Exploring the Relationship between Obesity, Metabolic Syndrome and Neuroendocrine Neoplasms
Abstract
:1. Obesity and Human Health
2. The Impact of Obesity on Cancer Risk and Outcomes
3. Neuroendocrine Neoplasms
4. Obesity, Metabolic Syndrome, and Incidence of Neuroendocrine Tumors
Citation | Study Population | Findings |
---|---|---|
Hassan (2008) [60] | Retrospective study of 740 patients with NETs and 924 healthy controls | In men, overweight individuals had a reduction in the risk of developing gastric, small bowel, pancreatic and lung NETs. In women, overweight individuals had a reduction in the risk of small bowel NETs. A long-term history of diabetes is a risk factor for gastric NETs (AOR 5.6, 2.1–14.5), particularly in women (AOR 8.4, 95% CI 1.9–38.1). |
Mottin (2009) [63] | Retrospective study of 8383 patients who had bariatric surgery for morbid obesity from 2000–2007 | Incidence of carcinoid tumors is estimated to be 358 per 100,000 in obese people compared to 1–2 per 100,000 people in the general population. |
Capurso (2009) [84] | Case-control study of 162 pancreatic neuroendocrine tumors and 648 controls | A recent diagnosis of diabetes (≤12 months) is an independent risk factor for pancreatic NETs (OR 40.1, 95% CI 4.8–328.9). No differences in the mean BMI were observed between the cases and controls. |
Crea (2011) [69] | Retrospective study of 588 patients who had bariatric surgery, 477 of which underwent routine appendectomies | Seven patients were identified with appendiceal carcinoid tumors (1.4%). |
Cross (2013) [66] | Retrospective study of 237 small intestinal cancers, including 124 malignant carcinoid tumors, from the National Institutes of Health and the American Association of Retired Persons (NIH-AARP) Diet and Health Study | Increased risks of malignant carcinoid tumors of the small intestine were observed in those with a BMI of ≥35 kg/m2 compared to those with a BMI of 18.5 to < 25 kg/m2 (HR 1.95, 95% CI 1.06–3.58). |
Zhan (2013) [67] | Case-control study of 196 patients with insulinoma and 233 controls | BMIs were higher in the patients with insulinoma compared to the controls (27.42 ± 4.54 compared to 23.59 ± 3.21, p < 0.0001); however, this was not significant in the multivariate analysis. |
Halfdanarson (2014) [85] | Case-control study of 355 patients with pancreatic neuroendocrine tumors and 602 controls | Diabetes was more common in the patients with pancreatic neuroendocrine tumors compared to the controls (19% vs. 11%, p < 0.001). |
Jung (2014) [58] | Cross-sectional study of 57,819 patients who underwent screening colonoscopy, of which 101 were diagnosed with rectal neuroendocrine tumors | Low HDL was an independent risk factor for rectal NETs (adjusted OR 1.85, 95% CI 1.10–3.11). Metabolic syndrome, high triglycerides and insulin resistance were more common in the patients with rectal NETs in the univariate analysis, although these were not independent risk factors. |
Santos (2018) [61] | Case-control study of 96 patients with well-differentiated GEP-NETs and 96 matched controls | The presence of metabolic syndrome was associated with an increased risk of developing GEP-NETs (p = 0.003), with the risk increasing by the number of metabolic syndrome components (OR 3.40, 95% CI 1.17–9.86, p = 0.024 for four components and OR 5.15, 95% CI 1.15–23.01, p = 0.032 for five components). |
Feola (2021) [57] | Retrospective case-control study of 148 patients with sporadic gastroenteropancreatic neuroendocrine neoplasms and 210 controls | The independent risk factors for GEP-NENs include T2DM (OR 2.5, 95% CI 3.9–4.51, p = 0.002) and obesity (OR 1.88, 95% CI 1.18–2.99, p = 0.007). Metformin is a protective factor in patients with T2DM (OR 0.28, 95% CI 0.08–0.93, p = 0.049). T2DM is associated with more advanced (OR 2.39, 95% CI 1.05–5.46, p = 0.035) and progressive disease (OR 2.47, 95% CI 1.08–5.34, p = 0.03). |
5. Obesity and Patient Outcomes in NENs
Citation | Study Population | Findings |
---|---|---|
Marrache (2007) [94] | Retrospective study of 67 patients with liver metastases of endocrine tumors treated with transcatheter arterial chemoembolisation | Increasing BMI was significantly associated with tumor responsiveness to TACE (OR 1.3, 95% CI 1.04–1.63, p = 0.022) and delayed time to progression (HR 0.85, 95% CI 0.76–0.86, p = 0.01). |
Ekeblad (2008) [90] | Retrospective study of 324 patients with pancreatic endocrine tumors | Patients underweight at diagnosis (a BMI of <20 kg/m2) had a poorer prognosis (HR 2.5, p = 0.005). This effect was not retained in a multivariate analysis. |
Cherenfant (2013) [91] | Retrospective study of 128 patients with non-functioning pancreatic neuroendocrine tumors | No association was seen between BMI and the risk of distant metastasis or death. |
Glazer (2014) [92] | Retrospective study of 22,096 patients discharged from hospital with abdominal neuroendocrine tumors | Obesity was associated with decreased rates of inpatient mortality in patients with NET (OR 0.6, multivariate p = 0.02), and malnutrition was associated with higher rates of mortality (9% vs. 2%, multivariate p < 0.0005). The rate of inpatient hospital complications was similar between obese and non-obese patients, but it was increased in malnourished individuals (15% vs. 10%, p < 0.0005). |
Bongiovanni (2015) [95] | Retrospective study of 19 patients with metastatic gastroenteropancreatic neuroendocrine carcinoma treated with cisplatin or cisplatin/etoposide | Patients with lower BMIs had better overall survival and progression-free survival than patients with BMIs of ≥25. The mOS in the lower BMI group was not reached. The BMI ≥ 25 group had an mOS of 11.7 months (95% CI 5.6–13.5, p = 0.029). |
Santos (2019) [62] | Prospective study of 134 patients with well-differentiated gastro-entero-pancreatic neuroendocrine tumors | There was an increased likelihood of metabolic syndrome in patients with a well-differentiated GEP-NET of grade G1 (OR 4.35, 1.30–14.53) and disseminated disease (OR 4.52, 95% CI 1.44–14.15). |
Abdel-Rahman (2022) [86] | Retrospective study of 1010 patients with NENs of any primary site between 2004–2019, with complete BMI information | Patients with obesity (a BMI of >30 kg/m2) had the best survival outcomes, while underweight status was associated with poorer survival. These results were maintained on a stratified analysis by histology (NEC or NET), tumor stage, and primary site. The overall hazard ratios (OHR) were 0.60 (0.47–0.75) for obese individuals and 1.74 for underweight individuals (1.11–2.73). |
Ranallo (2022) [93] | Retrospective study of 30 patients with well-differentiated, metastatic neuroendocrine tumors treated with everolimus | The median progression-free survival was lower in underweight patients (BMI of ≤18.49, mean PFS 3.2 months, 95% CI 0.9–6.7) compared to normal weight patients (mean PFS 10.1 months, 95% CI 3.7–28.4 months), with p = 0.011. |
6. Diabetes, Obesity and NENs
7. Nutrition, Obesity and NENs
8. Conclusions
- Future studies should be designed to deconvolute the individual contribution of visceral adiposity as an independent prognostic factor for NENs while controlling for individual differences in metabolic profile, diabetes, nutritional status and diet, and the co-existence of cachexia and cancer treatment.
