Untargeted Metabolomics Profiling of Arabidopsis WT, lbr-2-2 and bak1-4 Mutants Following Treatment with Two LPS Chemotypes
Abstract
:1. Introduction
2. Results
2.1. Ultra-High Performance Liquid-Chromatography-Mass Spectometry Data Analysis
2.2. Multivariate Data Analysis
2.3. Metabolite Annotation and Functional Classification
2.4. Metabolite Heat Map Visualization and Analysis
2.5. Pathway Mapping and Quantification
3. Discussion
3.1. Glucosinolates Accumulation Following LPSs Treatment
3.2. Hydroxycinnamic Acid Derivatives Accumulation Post-LPSs Treatment
3.3. Flavonoids Accumulation Post-LPSs Treatment
3.4. Lignan Accumulation Following LPSs Treatment
3.5. Lipids, Oxylipins and Arabidopsides Accumulation Post-LPSs Treatment
3.6. Phytohormones Accumulation Following LPSs Treatment
4. Materials and Methods
4.1. Plant Growth Conditions and Genotyping
4.2. LPS Isolation and Characterisation
4.3. Plant Treatment and Harvesting
4.4. Metabolite Extraction and Sample Preparation
4.5. Liquid Chromatography-Mass Spectrometry Analysis
4.6. Multivariate Data Analysis
4.7. Metabolite Annotation and Biological Interpretation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Desaki, Y.; Miya, A.; Venkatesh, B.; Tsuyumu, S.; Yamane, H.; Kaku, H.; Minami, E.; Shibuya, N. Bacterial lipopolysaccharides induce defense responses associated with programmed cell death in rice cells. Plant Cell Physiol. 2006, 47, 1530–1540. [Google Scholar] [CrossRef] [PubMed]
- Kagan, J.C. Lipopolysaccharide detection across the kingdoms of life. Trends Immunol. 2017, 38, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Sanabria, N.M.; van Heerden, H.; Dubery, I.A. Molecular characterisation and regulation of a Nicotiana tabacum S-domain receptor-like kinase gene induced during an early rapid response to lipopolysaccharides. Gene 2012, 501, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Iizasa, S.; Iizasa, E.; Matsuzaki, S.; Tanaka, H.; Kodama, Y.; Watanabe, K.; Nagano, Y. Arabidopsis LBP / BPI related-1 and -2 bind to LPS directly and regulate PR1 expression. Sci. Rep. 2016, 6, 27527. [Google Scholar] [CrossRef]
- Iizasa, S.; Iizasa, E.; Watanabe, K.; Nagano, Y. Transcriptome analysis reveals key roles of AtLBR-2 in LPS-induced defense responses in plants. BMC Genomics 2017, 18, 995. [Google Scholar] [CrossRef] [Green Version]
- Ranf, S.; Gisch, N.; Schäffer, M.; Illig, T.; Westphal, L.; Knirel, Y.A.; Sánchez-Carballo, P.M.; Zähringer, U.; Hückelhoven, R.; Lee, J.; et al. A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nat. Imunol. 2015, 16, 426–433. [Google Scholar] [CrossRef]
- Kutschera, A.; Dawid, C.; Gisch, N.; Schmid, C.; Raasch, L.; Gerster, T.; Schäffer, M.; Smakowska-Luzan, E.; Belkhadir, Y.; Corina Vlot, A.; et al. Bacterial medium-chain 3-hydroxy fatty acid metabolites trigger immunity in Arabidopsis plants. Science 2019, 364, 178–181. [Google Scholar] [CrossRef]
- Patti, G.J.; Yanes, O.; Siuzdak, G. Innovation: Metabolomics: The apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 2012, 13, 263–269. [Google Scholar] [CrossRef]
- Ramirez, T.; Daneshian, M.; Kamp, H.; Bois, F.Y.; Clench, M.R.; Coen, M.; Donley, B.; Fischer, S.M.; Ekman, D.R.; Fabian, E.; et al. Metabolomics in toxicology and preclinical research. ALTEX 2013, 30, 209–225. [Google Scholar] [CrossRef] [Green Version]
