Dietary Isoflavone Aglycons from Soy Germ Pasta Improves Reproductive Performance of Aging Hens and Lowers Cholesterol Levels of Egg Yolk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diets
2.2. Study Design
2.3. Evaluation of Egg Quality and Characteristics
2.4. Analytical Determination of Isoflavones and Cholesterol
2.5. Statistical Analysis
3. Results
3.1. Isoflavone Content of Diets
3.2. Influence of Dietary Isoflavones on Egg-Laying Performance of Hens
3.3. Effects of Dietary Isoflavones on Nutritional Composition of Eggs
3.4. Effects of Dietary Isoflavones on Plasma Equol and Cholesterol Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Axelson, M.; Kirk, D.N.; Farrant, R.D.; Cooley, G.; Lawson, A.M.; Setchell, K.D. The identification of the weak oestrogen equol [7-hydroxy-3-(4′-hydroxyphenyl)chroman] in human urine. Biochem. J. 1982, 201, 353–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Axelson, M.; Sjovall, J.; Gustafsson, B.E.; Setchell, K.D. Soya—A dietary source of the non-steroidal oestrogen equol in man and animals. J. Endocrinol. 1984, 102, 49–56. [Google Scholar] [CrossRef]
- Setchell, K.D.; Borriello, S.P.; Hulme, P.; Kirk, D.N.; Axelson, M. Nonsteroidal estrogens of dietary origin: Possible roles in hormone-dependent disease. Am. J. Clin. Nutr. 1984, 40, 569–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Setchell, K.D.; Clerici, C.; Lephart, E.D.; Cole, S.J.; Heenan, C.; Castellani, D.; Wolfe, B.E.; Nechemias-Zimmer, L.; Brown, N.M.; Lund, T.D.; et al. S-equol, a potent ligand for estrogen receptor beta, is the exclusive enantiomeric form of the soy isoflavone metabolite produced by human intestinal bacterial flora. Am. J. Clin. Nutr. 2005, 81, 1072–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Setchell, K.D.; Clerici, C. Equol: History, chemistry, and formation. J. Nutr. 2010, 140, 1355S–1362S. [Google Scholar] [CrossRef] [Green Version]
- Gardana, C.; Canzi, E.; Simonetti, P. The role of diet in the metabolism of daidzein by human faecal microbiota sampled from Italian volunteers. J. Nutr. Biochem. 2009, 20, 940–947. [Google Scholar] [CrossRef]
- Minamida, K.; Tanaka, M.; Abe, A.; Sone, T.; Tomita, F.; Hara, H.; Asano, K. Production of equol from daidzein by gram-positive rod-shaped bacterium isolated from rat intestine. J. Biosci. Bioeng. 2006, 102, 247–250. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.L.; Hur, H.G.; Lee, J.H.; Kim, K.T.; Kim, S.I. Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium. Appl. Environ. Microbiol. 2005, 71, 214–219. [Google Scholar] [CrossRef] [Green Version]
- Matthies, A.; Blaut, M.; Braune, A. Isolation of a human intestinal bacterium capable of daidzein and genistein conversion. Appl. Environ. Microbiol. 2009, 75, 1740–1744. [Google Scholar] [CrossRef] [Green Version]
- Florez, A.B.; Vazquez, L.; Rodriguez, J.; Redruello, B.; Mayo, B. Transcriptional Regulation of the Equol Biosynthesis Gene Cluster in Adlercreutzia equolifaciens DSM19450(T). Nutrients 2019, 11, 993. [Google Scholar] [CrossRef]
