Untargeted Metabolomics Coupled with Chemometrics for Leaves and Stem Barks of Dioecious Morus alba L.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Untargeted Analysis of Samples
2.2. The Metabolome of Male and Female Leaves
2.3. The Metabolome of Male and Female Stem Barks
2.4. The Comparison of Antioxidant Activity of Males and Females
3. Materials and Methods
3.1. Plant Materials
3.2. Chemicals and Standards
3.3. Preparation of Sample and Standards Solution
3.4. UPLC-Q-TOF-MS System and Analytical Conditions
3.5. Data Processing
3.6. Chemometrics
3.7. Metabolites Identification and Semi-Quantitation Analysis
3.8. Determination of Antioxidant Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, C.; Razali, U.H.M.; Saikim, F.H.; Mahyudin, A.; Noor, N.Q.I.M. Morus alba L. plant: Bioactive compounds and potential as a functional food ingredient. Foods 2021, 10, 689. [Google Scholar] [CrossRef] [PubMed]
- The Pharmacopoeia Commission of the People’s Republic of China. The Pharmacopoeia of the People’s Republic of China (Part 1); People’s Medical Publishing House Press: Beijing, China, 2020; p. 358. [Google Scholar]
- Urso, G.D.; Mes, J.J.; Montoro, P.; Hall, R.D.; De Vos, R.C.H. Identification of bioactive phytochemicals in mulberries. Metabolites 2020, 10, 7. [Google Scholar]
- Li, D.; Chen, G.; Ma, B.; Zhong, C.; He, N. Metabolic profiling and transcriptome analysis of mulberry leaves provide insights into flavonoid biosynthesis. J. Agric. Food Chem. 2020, 68, 1494–1504. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Park, Y.E.; Yeo, H.J.; Yoon, J.S.; Park, S.; Kim, J.K.; Park, S.U. Comparative analysis of secondary metabolites and metabolic profiling between diploid and tetraploid Morus alba L. J. Agric. Food Chem. 2021, 69, 1300–1307. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, X.; Xu, B.; Zeng, G.; Tan, J.; He, X.; Hu, C.; Zhou, Y. Chemical constituents of Morus alba L. and their inhibitory effect on 3T3-L1 preadipocyte proliferation and differentiation. Fitoterapia 2014, 98, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Ghimeray, A.K.; Un Sun, J.; Ha Youn, L.; Kim, Y.H.; Ryu, E.K.; Chang, M.S. In vitro antioxidant, collagenase inhibition, and in vivo anti-wrinkle effects of combined formulation containing Punica granatum, Ginkgo biloba, Ficus carica, and Morus alba fruits extract. Clin. Cosmet. Investig. Derm. 2015, 8, 389–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.S.; Synytsya, A.; Kim, H.B.; Choi, D.J.; Lee, S.; Lee, J.; Kim, W.J.; Jang, S.; Park, Y.I. Purification, characterization and immunomodulating activity of a pectic polysaccharide isolated from Korean mulberry fruit oddi (Morus alba L.). Int. Immunopharmacol. 2013, 17, 858–866. [Google Scholar] [CrossRef]
- Ali, A.; Ali, M. Phenyl alcohol and phenolic glycosides from the stem bark of Morus alba L. Nat. Prod. J. 2012, 2, 259–262. [Google Scholar] [CrossRef]
- Ali, A.; Ali, M. Isolation and structure elucidation of a new linoleiyl glycoside and flavones from the stem bark of Morus alba L. Future J. Pharm. Sci. 2016, 2, 82–86. [Google Scholar] [CrossRef]
- Sillapakong, P.; Ping, Y.; Sato, Y.; Ishiguro, S.; Yamamoto, K.; Noda, S.; Kondo, H.; Totani, K.; Konishi, T.; Yamashita, T.; et al. Mulberry stem bark extract stimulates in vitro immunomodulatory response in mouse spleen lymphocytes. J. Insect Biotechnol. Sericol. 2012, 80, 1–7. [Google Scholar]