- Future studies are necessary to evaluate whether the impact of obesity on the prognosis of NENs can be extrapolated to tumors outside of the gastrointestinal system, as well as to neuroendocrine carcinoma.
- A prospective study examining specific nutritional interventions and their impact on both survival and patient-reported outcomes will serve to evaluate their impacts and define treatment protocols. Such studies will need to control for known factors in the risk and prognosis of NENs. A standardized tool for malnutrition should be performed before and after the intervention.
- The measure of both BMI and more advanced metrics of visceral obesity should be compared to determine the validity of BMI as a metric in similar studies of obesity and cancer outcomes.
Author Contributions
Funding
Conflicts of Interest
References
- Dixon, J.B. The Effect of Obesity on Health Outcomes. Mol. Cell. Endocrinol. 2010, 316, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Riaz, H.; Khan, M.S.; Siddiqi, T.J.; Usman, M.S.; Shah, N.; Goyal, A.; Khan, S.S.; Mookadam, F.; Krasuski, R.A.; Ahmed, H. Association Between Obesity and Cardiovascular Outcomes: A Systematic Review and Meta-Analysis of Mendelian Randomization Studies. JAMA Netw. Open 2018, 1, e183788. [Google Scholar] [CrossRef] [PubMed]
- Bhupathiraju, S.N.; Hu, F.B. Epidemiology of Obesity and Diabetes and Their Cardiovascular Complications. Circ. Res. 2016, 118, 1723–1735. [Google Scholar] [CrossRef] [Green Version]
- Flegal, K.M.; Kit, B.K.; Orpana, H.; Graubard, B.I. Association of All-Cause Mortality With Overweight and Obesity Using Standard Body Mass Index Categories: A Systematic Review and Meta-Analysis. JAMA 2013, 309, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The GBD 2015 Obesity Collaborators Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [CrossRef]
- De Lorenzo, A.; Bianchi, A.; Maroni, P.; Iannarelli, A.; Di Daniele, N.; Iacopino, L.; Di Renzo, L. Adiposity Rather than BMI Determines Metabolic Risk. Int. J. Cardiol. 2013, 166, 111–117. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Zimmet, P.Z.; WHO Consultation Definition, Diagnosis and Classification of Diabetes Mellitus and Its Complications. Part 1: Diagnosis and Classification of Diabetes Mellitus. Provisional Report of a WHO Consultation. Diabet. Med. 1998, 15, 539–553. [Google Scholar] [CrossRef]
- Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z. The Metabolic Syndrome. Lancet 2005, 365, 1415–1428. [Google Scholar] [CrossRef]
- Esposito, K.; Chiodini, P.; Colao, A.; Lenzi, A.; Giugliano, D. Metabolic Syndrome and Risk of Cancer. Diabetes Care 2012, 35, 2402–2411. [Google Scholar] [CrossRef] [Green Version]
- Petrelli, F.; Cortellini, A.; Indini, A.; Tomasello, G.; Ghidini, M.; Nigro, O.; Salati, M.; Dottorini, L.; Iaculli, A.; Varricchio, A.; et al. Association of Obesity With Survival Outcomes in Patients With Cancer: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2021, 4, e213520. [Google Scholar] [CrossRef]
- Calle, E.E.; Rodriguez, C.; Walker-Thurmond, K.; Thun, M.J. Overweight, Obesity, and Mortality from Cancer in a Prospectively Studied Cohort of U.S. Adults. N. Engl. J. Med. 2003, 348, 1625–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauby-Secretan, B.; Scoccianti, C.; Loomis, D.; Grosse, Y.; Bianchini, F.; Straif, K. Body Fatness and Cancer—Viewpoint of the IARC Working Group. N. Engl. J. Med. 2016, 375, 794–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calle, E.E.; Kaaks, R. Overweight, Obesity and Cancer: Epidemiological Evidence and Proposed Mechanisms. Nat. Rev. Cancer 2004, 4, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Iyengar, N.M.; Gucalp, A.; Dannenberg, A.J.; Hudis, C.A. Obesity and Cancer Mechanisms: Tumor Microenvironment and Inflammation. J. Clin. Oncol. 2016, 34, 4270–4276. [Google Scholar] [CrossRef]
- Ma, C.; Avenell, A.; Bolland, M.; Hudson, J.; Stewart, F.; Robertson, C.; Sharma, P.; Fraser, C.; MacLennan, G. Effects of Weight Loss Interventions for Adults Who Are Obese on Mortality, Cardiovascular Disease, and Cancer: Systematic Review and Meta-Analysis. BMJ 2017, 359, j4849. [Google Scholar] [CrossRef] [Green Version]
- Argilés, J.M.; Busquets, S.; Stemmler, B.; López-Soriano, F.J. Cancer Cachexia: Understanding the Molecular Basis. Nat. Rev. Cancer 2014, 14, 754–762. [Google Scholar] [CrossRef]
- Sadeghi, M.; Keshavarz-Fathi, M.; Baracos, V.; Arends, J.; Mahmoudi, M.; Rezaei, N. Cancer Cachexia: Diagnosis, Assessment, and Treatment. Crit. Rev. Oncol. Hematol. 2018, 127, 91–104. [Google Scholar] [CrossRef]
- Ni, J.; Zhang, L. Cancer Cachexia: Definition, Staging, and Emerging Treatments. Cancer Manag. Res. 2020, 12, 5597–5605. [Google Scholar] [CrossRef]
- Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G.; et al. Definition and Classification of Cancer Cachexia: An International Consensus. Lancet Oncol. 2011, 12, 489–495. [Google Scholar] [CrossRef]
