The Impact of Mineral Supplementation on Polycystic Ovarian Syndrome
Abstract
:1. Introduction
2. Methods
3. Findings of Reviewed Papers between 2015–2021 and Discussion
3.1. Magnesium
3.2. Zinc
3.3. Selenium
3.4. Chromium
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Deswal, R.; Vinay, N.; Amita, D.; Chandra, S.P. The prevalence of polycystic ovary syndrome: A brief systematic review. J. Hum. Reprod. Sci. 2020, 13, 261. [Google Scholar] [PubMed]
- Lentscher, J.A.; Decherney, A.H. Clinical Presentation and Diagnosis of Polycystic Ovarian Syndrome. Clin. Obstet. Gynecol. 2021, 64, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Morreale, H.F. Polycystic ovary syndrome: Definition, etiology, diagnosis, and treatment. Nat. Rev. Endocrinol. 2018, 14, 270–284. [Google Scholar] [CrossRef] [PubMed]
- Ajmal, N.; Khan, S.Z.; Shaikh, R. Polycystic ovary syndrome (PCOS) and genetic predisposition: A review article. Eur. J. Obs. Gynecol. Reprod. Biol. X 2019, 3, 100060. [Google Scholar]
- Calcaterra, V.; Verduci, E.; Cena, H.; Magenes, V.C.; Todisco, C.F.; Tenuta, E.; Gregorio, C.; De Giuseppe, R.; Bosetti, A.; Di Profio, E.; et al. Polycystic Ovary Syndrome in Insulin-Resistant Adolescents with Obesity: The Role of Nutrition Therapy and Food Supplements as a Strategy to Protect Fertility. Nutrients 2021, 13, 1848. [Google Scholar] [CrossRef] [PubMed]
- Ganji, V.; Tangpricha, V.; Zhang, X. Serum Vitamin D Concentration ≥75 nmol/L Is Related to Decreased Cardiometabolic and Inflammatory Biomarkers, Metabolic Syndrome, and Diabetes; and Increased Cardiorespiratory Fitness in US Adults. Nutrients 2020, 12, 730. [Google Scholar] [CrossRef] [Green Version]
- Faghfoori, Z.; Fazelian, S.; Shadnoush, M.; Goodarzi, R. Nutritional management in women with polycystic ovary syndrome: A review study. Diabetes Metab. Syndr. Clin. Res. Rev. 2017, 11, S429–S432. [Google Scholar] [CrossRef]
- Abedini, M.; Ghaedi, E.; Hadi, A.; Mohammadi, H.; Amani, R. Zinc status and polycystic ovarian syndrome: A systematic review and meta-analysis. J. Trace Elem. Med. Biol. 2019, 52, 216–221. [Google Scholar] [CrossRef]
- Yin, J.; Hong, X.; Ma, J.; Bu, Y.; Liu, R. Serum Trace Elements in Patients with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2020, 11, 572384. [Google Scholar] [CrossRef]
- Pokorska-Niewiada, K.; Brodowska, A.; Szczuko, M. The Content of Minerals in the PCOS Group and the Correlation with the Parameters of Metabolism. Nutrients 2021, 7, 2214. [Google Scholar] [CrossRef]
- Fiorentini, D.; Cappadone, C.; Farruggia, G.; Prata, C. Magnesium: Biochemistry, Nutrition, Detection, and Social Impact of Diseases Linked to Its Deficiency. Nutrients 2021, 13, 1136. [Google Scholar] [CrossRef] [PubMed]
- Gröber, U.; Schmidt, J.; Kisters, K. Magnesium in Prevention and Therapy. Nutrients 2015, 7, 8199–8226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajeswari, G.; Veerabhadrudu, B.; Suresh, E. Study of magnesium levels in polycystic ovarian syndrome. Int. J. App. Res. 2016, 3, 610–613. [Google Scholar] [CrossRef] [Green Version]