- Zheng, W.; Ma, Y.; Zhao, A.; He, T.; Lyu, N.; Pan, Z.; Mao, G.; Liu, Y.; Li, J.; Wang, P.; et al. Compositional and functional differences in human gut microbiome with respect to equol production and its association with blood lipid level: A cross-sectional study. Gut Pathog. 2019, 11, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lampe, J.W.; Karr, S.C.; Hutchins, A.M.; Slavin, J.L. Urinary equol excretion with a soy challenge: Influence of habitual diet. Proc. Soc. Exp. Biol. Med. 1998, 217, 335–339. [Google Scholar] [CrossRef]
- Rowland, I.R.; Wiseman, H.; Sanders, T.A.; Adlercreutz, H.; Bowey, E.A. Interindividual variation in metabolism of soy isoflavones and lignans: Influence of habitual diet on equol production by the gut microflora. Nutr. Cancer 2000, 36, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Setchell, K.D.; Cole, S.J. Method of defining equol-producer status and its frequency among vegetarians. J. Nutr. 2006, 136, 2188–2193. [Google Scholar] [CrossRef] [Green Version]
- Song, K.B.; Atkinson, C.; Frankenfeld, C.L.; Jokela, T.; Wahala, K.; Thomas, W.K.; Lampe, J.W. Prevalence of daidzein-metabolizing phenotypes differs between Caucasian and Korean American women and girls. J. Nutr. 2006, 136, 1347–1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, K.W.; Ko, K.P.; Ahn, Y.; Kim, C.S.; Park, S.J.; Park, J.K.; Kim, S.S.; Kim, Y. Epidemiological profiles between equol producers and nonproducers: A genomewide association study of the equol-producing phenotype. Genes Nutr. 2012, 7, 567–574. [Google Scholar] [CrossRef] [Green Version]
- Akaza, H.; Miyanaga, N.; Takashima, N.; Naito, S.; Hirao, Y.; Tsukamoto, T.; Fujioka, T.; Mori, M.; Kim, W.J.; Song, J.M.; et al. Comparisons of percent equol producers between prostate cancer patients and controls: Case-controlled studies of isoflavones in Japanese, Korean and American residents. Jpn. J. Clin. Oncol. 2004, 34, 86–89. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, C.; Newton, K.M.; Bowles, E.J.; Yong, M.; Lampe, J.W. Demographic, anthropometric, and lifestyle factors and dietary intakes in relation to daidzein-metabolizing phenotypes among premenopausal women in the United States. Am. J. Clin. Nutr. 2008, 87, 679–687. [Google Scholar] [CrossRef] [Green Version]
- Peeters, P.H.; Slimani, N.; van der Schouw, Y.T.; Grace, P.B.; Navarro, C.; Tjonneland, A.; Olsen, A.; Clavel-Chapelon, F.; Touillaud, M.; Boutron-Ruault, M.C.; et al. Variations in plasma phytoestrogen concentrations in European adults. J. Nutr. 2007, 137, 1294–1300. [Google Scholar] [CrossRef] [Green Version]
- Arai, Y.; Uehara, M.; Sato, Y.; Kimira, M.; Eboshida, A.; Adlercreutz, H.; Watanabe, S. Comparison of isoflavones among dietary intake, plasma concentration and urinary excretion for accurate estimation of phytoestrogen intake. J. Epidemiol. 2000, 10, 127–135. [Google Scholar] [CrossRef]