- Amano, K.; Maeda, I.; Ishiki, H.; Miura, T.; Hatano, Y.; Tsukuura, H.; Taniyama, T.; Matsumoto, Y.; Matsuda, Y.; Kohara, H.; et al. Effects of Enteral Nutrition and Parenteral Nutrition on Survival in Patients with Advanced Cancer Cachexia: Analysis of a Multicenter Prospective Cohort Study. Clin. Nutr. 2021, 40, 1168–1175. [Google Scholar] [CrossRef]
- Gannavarapu, B.S.; Lau, S.K.M.; Carter, K.; Cannon, N.A.; Gao, A.; Ahn, C.; Meyer, J.J.; Sher, D.J.; Jatoi, A.; Infante, R.; et al. Prevalence and Survival Impact of Pretreatment Cancer-Associated Weight Loss: A Tool for Guiding Early Palliative Care. J. Oncol. Pract. 2018, 14, e238–e250. [Google Scholar] [CrossRef] [PubMed]
- Andreyev, H.J.N.; Norman, A.R.; Oates, J.; Cunningham, D. Why Do Patients with Weight Loss Have a Worse Outcome When Undergoing Chemotherapy for Gastrointestinal Malignancies? Eur. J. Cancer 1998, 34, 503–509. [Google Scholar] [CrossRef]
- Greenlee, H.; Unger, J.M.; LeBlanc, M.; Ramsey, S.; Hershman, D.L. Association between Body Mass Index and Cancer Survival in a Pooled Analysis of 22 Clinical Trials. Cancer Epidemiol. Biomarkers Prev. 2017, 26, 21–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.; Peterson, L.L.; Colditz, G.A. The Plausibility of Obesity Paradox in Cancer—Point. Cancer Res. 2018, 78, 1898–1903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, N.; Fu, P.; Cui, B.; Bu, C.-Y.; Bi, J.-W. Associations between Body Mass Index and the Risk of Mortality from Lung Cancer: A Dose–Response PRISMA-Compliant Meta-Analysis of Prospective Cohort Studies. Medicine 2017, 96, e7721. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Park, B.; Jeong, B.C.; Seo, S.I.; Jeon, S.S.; Choi, H.Y.; Adami, H.-O.; Lee, J.E.; Lee, H.M. Body Mass Index and Survival in Patients with Renal Cell Carcinoma: A Clinical-Based Cohort and Meta-Analysis. Int. J. Cancer 2013, 132, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, M.; Speakman, J.R.; Shemirani, F.; Djafarian, K. Renal Cell Carcinoma Survival and Body Mass Index: A Dose–Response Meta-Analysis Reveals Another Potential Paradox within a Paradox. Int. J. Obes. 2016, 40, 1817–1822. [Google Scholar] [CrossRef]
- Modi, N.D.; Tan, J.Q.E.; Rowland, A.; Koczwara, B.; Abuhelwa, A.Y.; Kichenadasse, G.; McKinnon, R.A.; Wiese, M.D.; Sorich, M.J.; Hopkins, A.M. The Obesity Paradox in Early and Advanced HER2 Positive Breast Cancer: Pooled Analysis of Clinical Trial Data. NPJ Breast Cancer 2021, 7, 30. [Google Scholar] [CrossRef]
- Schlesinger, S.; Siegert, S.; Koch, M.; Walter, J.; Heits, N.; Hinz, S.; Jacobs, G.; Hampe, J.; Schafmayer, C.; Nöthlings, U. Postdiagnosis Body Mass Index and Risk of Mortality in Colorectal Cancer Survivors: A Prospective Study and Meta-Analysis. Cancer Causes Control 2014, 25, 1407–1418. [Google Scholar] [CrossRef]
- Brunner, A.M.; Sadrzadeh, H.; Feng, Y.; Drapkin, B.J.; Ballen, K.K.; Attar, E.C.; Amrein, P.C.; McAfee, S.L.; Chen, Y.-B.; Neuberg, D.S.; et al. Association between Baseline Body Mass Index and Overall Survival among Patients over Age 60 with Acute Myeloid Leukemia. Am. J. Hematol. 2013, 88, 642–646. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, S.; Zhao, X. The Prognostic Impact of Body Mass Index in Patients with Diffuse Large B-Cell Lymphoma: A Meta-Analysis. Nutr. Cancer 2021, 73, 2336–2346. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.; Birdsell, L.; MacDonald, N.; Reiman, T.; Clandinin, M.T.; McCargar, L.J.; Murphy, R.; Ghosh, S.; Sawyer, M.B.; Baracos, V.E. Cancer Cachexia in the Age of Obesity: Skeletal Muscle Depletion Is a Powerful Prognostic Factor, Independent of Body Mass Index. J. Clin. Oncol. 2013, 31, 1539–1547. [Google Scholar] [CrossRef] [PubMed]
- Campbell, P.T.; Newton, C.C.; Dehal, A.N.; Jacobs, E.J.; Patel, A.V.; Gapstur, S.M. Impact of Body Mass Index on Survival After Colorectal Cancer Diagnosis: The Cancer Prevention Study-II Nutrition Cohort. J. Clin. Oncol. 2012, 30, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Gibson, D.J.; Burden, S.T.; Strauss, B.J.; Todd, C.; Lal, S. The Role of Computed Tomography in Evaluating Body Composition and the Influence of Reduced Muscle Mass on Clinical Outcome in Abdominal Malignancy: A Systematic Review. Eur. J. Clin. Nutr. 2015, 69, 1079–1086. [Google Scholar] [CrossRef]
- Swainson, M.G.; Batterham, A.M.; Tsakirides, C.; Rutherford, Z.H.; Hind, K. Prediction of Whole-Body Fat Percentage and Visceral Adipose Tissue Mass from Five Anthropometric Variables. PLoS ONE 2017, 12, e0177175. [Google Scholar] [CrossRef]
