L.H. Effects of heat stress on energetic metabolism in lactating Holstein cows. J. Dairy Sci. 2010, 93, 644–655. [Google Scholar] [CrossRef] [Green Version]
- Roberts, A.C.; Butterfield, G.E.; Cymerman, A.; Reeves, J.T.; Brooks, G.A. Acclimatization to 4300-m altitude decreases reliance on fat as a substrate. J. Appl. Physiol. 2016, 81, 1762–1771. [Google Scholar] [CrossRef] [Green Version]
- Seifi, K.; Rezaei, M.; Yansari, A.T.; Riazi, G.H.; Zamiri, M.J.; Heidari, R. Saturated fatty acids may ameliorate environmental heat stress in broiler birds by affecting mitochondrial energetics and related genes. J. Therm. Biol. 2018, 78, 1–9. [Google Scholar] [CrossRef]
- Hulbert, A.J. Explaining longevity of different animals: Is membrane fatty acid composition the missing link. AGE 2008, 30, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Qu, H.; Ajuwon, K.M. Metabolomics of heat stress response in pig adipose tissue reveals alteration of phospholipid and fatty acid composition during heat stress. J. Anim. Sci. 2018, 96, 3184–3195. [Google Scholar] [CrossRef]
- Nikolaus, N.; Hannes, G.; Martin, F.; Martin, B.; Stephan, P.; Dominik, P. Hypoxia, oxidative stress and fat. Biomolecules 2015, 5, 1143–1150. [Google Scholar]
- Hassan, A.H.A.; Hozzein, W.N.; Mousa, A.S.M.; Rabie, W.; Alkhalifah, D.H.M.; Selim, S.; AbdElgawad, H. Heat stress as an innovative approach to enhance the antioxidant production in Pseudooceanicola and Bacillus isolates. Sci. Rep. 2020, 10, 15076. [Google Scholar] [CrossRef] [PubMed]
- Onderci, M.; Sahin, K.; Sahin, N.; Cikim, G.; Vijaya, J.; Kucuk, O. Effects of dietary combination of chromium and biotin on growth performance, carcass characteristics, and oxidative stress markers in heat-distressed Japanese quail. Biol. Trace Elem. Res. 2005, 106, 165–176. [Google Scholar] [CrossRef]
- Costanzo, A.D.; Spain, J.N.; Spiers, D.E. Supplementation of nicotinic acid for lactating Holstein cows under heat stress conditions. J. Dairy Sci. 1997, 80, 1200–1206. [Google Scholar] [CrossRef]
- Liu, Y.H.; Yu, M.J.; Cui, J.W.; Du, Y.; Teng, X.H.; Zhang, Z.Z. Heat shock proteins took part in oxidative stress-mediated in-flammatory injury via NF-κB pathway in excess manganese-treated chicken livers. Ecotoxicol. Environ. Saf. 2021, 226, 112833. [Google Scholar] [CrossRef]
Items | Whole-Plant Corn Silage | Concentrate Feeding |
---|---|---|
EE | 16.8 | 45.3 |
Crude ash | 64.9 | 233.3 |
CP | 85.9 | 439.9 |