- Setchell, K.D.; Brown, N.M.; Lydeking-Olsen, E. The clinical importance of the metabolite equol-a clue to the effectiveness of soy and its isoflavones. J. Nutr. 2002, 132, 3577–3584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Setchell, K.D.; Brown, N.M.; Summer, S.; King, E.C.; Heubi, J.E.; Cole, S.; Guy, T.; Hokin, B. Dietary factors influence production of the soy isoflavone metabolite s-(-)equol in healthy adults. J. Nutr. 2013, 143, 1950–1958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, N.M.; Galandi, S.L.; Summer, S.S.; Zhao, X.; Heubi, J.E.; King, E.C.; Setchell, K.D. S-(-)equol production is developmentally regulated and related to early diet composition. Nutr. Res. 2014, 34, 401–409. [Google Scholar] [CrossRef] [Green Version]
- Miyanaga, N.; Akaza, H.; Takashima, N.; Nagata, Y.; Sonoda, T.; Mori, M.; Naito, S.; Hirao, Y.; Tsukamoto, T.; Fujioka, T. Higher consumption of green tea may enhance equol production. Asian Pac. J. Cancer Prev. 2003, 4, 297–301. [Google Scholar] [PubMed]
- Nagata, C.; Ueno, T.; Uchiyama, S.; Nagao, Y.; Yamamoto, S.; Shibuya, C.; Kashiki, Y.; Shimizu, H. Dietary and lifestyle correlates of urinary excretion status of equol in Japanese women. Nutr. Cancer 2008, 60, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Bolca, S.; Possemiers, S.; Herregat, A.; Huybrechts, I.; Heyerick, A.; De Vriese, S.; Verbruggen, M.; Depypere, H.; De Keukeleire, D.; Bracke, M.; et al. Microbial and dietary factors are associated with the equol producer phenotype in healthy postmenopausal women. J. Nutr. 2007, 137, 2242–2246. [Google Scholar] [CrossRef] [Green Version]
- Teas, J.; Hurley, T.G.; Hebert, J.R.; Franke, A.A.; Sepkovic, D.W.; Kurzer, M.S. Dietary seaweed modifies estrogen and phytoestrogen metabolism in healthy postmenopausal women. J. Nutr. 2009, 139, 939–944. [Google Scholar] [CrossRef] [Green Version]
- Setchell, K.D.; Brown, N.M.; Zimmer-Nechemias, L.; Brashear, W.T.; Wolfe, B.E.; Kirschner, A.S.; Heubi, J.E. Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am. J. Clin. Nutr. 2002, 76, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Setchell, K.D.; Clerici, C. Equol: Pharmacokinetics and biological actions. J. Nutr. 2010, 140, 1363S–1368S. [Google Scholar] [CrossRef] [Green Version]
- Clerici, C.; Setchell, K.D.; Battezzati, P.M.; Pirro, M.; Giuliano, V.; Asciutti, S.; Castellani, D.; Nardi, E.; Sabatino, G.; Orlandi, S.; et al. Pasta naturally enriched with isoflavone aglycons from soy germ reduces serum lipids and improves markers of cardiovascular risk. J. Nutr. 2007, 137, 2270–2278. [Google Scholar] [CrossRef]
- Clerici, C.; Nardi, E.; Battezzati, P.M.; Asciutti, S.; Castellani, D.; Corazzi, N.; Giuliano, V.; Gizzi, S.; Perriello, G.; Di Matteo, G.; et al. Novel soy germ pasta improves endothelial function, blood pressure, and oxidative stress in patients with type 2 diabetes. Diabetes Care 2011, 34, 1946–1948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Setchell, K.D.; Nardi, E.; Battezzati, P.M.; Asciutti, S.; Castellani, D.; Perriello, G.; Clerici, C. Novel soy germ pasta enriched in isoflavones ameliorates gastroparesis in type 2 diabetes: A pilot study. Diabetes Care 2013, 36, 3495–3497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Common, R.H.; Ainsworth, L. Identification of equol in the urine of the domestic fowl. Biochim. Biophys. Acta 1961, 53, 403–404. [Google Scholar] [CrossRef]