- Tugizimana, F.; Piater, L.; Dubery, I. Plant metabolomics: A new frontier in phytochemical analysis. S. Afr. J. Sci. 2013, 109, 1–11. [Google Scholar] [CrossRef]
- Tinte, M.M.; Steenkamp, P.A.; Piater, L.A.; Dubery, I.A. Lipopolysaccharide perception in Arabidopsis thaliana: Diverse LPS chemotypes from Burkholderia cepacia, Pseudomonas syringae and Xanthomonas campestris trigger differential defence-related perturbations in the metabolome. Plant Physiol. Biochem. 2020, 156, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Finnegan, T.; Steenkamp, P.A.; Piater, L.A.; Dubery, I.A. The lipopolysaccharide-induced metabolome signature in Arabidopsis thaliana reveals dynamic reprogramming of phytoalexin and phytoanticipin pathways. PLoS ONE 2016, 11, e0163572. [Google Scholar] [CrossRef] [PubMed]
- Mareya, C.R.; Tugizimana, F.; Lorenzo, F.D.; Silipo, A.; Piater, L.A.; Molinaro, A.; Dubery, I.A. Adaptive defence-related changes in the metabolome of Sorghum bicolor cells in response to lipopolysaccharides of the pathogen Burkholderia andropogonis. Sci. Rep. 2020, 10, 7626. [Google Scholar] [CrossRef] [PubMed]
- Hussan, R.H.; Dubery, I.A.; Piater, L.A. Identification of MAMP-responsive plasma membrane-associated proteins in Arabidopsis thaliana following challenge with different LPS chemotypes from Xanthomonas campestris. Pathogens 2020, 9, 787. [Google Scholar] [CrossRef]
- Kutschera, A.; Schombel, U.; Wröbel, M.; Gisch, N.; Ranf, S. Loss of wbpL disrupts O-polysaccharide synthesis and impairs virulence of plant-associated Pseudomonas strains. Mol. Plant Pathol. 2019, 20, 1535–1549. [Google Scholar] [CrossRef] [Green Version]
- Silipo, A.; Molinaro, A.; Sturiale, L.; Dow, J.M.; Erbs, G.; Lanzetta, R.; Newman, M.A.; Parrilli, M. The elicitation of plant innate immunity by lipooligosaccharide of Xanthomonas campestris. J. Biol. Chem. 2005, 280, 33660–33668. [Google Scholar] [CrossRef] [Green Version]
- Bedini, E.; De Castro, C.; Erbs, G.; Mangoni, L.; Dow, J.M.; Newman, M.A.; Parrilli, M.; Unverzagt, C. Structure-dependent modulation of a pathogen response in plants by synthetic O-antigen polysaccharides. J. Am. Chem. Soc. 2005, 127, 2414–2416. [Google Scholar] [CrossRef]
- Munford, R.S.; Varley, A.W. Shield as signal: Lipopolysaccharides and the evolution of immunity to Gram-negative bacteria. PLoS Pathog. 2006, 2, e67. [Google Scholar] [CrossRef]
- Silipo, A.; Sturiale, L.; Garozzo, D.; Erbs, G.; Jensen, T.T.; Lanzetta, R.; Dow, J.M.; Parrilli, M.; Newman, M.A.; Molinaro, A. The acylation and phosphorylation pattern of lipid A from Xanthomonas campestris strongly influence its ability to trigger the innate immune response in Arabidopsis. ChemBioChem 2008, 9, 896–904. [Google Scholar] [CrossRef]
- Huszczynski, S.M.; Lam, J.S.; Khursigara, C.M. The role of Pseudomonas aeruginosa lipopolysaccharide in bacterial pathogenesis and physiology. Pathogens 2020, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Chinchilla, D.; Zipfel, C.; Robatzek, S.; Kemmerling, B.; Nürnberger, T.; Jones, J.D.G.; Felix, G.; Boller, T. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 2007, 448, 497–500. [Google Scholar] [CrossRef] [PubMed]