- Babapour, M.; Mohammadi, H.; Kazemi, M.; Hadi, A.; Rezazadegan, M.; Askari, G. Associations between serum magnesium concentrations and polycystic ovary syndrome status: A systematic review and meta-analysis. Biol. Trace Elem. Res. 2021, 4, 1297–1305. [Google Scholar] [CrossRef]
- Cutler, D.A.; Pride, S.M.; Cheung, A.P. Low intakes of dietary fiber and magnesium are associated with insulin resistance and hyperandrogenism in polycystic ovary syndrome: A cohort study. Food Sci. Nutr. 2019, 7, 1426–1437. [Google Scholar] [CrossRef] [Green Version]
- Farsinejad-Marj, M.; Azadbakht, L.; Mardanian, F.; Saneei, P.; Esmaillzadeh, A. Clinical and metabolic responses to magnesium supplementation in women with polycystic ovary syndrome. Biol. Trace Elem. Res. 2020, 196, 349–358. [Google Scholar] [CrossRef]
- Ebrahimi, F.A.; Foroozanfard, F.; Aghadavod, E.; Bahmani, F.; Asemi, Z. The effects of magnesium and zinc co-supplementation on biomarkers of inflammation and oxidative stress, and gene expression related to inflammation in polycystic ovary syndrome: A randomized controlled clinical trial. Biol. Trace Elem. Res. 2018, 2, 300–307. [Google Scholar] [CrossRef]
- Luo, X.; Cai, W.Y.; Ma, H.L.; Cong, J.; Chang, H.; Gao, J.S.; Shen, W.J.; Wang, Y.; Yang, X.M.; Wu, X.K. Associations of serum magnesium with Insulin resistance and testosterone in women with polycystic ovary syndrome. Front. Endocrinol. 2021, 12, 763. [Google Scholar] [CrossRef]
- Hamilton, K.P.; Zelig, R.; Parker, A.R.; Haggag, A. Insulin resistance and serum magnesium concentrations among women with polycystic ovary syndrome. Curr. Dev. Nutr. 2019, 11, nzz108. [Google Scholar] [CrossRef]
- Shokrpour, M.; Asemi, Z. The effects of magnesium and vitamin E co-supplementation on hormonal status and biomarkers of inflammation and oxidative stress in women with polycystic ovary syndrome. Biol. Trace Elem. Res. 2019, 191, 54–60. [Google Scholar] [CrossRef]
- Kostov, K. Effects of magnesium deficiency on mechanisms of insulin resistance in type 2 diabetes: Focusing on the processes of insulin secretion and signaling. Int. J. Mol. Sci. 2019, 20, 1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gommers, L.M.; Hoenderop, J.G.; Bindels, R.J.; de Baaij, J.H. Hypomagnesemia in Type 2 Diabetes: A Vicious Circle? Diabetes 2016, 65, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piuri, G.; Zocchi, M.; Della Porta, M.; Ficara, V.; Manoni, M.; Zuccotti, G.V.; Pinotti, L.; Maier, J.A.; Cazzola, R. Magnesium in Obesity, Metabolic Syndrome, and Type 2 Diabetes. Nutrients 2021, 13, 320. [Google Scholar] [CrossRef]
- Institute of Medicine (US), Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin, D, and Fluoride; National Academies Press: Washington, DC, USA, 1997; pp. 250–287. [Google Scholar]
- Kogan, S.; Sood, A.; Garnick, M.S. Zinc and Wound Healing: A Review of Zinc Physiology and Clinical Applications. Wounds 2017, 29, 102–106. [Google Scholar] [PubMed]
- Nasiadek, M.; Stragierowicz, J.; Klimczak, M.; Kilanowicz, A. The role of zinc in selected female reproductive system disorders. Nutrients 2020, 13, 2464. [Google Scholar] [CrossRef] [PubMed]
- Kanafchian, M.; Mahjoub, S.; Esmaeilzadeh, S.; Rahsepar, M.; Mosapour, A. Status of serum selenium and zinc in patients with the polycystic ovary syndrome with and without insulin resistance Middle East Fertil. Soc. J. 2018, 23, 241–245. [Google Scholar]