- Tang, G.; Common, R.H. Urinary conversion products of certain orally administered isoflavones in the fowl. Biochim. Biophys. Acta 1968, 158, 402–413. [Google Scholar] [CrossRef]
- Mattioli, S.; Ruggeri, S.; Sebastiani, B.; Brecchia, G.; Dal Bosco, A.; Cartoni Mancinelli, A.; Castellini, C. Performance and egg quality of laying hens fed flaxseed: Highlights on n-3 fatty acids, cholesterol, lignans and isoflavones. Animal 2017, 11, 705–712. [Google Scholar] [CrossRef]
- Burley, R.W.; Valdera, D.V. (Eds.) The Avian Egg: Chemistry and Biology; Wiley: New York, NY, USA, 1989. [Google Scholar]
- Somekawa, Y.; Chiguchi, M.; Ishibashi, T.; Aso, T. Soy intake related to menopausal symptoms, serum lipids, and bone mineral density in postmenopausal Japanese women. Obstet. Gynecol. 2001, 97, 109–115. [Google Scholar] [CrossRef]
- Wakai, K.; Egami, I.; Kato, K.; Kawamura, T.; Tamakoshi, A.; Lin, Y.; Nakayama, T.; Wada, M.; Ohno, Y. Dietary intake and sources of isoflavones among Japanese. Nutr. Cancer 1999, 33, 139–145. [Google Scholar] [CrossRef]
- Messina, M.; Nagata, C.; Wu, A.H. Estimated Asian adult soy protein and isoflavone intakes. Nutr. Cancer 2006, 55, 1–12. [Google Scholar] [CrossRef]
- Council, N.R. Nutrient Requirements of Poultry, 9th ed.; National Academy of Sciences: Washington, DC, USA, 1994. [Google Scholar]
- Ribeiro, P.D.A.P.; Matos, J.B., Jr.; Lara, L.J.C.; Arújo, L.; Albuquerque, R.D.; Bailão, N.C. Effect of dietary energy concentration on performance parameters and egg quality of white leghorn laying hens. Braz. J. Poult. Sci. 2014, 16, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Beck, M.M.; Hansen, K.K. Role of estrogen in avian osteoporosis. Poult. Sci. 2004, 83, 200–206. [Google Scholar] [CrossRef]
- Setchell, K.D.; Zhao, X.; Jha, P.; Heubi, J.E.; Brown, N.M. The pharmacokinetic behavior of the soy isoflavone metabolite S-(−)equol and its diastereoisomer R-(+)equol in healthy adults determined by using stable-isotope-labeled tracers. Am. J. Clin. Nutr. 2009, 90, 1029–1037. [Google Scholar] [CrossRef] [Green Version]
- Vuilleumier, J.P. The Roche yolk colour fan—An instrument for measuring yolk colour. Poult. Sci. 1969, 48, 767–779. [Google Scholar] [CrossRef]
- AOAC. Methods of Analysis, 15th ed.; AOAC: Rockville, MD, USA, 1995. [Google Scholar]
- Setchell, K.D.; Cole, S.J. Variations in isoflavone levels in soy foods and soy protein isolates and issues related to isoflavone databases and food labeling. J. Agric. Food Chem. 2003, 51, 4146–4155. [Google Scholar] [CrossRef] [PubMed]
- Murphy, P.A.; Song, T.; Buseman, G.; Barua, K.; Beecher, G.R.; Trainer, D.; Holden, J. Isoflavones in retail and institutional soy foods. J. Agric. Food Chem. 1999, 47, 2697–2704. [Google Scholar] [CrossRef] [PubMed]