- Heese, A.; Hann, D.R.; Gimenez-Ibanez, S.; Jones, A.M.E.; He, K.; Li, J.; Schroeder, J.I.; Peck, S.C.; Rathjen, J.P. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc. Natl. Acad. Sci. USA 2007, 104, 12217–12222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halter, T.; Imkampe, J.; Blaum, B.S.; Stehle, T.; Kemmerling, B. BIR2 affects complex formation of BAK1 with ligand binding receptors in plant defense. Plant Signal. Behav. 2014, 9, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Trivedi, K.D.; Iles, R.K. The Application of SIMCA P+ in Shotgun Metabolomics Analysis of ZICⓇHILIC-MS Spectra of Human Urine—Experience with the Shimadzu IT-Tof and Profiling Solutions Data Extraction Software. J. Chromatogr. Sep. Tech. 2012, 3, 145. [Google Scholar] [CrossRef] [Green Version]
- Worley, B.; Powers, R. Multivariate Analysis in Metabolomics. Curr. Metabol. 2013, 1, 92–107. [Google Scholar]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Morreel, K.; Ralph, J.; Kim, H.; Lu, F.; Goeminne, G.; Ralph, S.; Messens, E.; Boerjan, W. Profiling of oligolignols reveals monolignol coupling conditions in lignifying poplar xylem. Plant Physiol. 2004, 136, 3537–3549. [Google Scholar] [CrossRef] [Green Version]
- Ranf, S. Immune sensing of lipopolysaccharide in plants and animals: Same but different. PLoS Pathog. 2016, 12, e1005596. [Google Scholar] [CrossRef]
- Mazgaeen, L.; Gurung, P. Recent advances in lipopolysaccharide recognition systems. Int. J. Mol. Sci. 2020, 21, 379. [Google Scholar] [CrossRef] [Green Version]
- Madala, N.E.; Molinaro, A.; Dubery, I.A. Distinct carbohydrate and lipid-based molecular patterns within lipopolysaccharides from Burkholderia cepacia contribute to defense-associated differential gene expression in Arabidopsis thaliana. Innate Immun. 2011, 18, 154–240. [Google Scholar] [CrossRef] [Green Version]
- Mhlongo, M.I.; Piater, L.A.; Madala, N.E.; Steenkamp, P.A. Phenylpropanoid defences in Nicotiana tabacum cells: Overlapping metabolomes indicate common aspects to priming responses induced by lipopolysaccharides, chitosan and flagellin-22. PLoS ONE 2016, 11, e0151350. [Google Scholar]
- Barco, B.; Clay, N.K. Evolution of glucosinolate diversity via whole-genome duplications, gene rearrangements, and substrate promiscuity. Annu. Rev. Plant Biol. 2019, 70, 585–604. [Google Scholar] [CrossRef] [PubMed]
- Grubb, C.D.; Abel, S. Glucosinolate metabolism and its control. Trends Plant Sci. 2006, 11, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Robin, A.H.K.; Yi, G.E.; Laila, R.; Hossain, M.R.; Park, J.I.; Kim, H.R.; Nou, I.S. Leptosphaeria maculans alters glucosinolate profiles in blackleg disease–resistant and -susceptible cabbage lines. Front. Plant Sci. 2017, 8, 1769. [Google Scholar] [CrossRef]
- Brader, G.; Mikkelsen, M.D.; Halkier, B.A.; Tapio Palva, E. Altering glucosinolate profiles modulates disease resistance in plants. Plant J. 2006, 46, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Nićiforović, N.; Abramovič, H. Sinapic acid and its derivatives: Natural sources and bioactivity. Compr. Rev. Food Sci. Food Saf. 2014, 13, 34–51. [Google Scholar] [CrossRef]