- Li, X.; Jiang, S.; Man, C. Metabolomic analysis of female and male plants of Pistacia chinensis Bunge. Pak. J. Bot. 2016, 48, 1971–1977. [Google Scholar]
- Sinton, S.M.; Wilson, D.R. Comparative performance of male and female plants during the annual growth cycle of a dioecious asparagus cultivar. Acta Horticulturae 1999, 347–353. [Google Scholar] [CrossRef]
- Wu, C.; Xu, B.; Li, Z.; Song, P.; Chao, Z. Gender discrimination of Populus tomentosa barks by HPLC fingerprint combined with multivariate statistics. Plant Direct 2021, 5, e311. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Liu, H.; Ma, Y.; Wu, C.; Li, R.; Chao, Z. Comparative study of volatile components from male and female flower buds of Populus × tomentosa by HS-SPME-GC-MS. Nat. Prod. Res. 2019, 33, 2105–2108. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Wu, C.; Li, Z.; Song, P.; Chao, Z. 1H NMR combined with multivariate statistics for discrimination of female and male flower buds of Populus tomentosa. Molecules 2021, 26, 6458. [Google Scholar] [CrossRef] [PubMed]
- Atsumi, R.; Nishihara, R.; Tarora, K.; Urasaki, N.; Matsumura, H. Identification of dominant genetic markers relevant to male sex determination in mulberry (Morus alba L.). Euphytica 2019, 215, 187. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, M.; Liu, G.; Huang, G.; Wang, Y.; Yang, S.; Xu, X. Enhanced UV-B radiation aggravates negative effects more in females than in males of Morus alba saplings under drought stress. Environ. Exp. Bot. 2020, 169, 103903. [Google Scholar] [CrossRef]
- Fiehn, O. Metabolomics--the link between genotypes and phenotypes. Plant Mol. Biol. 2002, 48, 155–171. [Google Scholar] [CrossRef]
- Marchetti, L.; Rossi, M.C.; Pellati, F.; Benvenuti, S.; Bertelli, D. HR-1 H NMR spectroscopy and multivariate statistical analysis to determine the composition of herbal mixtures for infusions. Phytochem. Anal. 2021, 32, 544–553. [Google Scholar] [CrossRef]
- Lei, Z.; Huhman, D.V.; Sumner, L.W. Mass spectrometry strategies in metabolomics. J. Biol. Chem. 2011, 286, 25435–25442. [Google Scholar] [CrossRef] [Green Version]
- Chernushevich, I.V.; Loboda, A.V.; Thomson, B.A. An introduction to quadrupole-time-of-flight mass spectrometry. J. Mass Spectrom. 2001, 36, 849–865. [Google Scholar] [CrossRef]
- Wu, S.C.; Han, F.; Song, M.R.; Chen, S.; Li, Q.; Zhang, Q.; Zhu, K.; Shen, J.Z. Natural flavones from Morus alba against methicillin-resistant staphylococcus aureus via targeting the proton motive force and membrane permeability. J. Agric. Food Chem. 2019, 67, 10222–10234. [Google Scholar] [CrossRef] [PubMed]
- Raman, S.; Ganeshan, A.; Chen, C.; Jin, C.; Li, S.; Chen, H.; Gui, Z. In vitro and in vivo antioxidant activity of flavonoid extracted from mulberry fruit (Morus alba L.). Pharmacogn. Mag. 2016, 12, 128–133. [Google Scholar] [PubMed]
- Jung, J.; Ko, W.K.; Park, J.; Seo, K.; Oh, E.; Lee, D.; Lee, D.; Kim, Y.; Lim, D.; Han, D.; et al. Isoprenylated flavonoids from the root bark of Morus alba and their hepatoprotective and neuroprotective activities. Arch. Pharm. Res. 2015, 38, 2066–2075. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, J.; Wan, C.; Zhou, Z.; Kong, L. Four new flavonoids with α-glucosidase inhibitory activities from Morus alba var. tatarica. Chem. Biodivers. 2015, 12, 1768–1776. [Google Scholar] [CrossRef] [PubMed]
- Panchal, P.; Jitender, A.J.M. Organic acids: Versatile stress response roles in plants. J. Exp. Bot. 2021, 72, 4038–4052. [Google Scholar] [CrossRef]