Ca | 3.4 | 36.0 |
P | 2.273 | 11.8 |
ADF | 400.6 | 169.5 |
ADICP | 4.980 | 44.4 |
NDF | 6278.0 | 225.8 |
NDICP | 2.7 | 67.7 |
ADL | 56.3 | 47.5 |
NFC | 343.6 | 218.1 |
tdNFC | 336.7 | 213.7 |
tdNDF | 351.9 | 34.5 |
tdCP | 81.3 | 389.6 |
tdFA | 5.5 | 34.4 |
Items | MHS | LHS | TN |
---|---|---|---|
RBCs | 9.1 ± 0.4 a | 7.1 ± 0.3 b | 7.7 ± 0.5 b |
Hb | 160.3 ± 7.7 a | 123.9 ± 5.5 b | 123.8 ± 8.3 b |
HCT | 52.3 ± 2.5 a | 42.0 ± 1.7 b | 40.3 ± 2.9 b |
MCH | 17.6 ± 0.3 a | 17.6 ± 0.3 a | 16.1 ± 0.5 b |
MCHC | 306.0 ± 3.7 a | 294.6 ± 2.4 b | 307.5 ± 2.7 a |
RDW | 15.1 ± 0.1 b | 15.7 ± 0.2 a | 14.8 ± 0.1 b |
PLT | 197.3 ± 25.5 | 246.3 ± 29.2 | 207.9 ± 14.7 |
MCV | 57.7 ± 0.5 a | 59.8 ± 1.3 a | 52.7 ± 2.1 b |
MPV | 6.5 ± 0.2 b | 7.2 ± 0.3 a | 6.1 ± 0.2 b |
PDW | 15.1 ± 0.1 | 15.7 ± 0.2 | 14.8 ± 0.1 |
PCT | 0.1 ± 0.0 b | 0.2 ± 0.0 a | 0.1 ± 0.0 b |
Fibrinogen | 3.6 ± 0.1 | 3.6 ± 0.1 | 3.6 ± 0.1 |
Blood viscosity | 1.6 | 1.7 | 1.6 |
WLS | 14.9 ± 0.7 | 13.2 ± 0.6 | 12.8 ± 0.9 |
WMS | 3.9 ± 0.2 a | 3.4 ± 0.2 ab | 3.2 ± 0.2 b |
WHS | 3.0 ± 0.2 a | 2.5 ± 0.1 ab | 2.3 ± 0.2 b |
EAIRBC | 5.0 ± 0.2 | 5.3 ± 0.3 | 5.5 ± 0.1 |
EACRBC | 3.4 ± 0.1 | 3.6 ± 0.2 | 3.8 ± 0.1 |
CV | 4.1 ± 0.3 a | 3.4 ± 0.2 ab | 3.1 ± 0.3 b |
LSFR | 73.4 ± 4.4 | 65.1 ± 2.7 | 62.3 ± 5.2 |
MSFR | 45.5 ± 3.3 a | 39.0 ± 1.6 ab | 35.9 ± 2.9 b |
HSFR | 34.5 ± 2.7 a | 29.2 ± 1.5 ab | 26.6 ± 2.2 b |
Metabolites | MS2 Values of Metabolites | Fold Change | ||||
---|---|---|---|---|---|---|
MHS | LHS | TN | MHS/LHS | LHS/TN | MHS/TN | |
Glucose metabolism pathway | ||||||
Beta-D-Glucose | 175,503.7 b | 49,931.1 b | 3,071,592.9 a | 3.51 | 0.02 | 0.06 |
6-Phosphogluconic acid | 18,480,403.0 b | 12,054,071.0 c | 25,856,213.7 a | 1.53 | 0.47 | 0.71 |
Glucosamine 6-phosphate | 1,030,375.5 b | 1,603,223.7 b | 5,548,853.0 a | 0.64 | 0.29 | 0.19 |
HIF-1 signaling pathway | ||||||
Pyruvic acid | 15,474,148.6 b | 36,698,657.4 a | 3,491,288.2 b | 0.42 | 10.51 | 4.43 |
2-Oxoglutarate | 22,091,070.9 b | 63,760,679.5 a | 23,489,928.1 b | 0.35 | 2.71 | 0.94 |
L-Lactic acid | 32,899,048.6 b | 58,121,217.4 a | 28,845,529.4 b | 0.57 | 2.01 | 1.14 |
TCA cycle pathway | ||||||
Fumaric acid | 6,211,170.6 b | 4,683,750.2 b | 11,401,787.1 a | 1.33 | 0.41 | 0.54 |
Citric acid | 1,726,608.8 b | 3,364,146.0 a | 738,279.3 c | 0.51 | 4.56 | 2.34 |
Succinic acid | 6,623,535.0 ab | 9,851,484.2 a | 3,873,301.5 b | 0.67 | 2.54 | 1.71 |
Isocitric acid | 2,976,933.3 a | 9,231,321.3 a | 389,702.6 b | 0.32 | 23.69 | 7.64 |