- Li, J.; Ou-Lee, T.M.; Raba, R.; Amundson, R.G.; Last, R.L. Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 1993, 5, 171–179. [Google Scholar] [CrossRef]
- Hoffmann, L.; Besseau, S.; Geoffroy, P.; Ritzenthaler, C.; Meyer, D.; Lapierre, C.; Pollet, B.; Legrand, M. Silencing of hydroxycinnamoyl-coenzyme A shikimate/quinate hydroxycinnamoyltransferase affects phenylpropanoid biosynthesis. Plant Cell 2004, 16, 1446–1465. [Google Scholar] [CrossRef] [Green Version]
- Tzagoloff, A. Metabolism of sinapine in mustard plants. I. Degradation of sinapine into sinapic acid & choline. Plant Physiol. 1963, 38, 202–206. [Google Scholar]
- Chapple, C.C.S.; Vogt, T.; Ellis, B.E.; Somerville, C.R. An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell 1992, 4, 1413–1424. [Google Scholar]
- Shirley, A.M.; Chapple, C. Biochemical characterization of sinapoylglucose:choline sinapoyltransferase, a serine carboxypeptidase-like protein that functions as an acyltransferase in plant secondary metabolism. J. Biol. Chem. 2003, 278, 19870–19877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, V.P.T.; Stewart, J.D.; Ioannou, I.; Allais, F. Sinapic acid and sinapate esters in Brassica: Innate accumulation, biosynthesis, accessibility via chemical synthesis or recovery from biomass, and biological activities. Front. Chem. 2021, 9, 664602. [Google Scholar] [CrossRef] [PubMed]
- Engels, C.; Schieber, A.; Gänzle, M.G. Sinapic acid derivatives in defatted Oriental mustard (Brassica juncea L.) seed meal extracts using UHPLC-DAD-ESI-MSn and identification of compounds with antibacterial activity. Eur. Food Res. Technol. 2012, 234, 535–542. [Google Scholar] [CrossRef]
- Tesaki, S.; Tanabe, S.; Ono, H.; Fukushi, E.; Kawabata, J.; Watanabe, M. 4-Hydroxy-4-nitrophenylacetic acid and sinapic acid as antibacterial compounds from mustard seeds. Biosci. Biotechnol. Biochem. 1998, 62, 998–1000. [Google Scholar] [CrossRef]
- Floerl, S.; Majcherczyk, A.; Possienke, M.; Feussner, K.; Tappe, H.; Gatz, C.; Feussner, I.; Kües, U.; Polle, A. Verticillium longisporum infection affects the leaf apoplastic proteome, metabolome, and cell wall properties in Arabidopsis thaliana. PLoS ONE 2012, 7, e31435. [Google Scholar] [CrossRef] [Green Version]
- König, S.; Feussner, K.; Kaever, A.; Landesfeind, M.; Thurow, C.; Karlovsky, P.; Gatz, C.; Polle, A.; Feussner, I. Soluble phenylpropanoids are involved in the defense response of Arabidopsis against Verticillium longisporum. New Phytol. 2014, 202, 823–837. [Google Scholar] [CrossRef]
- Winkel-Shirley, B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 2001, 126, 485–493. [Google Scholar] [CrossRef] [Green Version]
- Xuan, L.; Zhang, C.; Yan, T.; Wu, D.; Hussain, N.; Li, Z.; Chen, M.; Pan, J.; Jiang, L. TRANSPARENT TESTA 4-mediated flavonoids negatively affect embryonic fatty acid biosynthesis in Arabidopsis. Plant Cell Environ. 2018, 41, 2773–2790. [Google Scholar] [CrossRef]
- Buer, C.S.; Muday, G.K. The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. Plant Cell 2004, 16, 1191–1205. [Google Scholar] [CrossRef] [Green Version]
- Likić, S.; Šola, I.; Ludwig-Müller, J.; Rusak, G. Involvement of kaempferol in the defence response of virus infected Arabidopsis thaliana. Eur. J. Plant Pathol. 2014, 138, 257–271. [Google Scholar] [CrossRef]