- Santos-Buelga, C.; González-Paramás, A.M.; Oludemi, T.; Ayuda-Durán, B.; González-Manzano, S. Plant phenolics as functional food ingredients. Adv. Nutr. Res. 2019, 90, 183–257. [Google Scholar]
- Mariam, A.; Alena, L.; Peter, K.; Dietrich, B. Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules 2020, 10, 221. [Google Scholar]
- Li, H.X.; Heo, M.; Go, Y. Coumarin and moracin derivatives from mulberry leaves (Morus alba L.) with soluble epoxide hydrolase inhibitory activity. Molecules 2020, 25, E3967. [Google Scholar] [CrossRef]
- Chauhan, S.; Devi, U.; Kumar, V.R.; Kumar, V.; Anwar, F.; Kaithwas, G. Dual inhibition of arachidonic acid pathway by mulberry leaf extract. Inflammopharmacology 2015, 23, 65–70. [Google Scholar] [CrossRef]
- Zheng, X.; Cao, Y.; Ke, Y.; Zhang, Y.; Li, F.; Gong, J.; Zhao, X.; Kuang, H.; Feng, W. Phenolic constituents from the root bark of Morus alba L. and their cardioprotective activity in vitro. Phytochemistry 2017, 135, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; He, Z.; Jiang, R.; Ye, W.; Xu, H.; But, P.P. Antiviral flavonoids from the root bark of Morus alba L. Phytochemistry 2003, 62, 1235–1238. [Google Scholar] [CrossRef]
- Naik, R.; Harmalkar, D.S.; Xu, X.; Jang, K.; Lee, K. Bioactive benzofuran derivatives: Moracins A–Z in medicinal chemistry. Eur. J. Med. Chem. 2015, 90, 379–393. [Google Scholar] [CrossRef] [PubMed]
- Zhaxi, M.; Chen, L.; Li, X.; Komatsu, K.; Yao, X.; Qiu, F. Three major metabolites of mulberroside a in rat intestinal contents and feces. Planta Med. 2010, 76, 362–364. [Google Scholar] [CrossRef] [Green Version]
- Yonekura-Sakakibara, K.; Higashi, Y.; Nakabayashi, R. The origin and evolution of plant flavonoid metabolism. Front. Plant Sci. 2019, 10, 943. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Jeleń, H.H. Comprehensive two-dimensional gas chromatography-time of flight mass spectrometry (GC×GC-TOFMS) in conventional and reversed column configuration for the investigation of Baijiu aroma types and regional origin. J. Chromatogr. A 2021, 1636, 461774. [Google Scholar] [CrossRef]
- Verplanken, K.; Stead, S.; Jandova, R.; Van Poucke, C.; Claereboudt, J.; Bussche, J.V.; De Saeger, S.; Takats, Z.; Wauters, J.; Vanhaecke, L. Rapid evaporative ionization mass spectrometry for high-throughput screening in food analysis: The case of boar taint. Talanta 2017, 169, 30–36. [Google Scholar] [CrossRef]
- Kang, J.; Choi, M.; Kang, S.; Kwon, H.N.; Wen, H.; Lee, C.H.; Park, M.; Wiklund, S.; Kim, H.J.; Kwon, S.W.; et al. Application of a 1 H nuclear magnetic resonance (NMR) metabolomics approach combined with orthogonal projections to latent structure-discriminant analysis as an efficient tool for discrimina. J. Agric. Food Chem. 2008, 56, 11589–11595. [Google Scholar] [CrossRef]
- Xiao, X.; Xu, L.; Hu, H.; Yang, Y.; Zhang, X.; Peng, Y.; Xiao, P. DPPH radical scavenging and postprandial hyperglycemia inhibition activities and flavonoid composition analysis of hawk tea by UPLC-DAD and UPLC-Q/TOF MSE. Molecules 2017, 22, 1622. [Google Scholar] [CrossRef]
- Mena, P.; Sánchez-Salcedo, E.M.A.; Tassotti, M.; Martínez, J.J.; Hernández, F.; Del Rio, D. Phytochemical evaluation of eight white (Morus alba L.) and black (Morus nigra L.) mulberry clones grown in Spain based on UHPLC-ESI-MSn metabolomic profiles. Food Res. Int. 2016, 89, 1116–1122. [Google Scholar] [CrossRef]