Metabolites | MS2 Values of Metabolites | Fold Change | ||||
---|---|---|---|---|---|---|
MHS | LHS | TN | MHS/LHS | LHS/TN | MHS/TN | |
Fatty acid metabolism pathway | ||||||
Pelargonic acid | 2,229,117.0 b | 2,213,080.9 b | 2,848,879.6 a | 1.01 | 0.78 | 0.78 |
Stearidonic acid | 1,067,560.6 b | 2,635,754.0 b | 49,400,885.4 a | 0.41 | 0.05 | 0.02 |
(9Z,12Z,15Z)-Octadecatrienoic acid | 2,771,981.0 b | 1,914,927.1 b | 19,005,417.2 a | 1.45 | 0.10 | 0.15 |
12-Hydroxydodecanoic acid | 7,278,600.5 b | 707,628.0 b | 31,411,741.6 a | 10.29 | 0.02 | 0.23 |
13S-hydroxyoctadecadienoic acid | 2,119,405.4 b | 5,815,579.2 b | 20,305,676.9 a | 0.36 | 0.29 | 0.10 |
Myristic acid | 21,186,183.2 a | 15,377,109.1 b | 23,628,349.1 a | 1.38 | 0.65 | 0.90 |
AAs metabolism pathway | ||||||
Ornithine | 16,400,508.3 b | 19,996,688.2 ab | 34,191,126.9 a | 0.82 | 0.58 | 0.48 |
Tryptophanol | 637,479.6 b | 315,211.8 b | 1,906,959.0 a | 2.02 | 0.17 | 0.33 |
S-Adenosylmethionine | 563,307,223.8 ab | 348,765,603.6 b | 739,305,208.6 a | 1.62 | 0.47 | 0.76 |
Citrulline | 43,367,716.4 ab | 28,442,760.6 b | 48,783,155.9 a | 1.52 | 0.58 | 0.89 |
L-Histidine | 51,553,230.9 b | 84,089,005.2 a | 47,407,454.9 b | 0.61 | 1.77 | 1.09 |
N-Acetylglutamic acid | 9,402,625.7 a | 8,953,631.9 ab | 5,142,373.1 b | 1.05 | 1.74 | 1.83 |
Vitamin metabolism pathway | ||||||
Biotin | 1,299,581.1 b | 4,590,534.0 a | 633,710.7 b | 0.28 | 7.24 | 2.05 |
Nicotinic acid | 7,388,364.3 b | 15,024,678.9 a | 2,966,459.0 b | 0.49 | 5.06 | 2.49 |
4-Pyridoxic acid | 4,177,648.8 b | 11,819,506.7 a | 4,403,432.5 b | 0.35 | 2.68 | 0.95 |
Retinol | 2,097,255.4 ab | 713,799.2 b | 3,137,850.1 a | 2.94 | 0.23 | 0.67 |
Retinoyl β-glucuronide | 13,269,918.9 b | 7,298,404.9 b | 36,852,011.4 a | 1.82 | 0.20 | 0.36 |
Metabolites | MS2 Values of Metabolites | Fold Change | ||||
---|---|---|---|---|---|---|
MHS | LHS | TN | MHS/LHS | LHS/TN | MHS/TN | |
Non-enzymatic antioxidants pathway | ||||||
gamma-Glutamylalanine | 5,800,356.4 b | 13,433,201.2 a | 4,691,901.8 b | 0.43 | 2.86 | 1.24 |
Acetylcysteine | 17,283,582.8 b | 22,770,228.3 b | 50,044,587.9 a | 0.76 | 0.45 | 0.35 |
N-Acetyl-D-glucosamine | 2,791,861.2 b | 2,957,486.1 ab | 18,595,163.8 a | 0.94 | 0.16 | 0.15 |
S-Allylcysteine | 1,438,037.1 b | 3,211,873.7 a | 356,295.7 c | 0.45 | 9.01 | 4.04 |
Cyclohexylamine | 4,076,873.0 b | 12,405,377.7 a | 6,227,572.8 b | 0.33 | 1.99 | 0.65 |