- Yin, R.; Han, K.; Heller, W.; Albert, A.; Dobrev, P.I.; Zažímalová, E.; Schäffner, A.R. Kaempferol 3-O-rhamnoside-7-O-rhamnoside is an endogenous flavonol inhibitor of polar auxin transport in Arabidopsis shoots. New Phytol. 2014, 201, 466–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamil, S.; Sirat, H.M.; Jantan, I.; Aimi, N.; Kitajima, M. A new prenylated dihydrochalcone from the leaves of Artocarpus lowii. J. Nat. Med. 2008, 62, 321–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Kaur, I.; Kariyat, R. The multifunctional roles of polyphenols in plant-herbivore interactions. Int. J. Mol. Sci. 2021, 22, 1442. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Nakatsubo, T.; Umezawa, T.; Shimada, M. First in vitro norlignan formation with Asparagus officinalis enzyme preparation. Chem. Commun. 2002, 2, 1088–1089. [Google Scholar] [CrossRef] [PubMed]
- Umezawa, T. Diversity in lignan biosynthesis. Phytochem. Rev. 2003, 2, 371–390. [Google Scholar] [CrossRef]
- Umezawa, T. Lignan and Norlignan Biosynthesis and Biotechnology. In Biotechnology and Sustainable Agriculture 2006 and Beyond; Xu, Z., Li, J., Xue, Y., Yang, W., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 341–343. [Google Scholar]
- Moura, J.C.M.S.; Bonine, C.A.V.; de Oliveira Fernandes Viana, J.; Dornelas, M.C.; Mazzafera, P. Abiotic and biotic stresses and changes in the lignin content and composition in plants. J. Integr. Plant Biol. 2010, 52, 360–376. [Google Scholar] [CrossRef] [PubMed]
- Bagniewska-Zadworna, A.; Barakat, A.; Łakomy, P.; Smoliński, D.J.; Zadworny, M. Lignin and lignans in plant defence: Insight from expression profiling of cinnamyl alcohol dehydrogenase genes during development and following fungal infection in Populus. Plant Sci. 2014, 229, 111–121. [Google Scholar] [CrossRef]
- Kruszka, D.; Sawikowska, A.; Kamalabai Selvakesavan, R.; Krajewski, P.; Kachlicki, P.; Franklin, G. Silver nanoparticles affect phenolic and phytoalexin composition of Arabidopsis thaliana. Sci. Total Environ. 2019, 716, 135361. [Google Scholar] [CrossRef]
- Siebers, M.; Brands, M.; Wewer, V.; Duan, Y.; Hölzl, G.; Dörmann, P. Lipids in plant–microbe interactions. Biochim. Biophys. Acta 2016, 1861, 1379–1395. [Google Scholar] [CrossRef]
- Mehta, S.; Chakraborty, A.; Roy, A.; Singh, I.K. Fight hard or die trying: Current status of lipid signaling during plant—Pathogen interaction. Plants 2021, 10, 1098. [Google Scholar] [CrossRef]
- Pretorius, C.J.; Zeiss, D.R.; Dubery, I.A. The presence of oxygenated lipids in plant defense in response to biotic stress: A metabolomics appraisal. Plant Signal. Behav. 2021, 16, 1989215. [Google Scholar] [CrossRef] [PubMed]
- Strehmel, N.; Böttcher, C.; Schmidt, S.; Scheel, D. Profiling of secondary metabolites in root exudates of Arabidopsis thaliana. Phytochemistry 2014, 108, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Dave, A.; Graham, I.A. Oxylipin signaling: A distinct role for the jasmonic acid precursor cis-(+)-12-oxo-phytodienoic acid (cis-OPDA). Front. Plant Sci. 2012, 3, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hisamatsu, Y.; Goto, N.; Hasegawa, K.; Shigemori, H. Arabidopsides A and B, two new oxylipins from Arabidopsis thaliana. Tetrahedron Lett. 2003, 44, 5553–5556. [Google Scholar] [CrossRef]