- Foroozanfard, F.; Jamilian, M.; Jafari, Z.; Khassaf, A.; Hosseini, A.; Khorammian, H.; Asemi, Z. Effects of zinc supplementation on markers of insulin resistance and lipid profiles in women with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial. Exp. Clin. Endocrinol. Diabetes 2015, 123, 215–220. [Google Scholar]
- Jamilian, M.; Foroozanfard, F.; Bahmani, F.; Talaee, R.; Monavari, M.; Asemi, Z. Effects of zinc supplementation on endocrine outcomes in women with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial. Biol. Trace Elem. Res. 2016, 170, 271–278. [Google Scholar] [CrossRef]
- Mohammadi, H.; Talebi, S.; Ghavami, A.; Rafiei, M.; Sharifi, S.; Faghihimani, Z.; Ranjbar, G.; Miraghajani, M.; Askari, G. Effects of zinc supplementation on inflammatory biomarkers and oxidative stress in adults: A systematic review and meta-analysis of randomized controlled trials. J. Trace Elem. Med. Biol. 2021, 68, 126857. [Google Scholar] [CrossRef]
- Chasapis, C.T.; Ntoupa, P.S.; Spiliopoulou, C.A.; Stefanidou, M.E. Recent aspects of the effects of zinc on human health. Arch. Toxicol. 2020, 94, 1443–1460. [Google Scholar] [CrossRef]
- Hajizadeh-Sharafabad, F.; Moludi, J.; Tutunchi, H.; Taheri, E.; Izadi, A.; Maleki, V. Selenium and polycystic ovary syndrome; current knowledge and future directions: A systematic review. Horm. Metab. Res. 2019, 51, 279–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubey, P.; Reddy, S.; Boyd, S.; Bracamontes, C.; Sanchez, S.; Chattopadhyay, M.; Dwivedi, A. Effect of Nutritional Supplementation on Oxidative Stress and Hormonal and Lipid Profiles in PCOS-Affected Females. Nutrients 2021, 13, 2938. [Google Scholar] [CrossRef] [PubMed]
- Rashidi, B.H.; Hosseinzadeh, F.M.; Alipoor, E.; Asghari, S.; Yekaninejad, M.S.; Hosseinzadeh-Attar, M.J. Effects of selenium supplementation on asymmetric dimethylarginine and cardiometabolic risk factors in patients with polycystic ovary syndrome. Biol. Trace Elem. Res. 2020, 2, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Razavi, M.; Jamilian, M.; Kashan, Z.F.; Heidar, Z.; Mohseni, M.; Ghandi, Y.; Bagherian, T.; Asemi, Z. Selenium Supplementation and the Effects on Reproductive Outcomes, Biomarkers of Inflammation, and Oxidative Stress in Women with Polycystic Ovary Syndrome. Horm Metab Res. 2016, 48, 185–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamilian, M.; Razavi, M.; Fakhrie; Kashan, Z.; Ghandi, Y.; Bagherian, T.; Asemi, Z. Metabolic response to selenium supplementation in women with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial. Clin. Endocrinol. 2015, 82, 885–891. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.F.; Hosseinzadeh-Attar, M.J.; Yekaninejad, M.S.; Rashidi, B. Effects of selenium supplementation on glucose homeostasis and free androgen index in women with polycystic ovary syndrome: A randomized, double-blinded, placebo-controlled clinical trial. J. Trace Elem. Med. Biol. 2016, 34, 56–61. [Google Scholar] [CrossRef]
- Hadrup, N.; Ravn-Haren, G. Acute human toxicity and mortality after selenium ingestion: A review. J. Trace Elem. Med. Biol. 2020, 58, 126435. [Google Scholar] [CrossRef]