- Murphy, P.A. Phytoestrogen content of processed soybean products. Food Technol. 1982, 43, 60–64. [Google Scholar]
- Coward, L.; Barnes, N.C.; Setchell, K.D.R.; Barnes, S. Genistein, daidzein, and their b-glycoside conjugates: Antitumor isoflavones in soybean foods from American and Asian diets. J. Agric. Food Chem. 1993, 41, 1961–1967. [Google Scholar] [CrossRef]
- Izumi, T.; Piskula, M.; Osawa, S.; Obata, A.; Tobe, K.; Saito, M.; Kataoka, S.; Kubota, Y.; Kikuchi, M. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 2000, 130, 1695–1699. [Google Scholar] [CrossRef] [Green Version]
- Setchell, K.D.; Brown, N.M.; Desai, P.B.; Zimmer-Nechimias, L.; Wolfe, B.; Jakate, A.S.; Creutzinger, V.; Heubi, J.E. Bioavailability, disposition, and dose-response effects of soy isoflavones when consumed by healthy women at physiologically typical dietary intakes. J. Nutr. 2003, 133, 1027–1035. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, S.; Yamaguchi, M.; Sobue, T.; Takahashi, T.; Miura, T.; Arai, Y.; Mazur, W.; Wahala, K.; Adlercreutz, H. Pharmacokinetics of soybean isoflavones in plasma, urine and feces of men after ingestion of 60 g baked soybean powder (kinako). J. Nutr. 1998, 128, 1710–1715. [Google Scholar] [CrossRef] [Green Version]
- Brown, N.M.; Setchell, K.D. Animal models impacted by phytoestrogens in commercial chow: Implications for pathways influenced by hormones. Lab. Investig. 2001, 81, 735–747. [Google Scholar] [CrossRef] [Green Version]
- Setchell, K.D.; Brown, N.M.; Zhao, X.; Lindley, S.L.; Heubi, J.E.; King, E.C.; Messina, M.J. Soy isoflavone phase II metabolism differs between rodents and humans: Implications for the effect on breast cancer risk. Am. J. Clin. Nutr. 2011, 94, 1284–1294. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; House, S.E.; Prior, R.L.; Fang, N.; Ronis, M.J.; Clarkson, T.B.; Wilson, M.E.; Badger, T.M. Metabolic phenotype of isoflavones differ among female rats, pigs, monkeys, and women. J. Nutr. 2006, 136, 1215–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, P.A.; Barua, K.; Hauck, C.C. Solvent extraction selection in the determination of isoflavones in soy foods. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002, 777, 129–138. [Google Scholar] [CrossRef]
- Anderson, J.W.; Johnstone, B.M.; Cook-Newell, M.E. Meta-analysis of the effects of soy protein intake on serum lipids. N. Engl. J. Med. 1995, 333, 276–282. [Google Scholar] [CrossRef]
- FDA. Food labeling: Health claims: Soy protein and coronary heart disease. Food and Drug Administration, HHS: Final rule: Soy protein and coronary heart disease. Fed. Regist. 1999, 64, 57700–57733. [Google Scholar]