Diphenylamine | 21,728,135.9 b | 37,733,206.6 a | 15,903,247.7 b | 0.58 | 2.37 | 1.37 |
beta-Alanine | 21,012,859.0 b | 13,131,245.5 b | 32,777,332.1 a | 1.60 | 0.40 | 0.64 |
4-Hydroxybenzoic acid | 4,248,079.2 b | 1,307,664.2 b | 31,650,555.5 a | 3.25 | 0.04 | 0.13 |
Lipoxin A4 | 31,156,376.5 ab | 9,382,760.9 b | 55,572,174.5 a | 3.32 | 0.17 | 0.56 |
Alantolactone | 2,828,685.7 a | 2,065,247.4 a | 197,593.5 b | 1.37 | 10.45 | 14.32 |
Dimethyl sulfone | 698,601,726.1 a | 631,233,853.5 ab | 503,364,423.7 b | 1.11 | 1.25 | 1.39 |
Astragalin | 27,480,169.6 ab | 33,578,853.3 a | 24,076,039.9 b | 0.82 | 1.39 | 1.14 |
Carnosine | 20,248,888.8 ab | 27,761,540.4 a | 12,088,992.3 b | 0.73 | 2.30 | 1.67 |
Vasodilation and contraction pathway | ||||||
20-HETE | 521,749.1 b | 7,614,931.8 a | 174,935.9 b | 0.07 | 43.53 | 2.98 |
cAMP | 11,570,459.4 b | 40,205,475.0 a | 22,068,413.5 ab | 0.29 | 1.82 | 0.52 |
Norepinephrine | 121,214,550.9 b | 202,047,064.8 a | 93,772,652.5 b | 0.60 | 2.15 | 1.29 |
L-Homophenylalanine | 4,522,816.0 b | 9,491,670.1 a | 3,241,494.2 b | 0.48 | 2.93 | 1.40 |
Lipoxin B4 | 1,820,822.8 b | 6,808,483.6 a | 228,616.3 b | 0.27 | 29.78 | 7.96 |
1-Methylhistidine | 67,795,370.1 b | 80,489,665.4 a | 27,915,459.0 b | 0.84 | 2.88 | 2.43 |
Phenylacetylglycine | 202,354,294.8 b | 250,158,251.4 b | 585,414,282.4 a | 0.81 | 0.43 | 0.35 |
Acetylcholine chloride | 170,878,035.5 b | 158,994,744.4 b | 218,408,026.2 a | 1.07 | 0.73 | 0.78 |
Coumarin | 17,001,752.1 b | 19,844,404.4 b | 37,670,336.8 a | 0.86 | 0.53 | 0.45 |
Prostaglandin F1a | 957,098.6 b | 900,009.1 b | 4,423,172.6 a | 1.06 | 0.20 | 0.22 |
Hordenine | 2,485,240.9 a | 2,066,988.5 ab | 1,137,298.6 b | 1.20 | 1.82 | 2.19 |
PGA1 | 2,701,769.3 ab | 3,810,276.5 a | 1,557,899.4 b | 0.71 | 2.45 | 1.73 |
Items | Hits a | p-Value | Holm p b | Impact Value |
---|---|---|---|---|
Phenylalanine metabolism | 11 | 0.000 | 0.059 | 0.155 |
Citrate cycle (TCA cycle) | 6 | 0.000 | 0.108 | 0.256 |
Tyrosine metabolism | 12 | 0.001 | 0.166 | 0.168 |
Arginine biosynthesis | 6 | 0.001 | 0.245 | 0.403 |
Arginine and proline metabolism | 10 | 0.01 | 1 | 0.252 |
GABAergic synapse | 3 | 0.009 | 1 | 0.294 |
Lysine degradation | 7 | 0.014 | 1 | 0.104 |
Beta-Alanine metabolism | 5 | 0.024 | 1 | 0.345 |
cAMP signaling pathway | 4 | 0.039 | 1 | 0.185 |
HIF-1 signaling pathway | 3 | 0.041 | 1 | 0.316 |
Vascular smooth muscle contraction | 3 | 0.048 | 1 | 0.187 |