- Jamilian, M.; Mansury, S.; Bahmani, F.; Heidar, Z.; Amirani, E.; Asemi, Z. The effects of probiotic and selenium co-supplementation on parameters of mental health, hormonal profiles, and biomarkers of inflammation and oxidative stress in women with polycystic ovary syndrome. J. Ovarian Res. 2018, 11, 80. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wu, Y.; Wang, Y.; Xu, H.; Mei, X.; Yu, D.; Wang, Y.; Li, W. Antioxidant properties of probiotic bacteria. Nutrients 2017, 5, 521. [Google Scholar] [CrossRef]
- Fazelian, S.; Rouhani, M.H.; Bank, S.S.; Amani, R. Chromium supplementation and polycystic ovary syndrome: A systematic review and meta-analysis. J. Trace Elem. Med. Biol. 2017, 42, 92–96. [Google Scholar] [CrossRef]
- Heshmati, J.; Omani-Samani, R.; Vesali, S.; Maroufizadeh, S.; Rezaeinejad, M.; Razavi, M.; Sepidarkish, M. The effects of supplementation with chromium on insulin resistance indices in women with polycystic ovarian syndrome: A systematic review and meta-analysis of randomized clinical trials. Horm. Metab. Res. 2018, 50, 193–200. [Google Scholar] [CrossRef]
- Asbaghi, O.; Fatemeh, N.; Mahnaz, R.K.; Ehsan, G.; Elham, E.; Behzad, N.; Damoon, A.L.; Amirmansour, A.N. Effects of chromium supplementation on glycemic control in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2020, 161, 105098. [Google Scholar] [CrossRef] [PubMed]
- Maleki, V.; Izadi, A.; Farsad-Naeimi, A.; Alizadeh, M. Chromium supplementation does not improve weight loss or metabolic and hormonal variables in patients with polycystic ovary syndrome: A systematic review. Nutr. Res. 2018, 56, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jamilian, M.; Zadeh Modarres, S.; Amiri Siavashani, M.; Karimi, M.; Mafi, A.; Ostadmohammadi, V.; Asemi, Z. The Influences of Chromium Supplementation on Glycemic Control, Markers of Cardio-Metabolic Risk, and Oxidative Stress in Infertile Polycystic ovary Syndrome Women Candidate for In vitro Fertilization: A Randomized, Double-Blind, Placebo-Controlled Trial. Biol. Trace Elem. Res. 2018, 185, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Masharani, U.; Gjerde, C.; McCoy, S.; Maddux, B.A.; Hessler, D.; Goldfine, I.D.; Youngren, J.F. Chromium supplementation in non-obese non-diabetic subjects is associated with a decline in insulin sensitivity. BMC Endocr. Disord. 2012, 12, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubey, P.; Thakur, V.; Chattopadhyay, M. Role of Minerals and Trace Elements in Diabetes and Insulin Resistance. Nutrients 2020, 12, 1864. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.A.; Polansky, M.M.; Bryden, N.A.; Roginski, E.E.; Mertz, W.; Glinsmann, W. Chromium supplementation of human subjects: Effects on glucose, insulin, and lipid variables. Metabolism 1983, 32, 894–899. [Google Scholar] [CrossRef]
- Anderson, R.A. Nutritional factors influencing the glucose/insulin system: Chromium. J. Am. Coll. Nutr. 1997, 16, 404–410. [Google Scholar] [CrossRef]
- Capone, K.; Sentongo, T. The ABCs of Nutrient Deficiencies and Toxicities. Pediatr. Ann. 2019, 48, e434–e440. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