- Managa, M.G.; Mpai, S.; Remize, F.; Garcia, C.; Sivakumar, D. Impact of moist cooking methods on colour, anti-nutritive compounds and phenolic metabolites in African nightshade (Solanum retroflexum Dun.). Food Chem. 2020, 325, 126805. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cheng, Y.; Zhang, X.; Zhang, X.; Chen, S.; Hu, Z.; Zhou, C.; Zhang, E.; Ma, S. Astragalin attenuates allergic inflammation in a murine asthma model. Inflammation 2015, 38, 2007–2016. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhu, L.; Chen, J.; Cui, T.; Liao, W. Astragalin induced selective kidney cancer cell death and these effects are mediated via mitochondrial mediated cell apoptosis, cell cycle arrest, and modulation of key tumor-suppressive miRNAs. J. BUON 2019, 24, 1245–1251. [Google Scholar] [PubMed]
- Cho, I.H.; Choi, Y.J.; Gong, J.H.; Shin, D.; Kang, M.K.; Kang, Y.H. Astragalin inhibits autophagy-associated airway epithelial fibrosis. Respir. Res. 2015, 16, 51. [Google Scholar] [CrossRef] [Green Version]
- Nazir, I.; Rahman, N.U.; Alvi, Z.; Rahman, M.H.; Sendker, J.; Zhang, T.; Frankish, N.; Sheridan, H. Antidiabetic activities of an LC/MS fingerprinted aqueous extract of Fagonia cretica Lin preclinical models. Planta Med. 2017, 83, 1141–1148. [Google Scholar]
- Tchabo, W.; Ma, Y.; Kwaw, E.; Xiao, L.; Wu, M.; Apaliya, M. Impact of extraction parameters and their optimization on the nutraceuticals and antioxidant properties of aqueous extract mulberry leaf. Int. J. Food Prop. 2018, 21, 717–732. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Zheng, M.; Gao, F.; Zhang, J.; Liu, F. Metabolomics analysis of L-arginine induced gastrointestinal motility disorder in rats using UPLC-MS after magnolol treatment. Front. Pharmacol. 2019, 10, 183. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Liu, H.; Wen, J.; Fan, G.; Chai, Y.; Wu, Y. Fragmentation study of iridoid glycosides including epimers by liquid chromatography-diode array detection/electrospray ionization mass spectrometry and its application in metabolic fingerprint analysis of Gardenia jasminoides Ellis. Rapid Commun. Mass Spectometry 2010, 24, 2520–2528. [Google Scholar] [CrossRef]
- Gabaston, J.; Richard, T.; Biais, B.; Waffo-Teguo, P.; Pedrot, E.; Jourdes, M.; Corio-Costet, M.; Mérillon, J. Stilbenes from common spruce (Picea abies) bark as natural antifungal agent against downy mildew (Plasmopara viticola). Ind. Crop. Prod. 2017, 103, 267–273. [Google Scholar] [CrossRef]
- Huang, X.; Mazza, G. Simultaneous analysis of serotonin, melatonin, piceid and resveratrol in fruits using liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 3890–3899. [Google Scholar] [CrossRef]
- Llácer, J.L.; Fita, I.; Rubio, V. Arginine and nitrogen storage. Curr. Opin. Struc. Biol. 2008, 18, 673–681. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Kakehi, J. Polyamines: Ubiquitous polycations with unique roles in growth and stress responses. Ann. Bot. 2010, 105, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crawford, N.M. Mechanisms for nitric oxide synthesis in plants. J. Exp. Bot. 2006, 57, 471–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neill, S.; Barros, R.; Bright, J.; Desikan, R.; Hancock, J.; Harrison, J.; Morris, P.; Ribeiro, D.; Wilson, I. Nitric oxide, stomatal closure, and abiotic stress. J. Exp. Bot. 2008, 59, 165–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalamaki, M.S.; Alexandrou, D.; Lazari, D.; Merkouropoulos, G.; Fotopoulos, V.; Pateraki, I.; Aggelis, A.; Carrillo-López, A.; Rubio-Cabetas, M.J.; Kanellis, A.K. Over-expression of a tomato N-acetyl-L-glutamate synthase gene (SlNAGS1) in Arabidopsis thaliana results in high ornithine levels and increased tolerance in salt and drought stresses. J. Exp. Bot. 2009, 60, 1859–1871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sengupta, S.; Mukherjee, S.; Basak, P.; Majumder, A. Significance of galactinol and raffinose family oligosaccharide synthesis in plants. Front. Plant Sci. 2015, 6, 656. [Google Scholar] [CrossRef] [Green Version]