- Crouse, J.R., 3rd; Morgan, T.; Terry, J.G.; Ellis, J.; Vitolins, M.; Burke, G.L. A randomized trial comparing the effect of casein with that of soy protein containing varying amounts of isoflavones on plasma concentrations of lipids and lipoproteins. Arch. Intern. Med. 1999, 159, 2070–2076. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, X.G.; Melby, M.K.; Watanabe, S. Soy isoflavone intake lowers serum LDL cholesterol: A meta-analysis of 8 randomized controlled trials in humans. J. Nutr. 2004, 134, 2395–2400. [Google Scholar] [CrossRef] [Green Version]
- Zhan, S.; Ho, S.C. Meta-analysis of the effects of soy protein containing isoflavones on the lipid profile. Am. J. Clin. Nutr. 2005, 81, 397–408. [Google Scholar] [CrossRef] [Green Version]
- Baranska, A.; Blaszczuk, A.; Kanadys, W.; Baczewska, B.; Jedrych, M.; Wawryk-Gawda, E.; Polz-Dacewicz, M. Effects of Soy Protein Containing of Isoflavones and Isoflavones Extract on Plasma Lipid Profile in Postmenopausal Women as a Potential Prevention Factor in Cardiovascular Diseases: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2021, 13, 2531. [Google Scholar] [CrossRef]
- Ricketts, M.L.; Moore, D.D.; Banz, W.J.; Mezei, O.; Shay, N.F. Molecular mechanisms of action of the soy isoflavones includes activation of promiscuous nuclear receptors. A review. J. Nutr. Biochem. 2005, 16, 321–330. [Google Scholar] [CrossRef]
- Duan, X.; Meng, Q.; Wang, C.; Liu, Z.; Liu, Q.; Sun, H.; Sun, P.; Yang, X.; Huo, X.; Peng, J.; et al. Calycosin attenuates triglyceride accumulation and hepatic fibrosis in murine model of non-alcoholic steatohepatitis via activating farnesoid X receptor. Phytomedicine 2017, 25, 83–92. [Google Scholar] [CrossRef]
- Qiu, R.; Luo, G.; Cai, X.; Liu, L.; Chen, M.; Chen, D.; You, Q.; Xiang, H. Structure-guided design and synthesis of isoflavone analogs of GW4064 with potent lipid accumulation inhibitory activities. Bioorg. Med. Chem. Lett. 2018, 28, 3726–3730. [Google Scholar] [CrossRef]
- Rosenson, R.S.; Song, W.L. Egg yolk, source of bad cholesterol and good lipids? Am. J. Clin. Nutr. 2019, 110, 548–549. [Google Scholar] [CrossRef]
- Quintão, E.C.R. Does eating eggs matter? Arch. Endocrinol. Metab. 2022, 66, 152–156. [Google Scholar] [CrossRef]
- Saitoh, S.; Sato, T.; Harada, H.; Matsuda, T. Biotransformation of soy isoflavone-glycosides in laying hens: Intestinal absorption and preferential accumulation into egg yolk of equol, a more estrogenic metabolite of daidzein. Biochim. Biophys. Acta 2004, 1674, 122–130. [Google Scholar] [CrossRef]
- Saitoh, S.; Sato, T.; Harada, H.; Takita, T. Transfer of soy isoflavone into the egg yolk of chickens. Biosci. Biotechnol. Biochem. 2001, 65, 2220–2225. [Google Scholar] [CrossRef]
- Kuhnle, G.G.; Dell’Aquila, C.; Aspinall, S.M.; Runswick, S.A.; Mulligan, A.A.; Bingham, S.A. Phytoestrogen content of foods of animal origin: Dairy products, eggs, meat, fish, and seafood. J. Agric. Food Chem. 2008, 56, 10099–10104. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, Y.; Zhou, Y.; Ni, Y.; Lu, L.; Grossmann, R.; Chen, J. Dietary daidzein influences laying performance of ducks (Anas platyrhynchos) and early post-hatch growth of their hatchlings by modulating gene expression. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2004, 138, 459–466. [Google Scholar] [CrossRef]