- Gallagher, D.; Visser, M.; Sepulveda, D.; Pierson, R.N.; Harris, T.; Heymsfield, S.B. How Useful Is Body Mass Index for Comparison of Body Fatness across Age, Sex, and Ethnic Groups? Am. J. Epidemiol. 1996, 143, 228–239. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Mazurak, V.C.; Olobatuyi, T.A.; Caan, B.J.; Prado, C.M. Visceral Adiposity and Cancer Survival: A Review of Imaging Studies. Eur. J. Cancer Care 2018, 27, e12611. [Google Scholar] [CrossRef]
- Kang, J.; Baek, S.-E.; Kim, T.; Hur, H.; Min, B.S.; Lim, J.S.; Kim, N.K.; Lee, K.Y. Impact of Fat Obesity on Laparoscopic Total Mesorectal Excision: More Reliable Indicator than Body Mass Index. Int. J. Colorectal Dis. 2012, 27, 497–505. [Google Scholar] [CrossRef]
- Amri, R.; Bordeianou, L.G.; Sylla, P.; Berger, D.L. Obesity, Outcomes and Quality of Care: Body Mass Index Increases the Risk of Wound-Related Complications in Colon Cancer Surgery. Am. J. Surg. 2014, 207, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Lashinger, L.M.; Rossi, E.L.; Hursting, S.D. Obesity and Resistance to Cancer Chemotherapy: Interacting Roles of Inflammation and Metabolic Dysregulation. Clin. Pharmacol. Ther. 2014, 96, 458–463. [Google Scholar] [CrossRef]
- Woodall, M.J.; Neumann, S.; Campbell, K.; Pattison, S.T.; Young, S.L. The Effects of Obesity on Anti-Cancer Immunity and Cancer Immunotherapy. Cancers 2020, 12, 1230. [Google Scholar] [CrossRef] [PubMed]
- Assumpção, J.A.F.; Pasquarelli-do-Nascimento, G.; Duarte, M.S.V.; Bonamino, M.H.; Magalhães, K.G. The Ambiguous Role of Obesity in Oncology by Promoting Cancer but Boosting Antitumor Immunotherapy. J. Biomed. Sci. 2022, 29, 12. [Google Scholar] [CrossRef] [PubMed]
- Oronsky, B.; Ma, P.C.; Morgensztern, D.; Carter, C.A. Nothing But NET: A Review of Neuroendocrine Tumors and Carcinomas. Neoplasia 2017, 19, 991–1002. [Google Scholar] [CrossRef] [PubMed]
- Rindi, G.; Mete, O.; Uccella, S.; Basturk, O.; La Rosa, S.; Brosens, L.A.A.; Ezzat, S.; de Herder, W.W.; Klimstra, D.S.; Papotti, M.; et al. Overview of the 2022 WHO Classification of Neuroendocrine Neoplasms. Endocr. Pathol. 2022, 33, 115–154. [Google Scholar] [CrossRef]
- Pavel, M.; Öberg, K.; Falconi, M.; Krenning, E.P.; Sundin, A.; Perren, A.; Berruti, A. Gastroenteropancreatic Neuroendocrine Neoplasms: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2020, 31, 844–860. [Google Scholar] [CrossRef]
- Díez, M.; Teulé, A.; Salazar, R. Gastroenteropancreatic Neuroendocrine Tumors: Diagnosis and Treatment. Ann. Gastroenterol. 2013, 26, 29–36. [Google Scholar]
- Yao, J.C.; Hassan, M.; Phan, A.; Dagohoy, C.; Leary, C.; Mares, J.E.; Abdalla, E.K.; Fleming, J.B.; Vauthey, J.-N.; Rashid, A.; et al. One Hundred Years After “Carcinoid”: Epidemiology of and Prognostic Factors for Neuroendocrine Tumors in 35,825 Cases in the United States. J. Clin. Oncol. 2008, 26, 3063–3072. [Google Scholar] [CrossRef] [Green Version]
- Thorson, Å.; Biörck, G.; Björkman, G.; Waldenström, J. Malignant Carcinoid of the Small Intestine with Metastases to the Liver, Valvular Disease of the Right Side of the Heart (Pulmonary Stenosis and Tricuspid Regurgitation without Septal Defects), Peripheral Vasomotor Symptoms, Broncho-Constriction, and an Unusual Type of Cyanosis. Am. Heart J. 1954, 47, 795–817. [Google Scholar] [CrossRef]
- Soga, J. The Term “Carcinoid” Is a Misnomer: The Evidence Based on Local Invasion. J. Exp. Clin. Cancer Res. 2009, 28, 15. [Google Scholar] [CrossRef] [Green Version]
- Man, D.; Wu, J.; Shen, Z.; Zhu, X. Prognosis of Patients with Neuroendocrine Tumor: A SEER Database Analysis. Cancer Manag. Res. 2018, 10, 5629–5638. [Google Scholar] [CrossRef] [Green Version]
- Baudin, E.; Caplin, M.; Garcia-Carbonero, R.; Fazio, N.; Ferolla, P.; Filosso, P.L.; Frilling, A.; de Herder, W.W.; Hörsch, D.; Knigge, U.; et al. Lung and Thymic Carcinoids: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up☆. Ann. Oncol. 2021, 32, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Modlin, I.M.; Lye, K.D.; Kidd, M. A 5-Decade Analysis of 13,715 Carcinoid Tumors. Cancer 2003, 97, 934–959. [Google Scholar] [CrossRef] [PubMed]
- Jann, H.; Roll, S.; Couvelard, A.; Hentic, O.; Pavel, M.; Müller-Nordhorn, J.; Koch, M.; Röcken, C.; Rindi, G.; Ruszniewski, P.; et al. Neuroendocrine Tumors of Midgut and Hindgut Origin: Tumor-Node-Metastasis Classification Determines Clinical Outcome. Cancer 2011, 117, 3332–3341. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Dasari, A. Epidemiology, Incidence, and Prevalence of Neuroendocrine Neoplasms: Are There Global Differences? Curr. Oncol. Rep. 2021, 23, 43. [Google Scholar] [CrossRef]
- Dasari, A.; Shen, C.; Halperin, D.; Zhao, B.; Zhou, S.; Xu, Y.; Shih, T.; Yao, J.C. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States. JAMA Oncol. 2017, 3, 1335. [Google Scholar] [CrossRef]