- Mosblech, A.; Feussner, I.; Heilmann, I. Oxylipins: Structurally diverse metabolites from fatty acid oxidation. Plant Physiol. Biochem. 2009, 47, 511–517. [Google Scholar] [CrossRef]
- Hisamatsu, Y.; Goto, N.; Sekiguchi, M.; Hasegawa, K.; Shigemori, H. Oxylipins arabidopsides C and D from Arabidopsis thaliana. J. Nat. Prod. 2005, 68, 600–603. [Google Scholar] [CrossRef]
- Dempsey, D.A.; Shah, J.; Klessig, D.F. Salicylic acid and disease resistance in plants. Crit. Rev. Plant Sci. 1999, 18, 547–575. [Google Scholar] [CrossRef]
- Delaney, T.P.; Uknes, S.; Vernooij, B.; Friedrich, L.; Weymann, K.; Negrotto, D.; Gaffney, T.; Gut-Rella, M.; Kessmann, H.; Ward, E.; et al. A central role of salicylic acid in plant disease resistance. Science 1994, 266, 1247–1250. [Google Scholar] [CrossRef] [Green Version]
- Maruri-López, I.; Aviles-Baltazar, N.Y.; Buchala, A.; Serrano, M. Intra and extracellular journey of the phytohormone salicylic acid. Front. Plant Sci. 2019, 10, 423. [Google Scholar] [CrossRef]
- Zeidler, D.; Dubery, I.A.; Schmitt-Kopplin, P.; von Rad, U.; Durner, J. Lipopolysaccharide mobility in leaf tissue of Arabidopsis thaliana. Mol. Plant Pathol. 2010, 11, 747–755. [Google Scholar] [CrossRef]
- Lievens, L.; Pollier, J.; Goossens, A.; Beyaert, R.; Staal, J. Abscisic acid as pathogen effector and immune regulator. Front. Plant Sci. 2017, 8, 587. [Google Scholar] [CrossRef] [PubMed]
- Caarls, L.; Pieterse, C.M.J.; van Wees, S.C.M. How salicylic acid takes transcriptional control over jasmonic acid signaling. Front. Plant Sci. 2015, 6, 170. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.P.; Badruzsaufari, E.; Schenk, P.M.; Manners, J.M.; Desmond, O.J.; Ehlert, C.; Maclean, D.J.; Ebert, P.R.; Kazan, K. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell 2004, 16, 3460–3479. [Google Scholar] [CrossRef] [Green Version]
- O’Malley, R.C.; Barragan, C.C.; Ecker, J.R. A user’s guide to the Arabidopsis T-DNA insertional mutant collections. Methods Mol Biol. 2015, 1284, 323–342. [Google Scholar]
- Westphal, O.; Jann, K. Bacterial lipopolysaccharide. Extraction with phenol-water and further applications of the procedure. Methods Carbohydr. Chem. 1965, 5, 83–91. [Google Scholar]
- Piasecka, A.; Kachlicki, P.; Stobiecki, M. Analytical methods for detection of plant metabolomes changes in response to biotic and abiotic stresses. Int. J. Mol. Sci. 2019, 20, 379. [Google Scholar] [CrossRef] [Green Version]
- van den Berg, R.A.; Hoefsloot, H.C.J.; Westerhuis, J.A.; Smilde, A.K.; van der Werf, M.J. Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genomics 2006, 7, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eriksson, L.; Trygg, J.; Wold, S. CV-ANOVA for significance testing of PLS and OPLS® models. J. Chemom. 2008, 22, 594–600. [Google Scholar] [CrossRef]
- LIPID MAPS. Available online: https://www.lipidmaps.org/ (accessed on 5 March 2021).
- MetaCyc. Available online: https://metacyc.org/ (accessed on 5 March 2021).
- ChemSpider. Available online: http://www.chemspider.com/ (accessed on 5 March 2021).
- Dictionary of Natural Products. Available online: http://dnp.chemnetbase.com/faces/chemical/ChemicalSearch.xhtml (accessed on 5 March 2021).