Items | Fatty Acids | MHS | LHS | TN |
---|---|---|---|---|
Saturated fatty acids | C6:0 | 0.01 ± 0.001 b | 0.012 ± 0.0 a | 0.008 ± 0.001 c |
C8:0 | 0.001 ± 0.0 b | 0.003 ± 0.0 a | 0.001 ± 0.0 b | |
C10:0 | 0.003 ± 0.001 b | 0.006 ± 0.0 a | 0.002 ± 0.0 b | |
C16:0 | 10.018 ± 0.79 ab | 12.624 ± 1.159 a | 9.091 ± 0.599 b | |
C18:0 | 10.149 ± 1.365 b | 15.051 ± 1.261 a | 8.276 ± 0.683 b | |
C23:0 | 0.036 ± 0.006 ab | 0.026 ± 0.001 b | 0.051 ± 0.005 a | |
Monounsaturated fatty acids | C15:1 | 0.247 ± 0.016 b | 0.217 ± 0.033 b | 0.482 ± 0.039 a |
C17:1T | 0.122 ± 0.007 b | 0.134 ±0.006 b | 0.195 ± 0.016 a | |
C18:1N9T | 0.081 ± 0.012 b | 0.112 ± 0.009 a | 0.060 ± 0.003 b | |
C18:1N12 | 1.709 ± 0.266 a | 1.709 ± 0.176 a | 0.662 ± 0.117 b | |
C20:1 | 0.19 ± 0.01 b | 0.205 ± 0.014 b | 0.418 ± 0.026 a | |
C24:1 | 0.109 ± 0.013 ab | 0.089 ± 0.016 b | 0.142 ± 0.005 a | |
Polyunsaturated fatty acids | C18:2N6T | 0.021 ± 0.004 bc | 0.030 ± 0.002 a | 0.022 ± 0.002 ab |
C18:2N6 | 3.120 ± 1.023 b | 7.281 ± 0.508 a | 3.341 ± 0.474 b | |
C18:3N6 | 0.159 ± 0.055 ab | 0.260 ± 0.019 a | 0.082 ± 0.028 b | |
C18:3N3 | 0.260 ± 0.049 b | 0.212 ± 0.021 b | 1.166 ± 0.082 a | |
C20:3N3 | 0.220 ± 0.035 ab | 0.234 ± 0.030 a | 0.132 ± 0.025 b | |
C22:2 | 0.033 ± 0.002 ab | 0.029 ± 0.003 b | 0.040 ± 0.003 a | |
C20:5N3 | 0.095 ± 0.018 b | 0.054 ± 0.007 b | 0.295 ± 0.058 a | |
C22:4 | 0.121 ± 0.050 ab | 0.191 ± 0.012 a | 0.035 ± 0.003 b | |
C22:5N3 | 0.240 ± 0.043 ab | 0.149 ± 0.015 b | 0.364 ± 0.057 a | |
C22:6N3 | 0.108 ± 0.02 ab | 0.058 ± 0.008 b | 0.128 ± 0.022 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Liu, J.; Gu, Z.; Liu, P.; Lan, Q. Physiological and Metabolic Adaptation to Heat Stress at Different Altitudes in Yaks. Metabolites 2022, 12, 1082. https://doi.org/10.3390/metabo12111082
Yang S, Liu J, Gu Z, Liu P, Lan Q. Physiological and Metabolic Adaptation to Heat Stress at Different Altitudes in Yaks. Metabolites. 2022; 12(11):1082. https://doi.org/10.3390/metabo12111082
Chicago/Turabian StyleYang, Shuli, Jinfeng Liu, Zhaobing Gu, Ping Liu, and Qin Lan. 2022. "Physiological and Metabolic Adaptation to Heat Stress at Different Altitudes in Yaks" Metabolites 12, no. 11: 1082. https://doi.org/10.3390/metabo12111082
APA StyleYang, S., Liu, J., Gu, Z., Liu, P., & Lan, Q. (2022). Physiological and Metabolic Adaptation to Heat Stress at Different Altitudes in Yaks. Metabolites, 12(11), 1082. https://doi.org/10.3390/metabo12111082