- Natalicchio, A.; Faggiano, A.; Zatelli, M.C.; Argentiero, A.; D’Oronzo, S.; Marrano, N.; Beretta, G.D.; Acquati, S.; Adinolfi, V.; Di Bartolo, P.; et al. Metabolic Disorders and Gastroenteropancreatic-Neuroendocrine Tumors (GEP-NETs): How Do They Influence Each Other? An Italian Association of Medical Oncology (AIOM)/ Italian Association of Medical Diabetologists (AMD)/ Italian Society of Endocrinology (SIE)/ Italian Society of Pharmacology (SIF) Multidisciplinary Consensus Position Paper. Crit. Rev. Oncol. Hematol. 2022, 169, 103572. [Google Scholar] [CrossRef]
- Feola, T.; Puliani, G.; Sesti, F.; Modica, R.; Centello, R.; Minotta, R.; Cannavale, G.; Di Meglio, S.; Di Vito, V.; Lauretta, R.; et al. Risk Factors for Gastroenteropancreatic Neuroendocrine Neoplasms (GEP-NENs): A Three-Centric Case–Control Study. J. Endocrinol. Invest. 2022, 45, 849–857. [Google Scholar] [CrossRef]
- Jung, Y.S.; Yun, K.E.; Chang, Y.; Ryu, S.; Park, J.H.; Kim, H.J.; Cho, Y.K.; Sohn, C.I.; Jeon, W.K.; Kim, B.I.; et al. Risk Factors Associated with Rectal Neuroendocrine Tumors: A Cross-Sectional Study. Cancer Epidemiol. Biomarkers Prev. 2014, 23, 1406–1413. [Google Scholar] [CrossRef] [Green Version]
- Leoncini, E.; Carioli, G.; La Vecchia, C.; Boccia, S.; Rindi, G. Risk Factors for Neuroendocrine Neoplasms: A Systematic Review and Meta-Analysis. Ann. Oncol. 2016, 27, 68–81. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.M.; Phan, A.; Li, D.; Dagohoy, C.G.; Leary, C.; Yao, J.C. Risk Factors Associated with Neuroendocrine Tumors: A U.S.-Based Case-Control Study: Risk Factors Associated with Neuroendocrine Tumors: A U.S.-Based Case-Control Study. Int. J. Cancer 2008, 123, 867–873. [Google Scholar] [CrossRef]
- Santos, A.; Santos, A.; Castro, C.; Raposo, L.; Pereira, S.; Torres, I.; Henrique, R.; Cardoso, H.; Monteiro, M. Visceral Obesity and Metabolic Syndrome Are Associated with Well-Differentiated Gastroenteropancreatic Neuroendocrine Tumors. Cancers 2018, 10, 293. [Google Scholar] [CrossRef] [PubMed]
- Santos; Castro; Antunes; Henrique; Cardoso; Monteiro Disseminated Well-Differentiated Gastro-Entero-Pancreatic Tumors Are Associated with Metabolic Syndrome. J. Clin. Med. 2019, 8, 1479. [CrossRef] [PubMed] [Green Version]
- Mottin, C.C.; Cruz, R.P.; Gomes Thomé, G.; Padoin, A.V. Carcinoid Tumors and Morbid Obesity. Obes. Surg. 2009, 19, 247–249. [Google Scholar] [CrossRef] [PubMed]
- Al-Harbi, O.; Shakir, M.; Al-Brahim, N. Gastric Carcinoid and Obesity: Association or Coincidence? Report of Two Cases and Literature Review. Case Rep. Gastrointest. Med. 2013, 2013, 848075. [Google Scholar] [CrossRef] [PubMed]
- Perryman, S.; Kaltenbach, T.; Eisenberg, D. Preoperative Finding of Gastric Neuroendocrine Tumor (Gastric Carcinoid) in a Patient Evaluated for Bariatric Surgery. Surg. Obes. Relat. Dis. 2011, 7, e18–e20. [Google Scholar] [CrossRef]
- Cross, A.J.; Hollenbeck, A.R.; Park, Y. A Large Prospective Study of Risk Factors for Adenocarcinomas and Malignant Carcinoid Tumors of the Small Intestine. Cancer Causes Control. 2013, 24, 1737–1746. [Google Scholar] [CrossRef]
- Zhan, H.-X.; Cong, L.; Zhao, Y.-P.; Zhang, T.-P.; Chen, G. Risk Factors for the Occurrence of Insulinoma: A Case-Control Study. Hepatobiliary Pancreat. Dis. Int. 2013, 12, 324–328. [Google Scholar] [CrossRef]
- Vitale, G.; Dicitore, A.; Barrea, L.; Sbardella, E.; Razzore, P.; Campione, S.; Faggiano, A.; Colao, A.; on behalf of NIKE; Albertelli, M.; et al. From Microbiota toward Gastro-Enteropancreatic Neuroendocrine Neoplasms: Are We on the Highway to Hell? Rev. Endocr. Metab. Disord. 2021, 22, 511–525. [Google Scholar] [CrossRef]
- Crea, N.; Pata, G.; Di Betta, E.; Titi, A.; Mittempergher, F. High Incidence of Appendix Carcinoid Tumors Among Candidates for Bariatric Surgery: Diagnostic and Therapeutic Implications. Obes. Surg. 2011, 21, 151–156. [Google Scholar] [CrossRef]
- Vitale, G.; Carra, S.; Ferraù, F.; Guadagno, E.; Faggiano, A.; Colao, A. Gastroenteropancreatic Neuroendocrine Neoplasms and Inflammation: A Complex Cross-Talk with Relevant Clinical Implications. Crit. Rev. Oncol. Hematol. 2020, 146, 102840. [Google Scholar] [CrossRef]
- Barrea, L.; Altieri, B.; Muscogiuri, G.; Laudisio, D.; Annunziata, G.; Colao, A.; Faggiano, A.; Savastano, S. Impact of Nutritional Status on Gastroenteropancreatic Neuroendocrine Tumors (GEP-NET) Aggressiveness. Nutrients 2018, 10, 1854. [Google Scholar] [CrossRef] [PubMed]
- Bostan, H.; Duger, H.; Akhanli, P.; Calapkulu, M.; Turkmenoglu, T.T.; Erdol, A.K.; Duru, S.A.; Sencar, M.E.; Kizilgul, M.; Ucan, B.; et al. Cushing’s Syndrome Due to Adrenocorticotropic Hormone-Secreting Metastatic Neuroendocrine Tumor of Unknown Primary Origin: A Case Report and Literature Review. Hormones 2022, 21, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Zainal, A.; Akinsola, O.; Rajamani, K. Cushing Syndrome Secondary to Primary Neuroendocrine Lung Carcinoma. Case Rep. Endocrinol. 2019, 2019, 1989260. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Yue, L.; Li, J.; Yuan, M.; Chai, Y. Cushing’s Syndrome Secondary to Typical Pulmonary Carcinoid with Mutation in BCOR Gene: A Case Report. Medicine 2017, 96, e7870. [Google Scholar] [CrossRef] [PubMed]