- Ni, Y.; Zhu, Q.; Zhou, Z.; Grossmann, R.; Chen, J.; Zhao, R. Effect of dietary daidzein on egg production, shell quality, and gene expression of ER-alpha, GH-R, and IGF-IR in shell glands of laying hens. J. Agric. Food Chem. 2007, 55, 6997–7001. [Google Scholar] [CrossRef]
- Zhao, R.Q.; Zhou, Y.C.; Ni, Y.D.; Lu, L.Z.; Tao, Z.R.; Chen, W.H.; Chen, J. Effect of daidzein on egg-laying performance in Shaoxing duck breeders during different stages of the egg production cycle. Br. Poult. Sci. 2005, 46, 175–181. [Google Scholar] [CrossRef]
- Morito, K.; Hirose, T.; Kinjo, J.; Hirakawa, T.; Okawa, M.; Nohara, T.; Ogawa, S.; Inoue, S.; Muramatsu, M.; Masamune, Y. Interaction of phytoestrogens with estrogen receptors alpha and beta. Biol. Pharm. Bull. 2001, 24, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Muthyala, R.S.; Ju, Y.H.; Sheng, S.; Williams, L.D.; Doerge, D.R.; Katzenellenbogen, B.S.; Helferich, W.G.; Katzenellenbogen, J.A. Equol, a natural estrogenic metabolite from soy isoflavones: Convenient preparation and resolution of R- and S-equols and their differing binding and biological activity through estrogen receptors alpha and beta. Bioorg. Med. Chem. 2004, 12, 1559–1567. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Y.; Zhang, C.Q. Effects of daidzein on messenger ribonucleic Acid expression of gonadotropin receptors in chicken ovarian follicles. Poult. Sci. 2008, 87, 541–545. [Google Scholar] [CrossRef] [PubMed]
Ingredients (% of Diet): | Control Diet | Diet A | Diet B | Diet C |
---|---|---|---|---|
Corn meal | 51.6 | 51.6 | 10.0 | 10.0 |
Extruded soybean meal, 44% | 21.0 | 20.1 | 19.0 | 19.0 |
Corn gluten meal | 8.0 | 8.0 | 6.5 | 7.6 |
Wheat bran | 10.5 | 10.5 | - | |
Durum wheat semolina | - | - | 53.4 † | 53.4 |
Sunflower oil | 0.4 | 0.4 | 1.5 | 1.5 |
Dicalcium phosphate | 0.5 | 0.5 | 0.5 | 0.5 |
Calcium carbonate | 5.5 | 5.5 | 5.5 | 5.5 |
Sodium bicarbonate | 0.5 | 0.5 | 0.5 | 0.5 |
NaCl | 0.5 | 0.5 | 0.5 | 0.5 |
Vitamin and mineral premix * | 1.5 | 1.5 | 1.5 | 1.5 |
Soy germ | - | 0.9 | 1.06 | - |
Nutrient composition (% dry matter): | ||||
Dry matter | 88.2 | 88.2 | 84.1 | 89.4 |
Crude protein | 18.6 | 18.8 | 18.7 | 18.5 |
Ether extract | 3.7 | 3.9 | 3.6 | 3.5 |
Crude fiber | 5.6 | 5.6 | 5.4 | 4.7 |
Ash | 13.6 | 13.6 | 12.1 | 11.5 |
Estimated metabolizable energy (MJ/kg) | 11.5 | 11.6 | 11.4 | 11.4 |
Isoflavone, mg/100 g | Control Diet | Diet A | Diet B | Diet C |
---|---|---|---|---|
Daidzein forms | 12.2 a ± 2.12 | 20.5 b ± 3.01 | 24.5 b ± 2.17 | 10.5 a ± 1.85 |
Genistein forms | 17.9 a ± 1.14 | 30.1 b ± 3.04 | 32.6 b ± 2.79 | 16.1 a ± 2.17 |
Glycitein forms | 3.4 a ± 0.64 | 5.7 a ± 1.02 | 6.3 b ± 0.02 | 3.1 a ± 1.81 |
Total isoflavone (aglycon equivalents) | 33.6 a ± 3.12 | 56.4 b ± 4.07 | 63.0 b ± 2.84 | 30.4 a ± 2.40 |
Proportion of glycosides (%) | 95.0 b | 96.8 b | 49.8 a | 96.7 b |
Proportion of aglycons (%) | 5.0 a | 4.2 b | 50.2 a | 4.3 b |