Reference (Author/s and Year) | Study Design | Mineral, Dosage, Duration, and Intervention | Outcome Measurement | Findings | Conclusions |
---|---|---|---|---|---|
[16] | Randomized, placebo-controlled, double-blind study | 250 mg/d Mg oxide 8 wk n = 60 | BMI WC Glycemic markers Lipid profile Androgens | ↑BMI ↑WC No change in glycemic or lipid markers ↓Testosterone | Mg supplementation decreased BMI and androgens. Mg supplementation did not have an effect on glycemic and lipid markers |
[17] | Randomized, placebo-controlled, double-blind study | 250 mg/d Mg oxide &220 mg zinc sulfate (50 mg zn) 12 wk n = 60 | hs-CRP TAC Gene expression | ↓hs-CRP ↓Gene expression of TNF-α and IL-1 ↓TAC | Mg and Zn co-supplementation improved TAC and reduced inflammation |
[28] | Randomized, placebo-controlled, double-blind study | 220 mg/d Zn sulfate (50 mg Zn) 8 wk n = 52 Age 18–40 y | FBG Serum insulin HOMA-IR HOMA-B Lipid profile | ↓FBG ↓Serum insulin ↓HOMA-IR and HOMA-B ↓Serum triglycerides ↓VLDL cholesterol | Zn supplementation improved several metabolic markers |
[29] | Randomized, placebo-controlled, double-blind study | 220 mg/d Zn sulfate (50 mg Zn) 8 wk n = 48 Age 18–40 y | Alopecia Hirsutism Malondialdehyde hs-CRP Androgens Cytokines | ↓Alopecia ↓Hirsutism ↓Malondialdehyde No effect on androgens or Cytokines | Zn supplementation improved clinical symptoms and TAC |
[34] | Randomized, placebo-controlled, double-blind study | 220 µg/d Se 12 wk n = 66 Age 18–45 y | ADMA Glycemic profile Lipid profile Testosterone SHBG | ↓Testosterone ↓Apo-B100/Apo-A1 ↓ADMA No effect on serum lipids, FBG, or SHBG | Se supplementation decreased androgens and had no effect on lipid profile |
[36] | Randomized, placebo-controlled, double-blind study | 200 µg/d Se 8 wk n = 70 Age 18–40 y | Serum insulin FBG HOMA-IR HOMA-B Lipid profile | ↓Serum insulin ↓HOMA-IR ↓HOMA-B ↑Insulin sensitivity ↓Serum triglycerides ↓VLDL cholesterol | Se supplementation improved insulin sensitivity and lowered serum lipids but had no effect on FBG |
[45] | Randomized, placebo-controlled, double-blind study | 200 µg/d Cr 8 wk n = 40 Age 18–40 y | FBG Serum insulin HOMA-IR Lipid profile TAC Malondialdehyde | ↓FBG ↓Serum insulin ↓HOMA-IR ↓Serum triglycerides ↓Total cholesterol ↓TAC ↓Malondialdehyde | Cr supplementation had a beneficial impact on glycemic control and lipid profile in infertile PCOS women |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
ElObeid, T.; Awad, M.O.; Ganji, V.; Moawad, J. The Impact of Mineral Supplementation on Polycystic Ovarian Syndrome. Metabolites 2022, 12, 338. https://doi.org/10.3390/metabo12040338
ElObeid T, Awad MO, Ganji V, Moawad J. The Impact of Mineral Supplementation on Polycystic Ovarian Syndrome. Metabolites. 2022; 12(4):338. https://doi.org/10.3390/metabo12040338
Chicago/Turabian StyleElObeid, Tahra, Marwa Osman Awad, Vijay Ganji, and Joyce Moawad. 2022. "The Impact of Mineral Supplementation on Polycystic Ovarian Syndrome" Metabolites 12, no. 4: 338. https://doi.org/10.3390/metabo12040338
APA StyleElObeid, T., Awad, M. O., Ganji, V., & Moawad, J. (2022). The Impact of Mineral Supplementation on Polycystic Ovarian Syndrome. Metabolites, 12(4), 338. https://doi.org/10.3390/metabo12040338