- Kamp, K.; Alwani, R.A.; Korpershoek, E.; Franssen, G.J.H.; de Herder, W.W.; Feelders, R.A. Prevalence and Clinical Features of the Ectopic ACTH Syndrome in Patients with Gastroenteropancreatic and Thoracic Neuroendocrine Tumors. Eur. J. Endocrinol. 2016, 174, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Shinden, Y.; Maemura, K.; Hashiguchi, M.; Kawasaki, Y.; Kurahara, H.; Mataki, Y.; Ino, S.; Sakoda, M.; Natsugoe, S. Preoperative Changes in Body Weight in Patients with an Insulinoma. J. Pancreas 2019, 20, 44–47. [Google Scholar]
- Jyotsna, V.P.; Malik, E.; Birla, S.; Sharma, A. Novel MEN 1 Gene Findings in Rare Sporadic Insulinoma—A Case Control Study. BMC Endocr. Disord. 2015, 15, 44. [Google Scholar] [CrossRef] [Green Version]
- Maric, A.; Katalinic, D.; Belovari, M.; Doko, M.; Vrkljan, M.; Plestina, S. Insulinoma and Extreme Obesity in a Patient with MEN1 Syndrome. Acta Gastro-Enterol. Belg. 2010, 73, 296–297. [Google Scholar]
- Walter, T.; Chardon, L.; Hervieu, V.; Cohen, R.; Chayvialle, J.-A.; Scoazec, J.-Y.; Lombard-Bohas, C. Major Hyperghrelinemia in Advanced Well-Differentiated Neuroendocrine Carcinomas: Report of Three Cases. Eur. J. Endocrinol. 2009, 161, 639–645. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.S.; Oh, D.S.; Ohning, G.V.; Pisegna, J.R. Elevated Serum Ghrelin Exerts an Orexigenic Effect That May Maintain Body Mass Index in Patients with Metastatic Neuroendocrine Tumors. J. Mol. Neurosci. 2007, 33, 225–231. [Google Scholar] [CrossRef]
- Lee, J.M.; Shin, J.; Kim, S.; Gee, H.Y.; Lee, J.S.; Cha, D.H.; Rim, J.H.; Park, S.-J.; Kim, J.H.; Uçar, A.; et al. Rapid-Onset Obesity with Hypoventilation, Hypothalamic, Autonomic Dysregulation, and Neuroendocrine Tumors (ROHHADNET) Syndrome: A Systematic Review. BioMed Res. Int. 2018, 2018, 1250721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ize-Ludlow, D.; Gray, J.A.; Sperling, M.A.; Berry-Kravis, E.M.; Milunsky, J.M.; Farooqi, I.S.; Rand, C.M.; Weese-Mayer, D.E. Rapid-Onset Obesity With Hypothalamic Dysfunction, Hypoventilation, and Autonomic Dysregulation Presenting in Childhood. Pediatrics 2007, 120, e179–e188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bougnères, P.; Pantalone, L.; Linglart, A.; Rothenbühler, A.; Le Stunff, C. Endocrine Manifestations of the Rapid-Onset Obesity with Hypoventilation, Hypothalamic, Autonomic Dysregulation, and Neural Tumor Syndrome in Childhood. J. Clin. Endocrinol. Metab. 2008, 93, 3971–3980. [Google Scholar] [CrossRef] [PubMed]
- Capurso, G.; Falconi, M.; Panzuto, F.; Rinzivillo, M.; Boninsegna, L.; Bettini, R.; Corleto, V.; Borgia, P.; Pederzoli, P.; Scarpa, A.; et al. Risk Factors for Sporadic Pancreatic Endocrine Tumors: A Case-Control Study of Prospectively Evaluated Patients. Am. J. Gastroenterol. 2009, 104, 3034–3041. [Google Scholar] [CrossRef]
- Halfdanarson, T.R.; Bamlet, W.R.; McWilliams, R.R.; Hobday, T.J.; Burch, P.A.; Rabe, K.G.; Petersen, G.M. Risk Factors for Pancreatic Neuroendocrine Tumors: A Clinic-Based Case-Control Study. Pancreas 2014, 43, 1219–1222. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Rahman, O.; Ghosh, S.; Morrish, D. Impact of Baseline Body Mass Index on the Outcomes of Patients with Neuroendocrine Neoplasms. J. Endocrinol. Investig. 2022, 45, 1683–1688. [Google Scholar] [CrossRef]
- Pape, U.-F.; Berndt, U.; Muller-Nordhorn, J.; Bohmig, M.; Roll, S.; Koch, M.; Willich, S.N.; Wiedenmann, B. Prognostic Factors of Long-Term Outcome in Gastroenteropancreatic Neuroendocrine Tumours. Endocr. Relat. Cancer 2008, 15, 1083–1097. [Google Scholar] [CrossRef]
- Maasberg, S.; Knappe-Drzikova, B.; Vonderbeck, D.; Jann, H.; Weylandt, K.H.; Grieser, C.; Pascher, A.; Schefold, J.C.; Pavel, M.; Wiedenmann, B.; et al. Malnutrition Predicts Clinical Outcome in Patients with Neuroendocrine Neoplasia. Neuroendocrinology 2017, 104, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Clement, D.S.V.M.; Tesselaar, M.E.T.; Leerdam, M.E.; van Srirajaskanthan, R.; Ramage, J.K. Nutritional and Vitamin Status in Patients with Neuroendocrine Neoplasms. World J. Gastroenterol. 2019, 25, 1171–1184. [Google Scholar] [CrossRef]
- Ekeblad, S.; Skogseid, B.; Dunder, K.; Öberg, K.; Eriksson, B. Prognostic Factors and Survival in 324 Patients with Pancreatic Endocrine Tumor Treated at a Single Institution. Clin. Cancer Res. 2008, 14, 7798–7803. [Google Scholar] [CrossRef] [Green Version]
- Cherenfant, J.; Stocker, S.J.; Gage, M.K.; Du, H.; Thurow, T.A.; Odeleye, M.; Schimpke, S.W.; Kaul, K.L.; Hall, C.R.; Lamzabi, I.; et al. Predicting Aggressive Behavior in Nonfunctioning Pancreatic Neuroendocrine Tumors. Surgery 2013, 154, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Glazer, E.; Stanko, K.; Ong, E.; Guerrero, M. Decreased Inpatient Mortality in Obese Patients with Abdominal Nets. Endocr. Pract. 2014, 20, 1309–1314. [Google Scholar] [CrossRef] [PubMed]