Hens’ Egg Productivity | Control Diet | Diet A | Diet B | Diet C |
---|---|---|---|---|
Total number of eggs laid (n) | 87 | 81 | 141 | 87 |
Average egg weight (g) | 52.2 ± 1.7 | 55.6 ± 1.7 | 52.9 ± 2.1 | 54.0 ± 1.8 |
Total egg yield x (g) | 4541 | 4504 | 7459 | 4699 |
Baseline egg-laying rate (%) | 37.8 ± 6.8 | 37.8 ± 6.8 | 37.8 ± 6.8 | 37.8 ± 6.8 |
Final egg-laying rate (%) | 30.0 ± 4.5 | 27.1 ± 8.1 | 64.3 a ± 15.4 | 30.0 ± 15.4 |
Total egg-laying rate y (%) | 31.1 ± 5.6 | 28.9 ± 8.8 | 50.4 ± 15.3 | 31.1 ± 10.2 |
Total food consumption (kg) | 29.8 | 28.9 | 33.6 | 30.7 |
Baseline body weight (kg) | 1.81 ± 0.19 | 1.88 ± 0.28 | 1.82 ± 0.25 | 1.78 ± 0.17 |
Final body weight (kg) | 1.75 ± 0.24 | 1.79 ± 0.20 | 1.93 ± 0.27 | 1.72 ± 0.22 |
Control Diet | Diet A | Diet B | Diet C | |
---|---|---|---|---|
Egg Constituents and Quality Markers: | ||||
Albumen (% of weight) | 53.0 a ± 0.4 | 55.2 a ± 0.6 | 57.1 b ± 1.1 | 55.9 a ± 0.5 |
Yolk (% of weight) | 35.9 b ± 1.0 | 33.8 b ± 0.8 | 31.9 a ± 0.6 | 33.5 b ± 0.3 |
Albumen/yolk ratio | 1.6 a ± 0.1 | 1.6 a ± 0.1 | 1.7 b ± 0.1 | 1.6 a ± 0.1 |
Shell (% of weight) | 11.1 ± 1.1 | 10.9 ± 0.7 | 11.2 ± 0.5 | 11.0 ± 0.5 |
Haugh unit | 78.1 ± 4.7 | 79.4 ± 7.5 | 75.9 ± 6.7 | 75.4 ± 4.6 |
Roche color scale | 12.0 a ± 1.0 | 13.0 a ± 1.0 | 6.0 b ± 1.0 | 6.0 b ± 1.0 |
Yolk Constituents: | ||||
Dry matter (% of wet yolk) | 50.4 | 50.6 | 51.0 | 51.0 |
Ether extract (% of wet yolk) | 32.3 | 32.1 | 31.8 | 32.1 |
Crude protein (% of wet yolk) | 16.0 | 15.8 | 15.8 | 15.8 |
Ash (% of wet yolk) | 1.6 | 1.7 | 1.7 | 1.7 |
Cholesterol, mg/g egg yolk | 14.6 b ± 0.7 | 14.0 ab ± 0.7 | 13.5 a ± 0.6 | 14.8 b± 0.4 |
Cholesterol content, mg/egg | 275 b ± 18 | 262 b ± 19 | 220 a ± 15 | 266 b ± 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Setchell, K.D.R.; Mourvaki, E.; Clerici, C.; Mattioli, S.; Brecchia, G.; Castellini, C. Dietary Isoflavone Aglycons from Soy Germ Pasta Improves Reproductive Performance of Aging Hens and Lowers Cholesterol Levels of Egg Yolk. Metabolites 2022, 12, 1112. https://doi.org/10.3390/metabo12111112
Setchell KDR, Mourvaki E, Clerici C, Mattioli S, Brecchia G, Castellini C. Dietary Isoflavone Aglycons from Soy Germ Pasta Improves Reproductive Performance of Aging Hens and Lowers Cholesterol Levels of Egg Yolk. Metabolites. 2022; 12(11):1112. https://doi.org/10.3390/metabo12111112
Chicago/Turabian StyleSetchell, Kenneth D. R., Evangelia Mourvaki, Carlo Clerici, Simona Mattioli, Gabriele Brecchia, and Cesare Castellini. 2022. "Dietary Isoflavone Aglycons from Soy Germ Pasta Improves Reproductive Performance of Aging Hens and Lowers Cholesterol Levels of Egg Yolk" Metabolites 12, no. 11: 1112. https://doi.org/10.3390/metabo12111112
APA StyleSetchell, K. D. R., Mourvaki, E., Clerici, C., Mattioli, S., Brecchia, G., & Castellini, C. (2022). Dietary Isoflavone Aglycons from Soy Germ Pasta Improves Reproductive Performance of Aging Hens and Lowers Cholesterol Levels of Egg Yolk. Metabolites, 12(11), 1112. https://doi.org/10.3390/metabo12111112