- Qu, K.; Zhao, L.; Luo, X.; Zhang, C.; Hou, P.; Bi, K.; Chen, X. An LC-MS method for simultaneous determination of five iridoids from Zhi-zi-chi decoction in rat brain microdialysates and tissue homogenates: Towards an in depth study for its antidepressive activity. J. Chromatogr. B 2014, 965, 206–215. [Google Scholar] [CrossRef]
- Yu, M.; Su, B.; Zhang, X. Gardenoside suppresses the pain in rats model of chronic constriction injury by regulating the P2X3 and P2X7 receptors. J. Recept. Signal Transduct. 2018, 38, 198–203. [Google Scholar] [CrossRef]
- Mérillon, J.; Fauconneau, B.; Teguo, P.W.; Barrier, L.; Vercauteren, J.; Huguet, F. Antioxidant activity of the stilbene astringin, newly extracted from Vitis vinifera cell cultures. Clin. Chem. 1997, 43, 1092–1093. [Google Scholar] [CrossRef] [Green Version]
- Waffo-Téguo, P.; Hawthorne, M.E.; Cuendet, M.; Mérillon, J.M.; Kinghorn, A.D.; Pezzuto, J.M.; Mehta, R.G. Potential cancer-chemopreventive activities of wine stilbenoids and flavans extracted from grape (Vitis vinifera) cell cultures. Nutr. Cancer 2001, 40, 173–179. [Google Scholar] [CrossRef]
- Plumed Ferrer, C.; Vkevinen, K.; Komulainen, H.; Rautiainen, M.; Smeds, A.; Raitanen, J.E.; Eklund, P.; Willfr, S.; Alakomi, H.L.; Saarela, M.; et al. The antimicrobial effects of wood-associated polyphenols on food pathogens and spoilage organisms. Int. J. Food Microbiol. 2013, 164, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Kuo, C.; Chen, C.; Liu, Y.; Shieh, C. RSM and ANN modeling-based optimization approach for the development of ultrasound-assisted liposome encapsulation of piceid. Ultrason. Sonochem. 2017, 36, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Lei, E.; Li, L.; Ren, J.; He, X.; Yang, J.; Wang, S. Antiviral activity of mulberroside C against enterovirus A71 in vitro and in vivo. Eur. J. Pharmacol. 2021, 906, 174204. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.W.; Lee, D.H.; Rhee, M.H.; Shin, J.H. In vitro antiplatelet activity of mulberroside C through the up-regulation of cyclic nucleotide signaling pathways and down-regulation of phosphoproteins. Genes 2021, 12, 1024. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Yum, J.H.; Rho, Y.K.; Oh, S.J.; Choi, H.S.; Chang, H.B.; Choi, D.H.; Leem, M.; Choi, E.J.; Ryu, J.M.; et al. Inhibition of HCV replicon cell growth by 2-arylbenzofuran derivatives isolated from Mori Cortex Radicis. Planta Med. 2007, 73, 1481–1485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, H.; Li, Q.; Ma, J.; Yang, R.; Qu, L. A comparative study on the effects of resveratrol and oxyresveratrol against tyrosinase activity and their inhibitory mechanism. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 251, 119405. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Lu, H.; Peng, Y.; Zhang, B.; Gong, X.; Su, J.; Zhou, Y.; Pan, M.; Xu, L. Oxyresveratrol prevents lipopolysaccharide/D-galactosamine-induced acute liver injury in mice. Int. Immunopharmacol. 2018, 56, 105–112. [Google Scholar] [CrossRef]