- Ranallo, N.; Iamurri, A.P.; Foca, F.; Liverani, C.; De Vita, A.; Mercatali, L.; Calabrese, C.; Spadazzi, C.; Fabbri, C.; Cavaliere, D.; et al. Prognostic and Predictive Role of Body Composition in Metastatic Neuroendocrine Tumor Patients Treated with Everolimus: A Real-World Data Analysis. Cancers 2022, 14, 3231. [Google Scholar] [CrossRef] [PubMed]
- Marrache, F.; Vullierme, M.P.; Roy, C.; Assoued, Y.E.; Couvelard, A.; O’Toole, D.; Mitry, E.; Hentic, O.; Hammel, P.; Lévy, P.; et al. Arterial Phase Enhancement and Body Mass Index Are Predictors of Response to Chemoembolisation for Liver Metastases of Endocrine Tumours. Br. J. Cancer 2007, 96, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Bongiovanni, A.; Riva, N.; Ricci, M.; Liverani, C.; La Manna, F.; De Vita, A.; Ibrahim, T.; Foca, F.; Mercatali, L.; Amadori, D.; et al. First-Line Chemotherapy in Patients with Metastatic Gastroenteropancreatic Neuroendocrine Carcinoma. OncoTargets Ther. 2015, 8, 3613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dagenais, G.R.; Auger, P.; Bogaty, P.; Gerstein, H.; Lonn, E.; Yi, Q.; Yusuf, S. HOPE Study Investigators Increased Occurrence of Diabetes in People with Ischemic Cardiovascular Disease and General and Abdominal Obesity. Can. J. Cardiol. 2003, 19, 1387–1391. [Google Scholar]
- Hu, F.B.; Manson, J.E.; Stampfer, M.J.; Colditz, G.; Liu, S.; Solomon, C.G.; Willett, W.C. Diet, Lifestyle, and the Risk of Type 2 Diabetes Mellitus in Women. N. Engl. J. Med. 2001, 345, 790–797. [Google Scholar] [CrossRef] [Green Version]
- Barnes, A.S. The Epidemic of Obesity and Diabetes: Trends and Treatments. Tex. Heart Inst. J. 2011, 38, 142–144. [Google Scholar]
- Vigneri, P.; Frasca, F.; Sciacca, L.; Pandini, G.; Vigneri, R. Diabetes and Cancer. Endocr. Relat. Cancer 2009, 16, 1103–1123. [Google Scholar] [CrossRef] [Green Version]
- Gallo, M.; Ruggeri, R.M.; Muscogiuri, G.; Pizza, G.; Faggiano, A.; Colao, A. Diabetes and Pancreatic Neuroendocrine Tumours: Which Interplays, If Any? Cancer Treat. Rev. 2018, 67, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kusne, Y.N.; Kosiorek, H.E.; Buras, M.R.; Verona, P.M.; Coppola, K.E.; Rone, K.A.; Cook, C.B.; Karlin, N.J. Implications of Neuroendocrine Tumor and Diabetes Mellitus on Patient Outcomes and Care: A Matched Case–Control Study. Future Sci. OA 2021, 7, FSO684. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Martínez, A.D.; Pedraza-Arevalo, S.; L-López, F.; Gahete, M.D.; Gálvez-Moreno, M.A.; Castaño, J.P.; Luque, R.M. Type 2 Diabetes in Neuroendocrine Tumors: Are Biguanides and Statins Part of the Solution? J. Clin. Endocrinol. Metab. 2019, 104, 57–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pusceddu, S.; Vernieri, C.; Di Maio, M.; Marconcini, R.; Spada, F.; Massironi, S.; Ibrahim, T.; Brizzi, M.P.; Campana, D.; Faggiano, A.; et al. Metformin Use Is Associated With Longer Progression-Free Survival of Patients With Diabetes and Pancreatic Neuroendocrine Tumors Receiving Everolimus and/or Somatostatin Analogues. Gastroenterology 2018, 155, 479–489.e7. [Google Scholar] [CrossRef] [Green Version]
- Pusceddu, S.; Vernieri, C.; Di Maio, M.; Prinzi, N.; Torchio, M.; Corti, F.; Coppa, J.; Buzzoni, R.; Di Bartolomeo, M.; Milione, M.; et al. Impact of Diabetes and Metformin Use on Enteropancreatic Neuroendocrine Tumors: Post Hoc Analysis of the CLARINET Study. Cancers 2021, 14, 69. [Google Scholar] [CrossRef]
- Glasberg, J.; Talans, A.; Rivelli Giollo, T.; Zachello Recchimuzzi, D.; Bezerra Neto, J.E.; Mendonza Lopez, R.V.; Gehm Hoff, P.M.; Riechelmann, R.P. METNET: A Phase II Trial of Metformin in Patients with Well-Differentiated Neuroendocrine Tumours. ecancermedicalscience 2022, 16, 1396. [Google Scholar] [CrossRef] [PubMed]
- Hue-Fontaine, L.; Lemelin, A.; Forestier, J.; Raverot, G.; Milot, L.; Robinson, P.; Borson-Chazot, F.; Lombard-Bohas, C.; Walter, T. Metformin and Everolimus in Neuroendocrine Tumours: A Synergic Effect? Clin. Res. Hepatol. Gastroenterol. 2020, 44, 954–960. [Google Scholar] [CrossRef]
- Go, V.L.W.; Srihari, P.; Kamerman Burns, L.A. Nutrition and Gastroenteropancreatic Neuroendocrine Tumors. Endocrinol. Metab. Clin. N. Am. 2010, 39, 827–837. [Google Scholar] [CrossRef]
- Laing, E.; Kiss, N.; Michael, M.; Krishnasamy, M. Nutritional Complications and the Management of Patients with Gastroenteropancreatic Neuroendocrine Tumors. Neuroendocrinology 2020, 110, 430–442. [Google Scholar] [CrossRef]
- Pearman, T.P.; Beaumont, J.L.; Cella, D.; Neary, M.P.; Yao, J. Health-Related Quality of Life in Patients with Neuroendocrine Tumors: An Investigation of Treatment Type, Disease Status, and Symptom Burden. Support. Care Cancer 2016, 24, 3695–3703. [Google Scholar] [CrossRef]
- Gallo, M.; Muscogiuri, G.; Pizza, G.; Ruggeri, R.M.; Barrea, L.; Faggiano, A.; Colao, A.; on behalf of NIKE Group. The Management of Neuroendocrine Tumours: A Nutritional Viewpoint. Crit. Rev. Food Sci. Nutr. 2019, 59, 1046–1057. [Google Scholar] [CrossRef] [Green Version]
- Shah, G.M.; Shah, R.G.; Veillette, H.; Kirkland, J.B.; Pasieka, J.L.; Warner, R.R.P. Biochemical Assessment of Niacin Deficiency Among Carcinoid Cancer Patients. Am. J. Gastroenterol. 2005, 100, 2307–2314. [Google Scholar] [CrossRef] [PubMed]
- Fiebrich, H.-B.; van den Berg, G.; Kema, I.P.; Links, T.P.; Kleibeuker, J.H.; van Beek, A.P.; Walenkamp, A.M.E.; Sluiter, W.J.; De Vries, E.G.E. Deficiencies in Fat-Soluble Vitamins in Long-Term Users of Somatostatin Analogue: Fat-Soluble Vitamins and Somatostatin Analogues. Aliment. Pharmacol. Ther. 2010, 32, 1398–1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouma, G.; van Faassen, M.; Kats-Ugurlu, G.; de Vries, E.G.E.; Kema, I.P.; Walenkamp, A.M.E. Niacin (Vitamin B3) Supplementation in Patients with Serotonin-Producing Neuroendocrine Tumor. Neuroendocrinology 2016, 103, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Lind, A.; Wängberg, B.; Ellegård, L. Vitamin D and Vitamin B12 Deficiencies Are Common in Patients with Midgut Carcinoid (SI-NET). Eur. J. Clin. Nutr. 2016, 70, 990–994. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Pirlich, M.; Schuetz, T.; Luebke, H.J.; Lochs, H.; Pichard, C. Prevalence of Malnutrition in 1760 Patients at Hospital Admission: A Controlled Population Study of Body Composition. Clin. Nutr. 2003, 22, 473–481. [Google Scholar] [CrossRef]
- Gupta, D.; Lammersfeld, C.A.; Vashi, P.G.; King, J.; Dahlk, S.L.; Grutsch, J.F.; Lis, C.G. Bioelectrical Impedance Phase Angle in Clinical Practice: Implications for Prognosis in Stage IIIB and IV Non-Small Cell Lung Cancer. BMC Cancer 2009, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- Gupta, D.; Lis, C.G.; Dahlk, S.L.; King, J.; Vashi, P.G.; Grutsch, J.F.; Lammersfeld, C.A. The Relationship between Bioelectrical Impedance Phase Angle and Subjective Global Assessment in Advanced Colorectal Cancer. Nutr. J. 2008, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Granberg, D.; Wolin, E.; Warner, R.; Sissons, M.; Kolarova, T.; Goldstein, G.; Pavel, M.; Öberg, K.; Leyden, J. Patient-Reported Burden of a Neuroendocrine Tumor (NET) Diagnosis: Results From the First Global Survey of Patients With NETs. J. Glob. Oncol. 2017, 3, 43–53. [Google Scholar] [CrossRef]
- Borre, M.; Dam, G.A.; Knudsen, A.W.; Grønbaek, H. Nutritional Status and Nutritional Risk in Patients with Neuroendocrine Tumors. Scand. J. Gastroenterol. 2018, 53, 284–292. [Google Scholar] [CrossRef]
- Qureshi, S.A.; Burch, N.; Druce, M.; Hattersley, J.G.; Khan, S.; Gopalakrishnan, K.; Darby, C.; Wong, J.L.H.; Davies, L.; Fletcher, S.; et al. Screening for Malnutrition in Patients with Gastro-Entero-Pancreatic Neuroendocrine Tumours: A Cross-Sectional Study. BMJ Open 2016, 6, e010765. [Google Scholar] [CrossRef]
- Robbins, H.L.; Symington, M.; Mosterman, B.; Goodby, J.; Davies, L.; Dimitriadis, G.K.; Kaltsas, G.; Randeva, H.S.; Weickert, M.O. Supplementation of Vitamin D Deficiency in Patients with Neuroendocrine Tumors Using Over-the-Counter Vitamin D3 Preparations. Nutr. Cancer 2018, 70, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Pavel, M.; Gross, D.J.; Benavent, M.; Perros, P.; Srirajaskanthan, R.; Warner, R.R.P.; Kulke, M.H.; Anthony, L.B.; Kunz, P.L.; Hörsch, D.; et al. Telotristat Ethyl in Carcinoid Syndrome: Safety and Efficacy in the TELECAST Phase 3 Trial. Endocr. Relat. Cancer 2018, 25, 309–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weickert, M.O.; Kaltsas, G.; Hörsch, D.; Lapuerta, P.; Pavel, M.; Valle, J.W.; Caplin, M.E.; Bergsland, E.; Kunz, P.L.; Anthony, L.B.; et al. Changes in Weight Associated With Telotristat Ethyl in the Treatment of Carcinoid Syndrome. Clin. Ther. 2018, 40, 952–962.e2. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, X.; Fazio, N.; Abdel-Rahman, O. Exploring the Relationship between Obesity, Metabolic Syndrome and Neuroendocrine Neoplasms. Metabolites 2022, 12, 1150. https://doi.org/10.3390/metabo12111150
Lan X, Fazio N, Abdel-Rahman O. Exploring the Relationship between Obesity, Metabolic Syndrome and Neuroendocrine Neoplasms. Metabolites. 2022; 12(11):1150. https://doi.org/10.3390/metabo12111150
Chicago/Turabian StyleLan, Xiaoyang, Nicola Fazio, and Omar Abdel-Rahman. 2022. "Exploring the Relationship between Obesity, Metabolic Syndrome and Neuroendocrine Neoplasms" Metabolites 12, no. 11: 1150. https://doi.org/10.3390/metabo12111150
APA StyleLan, X., Fazio, N., & Abdel-Rahman, O. (2022). Exploring the Relationship between Obesity, Metabolic Syndrome and Neuroendocrine Neoplasms. Metabolites, 12(11), 1150. https://doi.org/10.3390/metabo12111150