- Slocum, R.D. Genes, enzymes and regulation of arginine biosynthesis in plants. Plant Physiol. Biochem. 2005, 43, 729–745. [Google Scholar] [CrossRef]
- Dai, N.; Petreikov, M.; Portnoy, V.; Katzir, N.; Pharr, D.M.; Schaffer, A.A. Cloning and expression analysis of a UDP-galactose/glucose pyrophosphorylase from melon fruit provides evidence for the major metabolic pathway of galactose metabolism in raffinose oligosaccharide metabolizing plants. Plant Physiol. 2006, 142, 294–304. [Google Scholar] [CrossRef] [Green Version]
- Fu, M.; Xu, Y.; Chen, Y.; Wu, J.; Yu, Y.; Zou, B.; An, K.; Xiao, G. Evaluation of bioactive flavonoids and antioxidant activity in Pericarpium Citri Reticulatae (Citrus reticulata ‘Chachi’) during storage. Food Chem. 2017, 230, 649–656. [Google Scholar] [CrossRef]
- Sharma, O.P.; Bhat, T.K. DPPH antioxidant assay revisited. Food Chem. 2009, 113, 1202–1205. [Google Scholar] [CrossRef]
- Nenadis, N.; Wang, L.; Tsimidou, M.; Zhang, H. Estimation of scavenging activity of phenolic compounds using the ABTS•+ assay. J. Agric. Food Chem. 2004, 52, 4669–4674. [Google Scholar] [CrossRef] [PubMed]
No. | RT-EM | Mass Accuracy (ppm) | Formula | VIP | Max Fold Change | Compound | Reference |
---|---|---|---|---|---|---|---|
L1 | 4.21_448.1007n | 0.25 | C21H20O11 | 5.74 | 1.61 | Kaempferol 3-O-glucoside (astragalin) | [40] |
L2 | 4.40_534.1013n | 0.72 | C24H22O14 | 5.67 | 1.60 | Kaempferol 3-O-(6’’-O-malonylglucoside) | [4] |
L3 | 2.64_737.1904m/z | −4.06 | C33H40O20 | 1.33 | 1.72 | Quercetin O-rhamnosyl-O-rhamnosyl-O-hexoside | [41] |
L4 | 3.82_593.1516m/z | 0.70 | C27H30O15 | 3.61 | 1.74 | Kaempferol O-rhamnosyl-O-hexoside | [42] |
No. | RT-EM | Mass Accuracy (ppm) | Formula | VIP | Max Fold Change | Compound | Reference |
---|---|---|---|---|---|---|---|
B1 | 0.60_173.1038m/z | −3.47 | C6H14N4O2 | 1.03 | 3.69 | Arginine | [48] |
B2 | 0.75_504.1689n | −0.23 | C18H32O16 | 3.10 | 1.59 | Raffinose | [49] |
B3 | 1.88_404.1312n | −1.68 | C17H24O11 | 1.88 | 1.64 | Gardenoside | * |
B4 | 3.44_406.1255n | −2.11 | C20H22O9 | 3.75 | 2.29 | Astringin | [50] |
B5 | 3.87_390.1309n | −1.34 | C20H22O8 | 1.06 | 3.54 | Piceid | [51] |
B6 | 4.28_244.0731n | −2.06 | C14H12O4 | 4.38 | 2.05 | Oxyresveratrol | # |
B7 | 5.27_458.1572n | −1.03 | C24H26O9 | 2.04 | 2.24 | Mulberroside C | * |
B8 | 6.12_325.1078m/z | −1.2 | C19H18O5 | 1.33 | 4.27 | Moracinfurol A | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.; Wang, H.; Liu, Z.; Xu, B.; Li, Z.; Song, P.; Chao, Z. Untargeted Metabolomics Coupled with Chemometrics for Leaves and Stem Barks of Dioecious Morus alba L. Metabolites 2022, 12, 106. https://doi.org/10.3390/metabo12020106
Wu C, Wang H, Liu Z, Xu B, Li Z, Song P, Chao Z. Untargeted Metabolomics Coupled with Chemometrics for Leaves and Stem Barks of Dioecious Morus alba L. Metabolites. 2022; 12(2):106. https://doi.org/10.3390/metabo12020106
Chicago/Turabian StyleWu, Cui, Huijun Wang, Zhenying Liu, Bo Xu, Zhuojun Li, Pingping Song, and Zhimao Chao. 2022. "Untargeted Metabolomics Coupled with Chemometrics for Leaves and Stem Barks of Dioecious Morus alba L." Metabolites 12, no. 2: 106. https://doi.org/10.3390/metabo12020106
APA StyleWu, C., Wang, H., Liu, Z., Xu, B., Li, Z., Song, P., & Chao, Z. (2022). Untargeted Metabolomics Coupled with Chemometrics for Leaves and Stem Barks of Dioecious Morus alba L. Metabolites, 12(2), 106. https://doi.org/10.3390/metabo12020106