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
# | Annotated Metabolites | m/z | Rt (min) | Adducts | Molecular Formula | WT (h) | lbr2-2 (h) | bak1-4 (h) | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Pst | Xcc | Pst | Xcc | Pst | Xcc | ||||||
Glucosinolates | |||||||||||
1 | 8-(Methylsulphinyl)octyl cyanide (8-MeSO-octyl-CN) | 202.126 | 13.45 | [M + H]+ | C10H19NOS | 12, 18, 24 | 0, 12, 18, 24 | 24 | 12, 18, | ||
2 | 8-(Methylsulphinyl)octyl isothiocyanate (Hirsutin) | 234.096 | 18.48 | [M + H]+ | C10H19NOS2 | 0, 12, 18, 24 | 12, 18, 24 | 0, 12, 18, 24 | 0, 12, 18, 24 | ||
3 | 7-Methylsulphinylheptyl isothiocyanate | 220.080 | 17.13 | [M + H]+ | C9H17NOS2 | 12, 18, 24 | 0, 12 | 12 | 12, 24 | 12 | |
4 | 8-(Methylsulphinyl)octylamine (8-MeSO-octyl-NH2) | 192.141 | 2.41 | [M + H]+ | C9H21NOS | 0, 12, 18, 24 | 0, 12, 18 | 12, 24 | 24 | 0, 12 | |
5 | 4-Methylthiobutyl glucosinolate (Glucoerucin) | 420.044 | 2.38 | [ M−H ]− | C12H23NO9S3 | 12, 24 | |||||
6 | 3-Indolylmethyl glucosinolate (Glucobrassicin) | 447.052 | 2.80 | [ M−H ]− | C16H19N2O9S2 | 24 | |||||
7 | 8-Methylsulphinyloctyl glucosinolate (Glucohirsutin) | 492.104 | 4.79 | [ M−H ]− | C16H31NO10S3 | 12 | 24 | ||||
Benzoic Acid and Hydroxycinnamic Acid Derivatives | |||||||||||
8 | 6,7-Dimethoxycoumarin (scoparone) | 207.066 | 11.50 | [M + H]+ | C11H10O4 | 0, 12, 18, 24 | 0, 12, 18, 24 | 0, 12, 18, 24 | 0, 12, 18, 24 | 0, 12, 18, 24 | 0, 18, 24 |
9 | Sinapic acid | 223.059 | 11.49 | [ M−H ]− | C11H12O5 | 0, 12, 18, 24 | 0, 12, 18 | 0, 12, 18, 24 | 0, 12, 18, 24 | 0, 18 | 18 |
10 | Sinapoyl malate | 339.071 | 11.49 | [ M−H ]− | C15H16O9 | 0, 18, 24 | 0, 12, 18 | 0, 12, 18, 24 | 0, 12, 18, 24 | 0, 12, 18, 24 | 0, 18, 24 |
11 | 2,5-Dihydroxybenzoic acid pentoside isomer I | 285.059 | 3.24 | [ M−H ]− | C12H14O8 | 0, 12, 18 | 18 | 0, 12, 18, 24 | 0, 12, 18, 24 | 12, 24 | 18, 24 |
12 | 2,5-Dihydroxybenzoic acid pentoside isomer II | 285.060 | 4.53 | [ M−H ]− | C12H14O8 | 0, 12 | 0, 12 | ||||
13 | 1-O-Sinapoyl-beta-D-glucose | 385.111 | 7.20 | [ M−H ]− | C17H22O10 | 0 | 0, 12, 24 | 18 | 18 | ||
Flavonoids | |||||||||||
14 | Afzelin (Kaempferol-3-rhamnoside) | 433.108 | 12.71 | [M + H]+ | C21H20O10 | 24 | |||||
15 | Robinin (Kaempferol-3-O-robinoside-7-O-rhamnoside | 739.211 | 10.11 | [ M−H ]− | C33H40O19 | 24 | 0 | ||||
16 | Kaempferitrin (Kaempferol 3,7-dirhamnoside) | 577.156 | 12.69 | [ M−H ]− | C27H30O14 | 24 | 12 | 24 | |||
17 | Kaempferol 3-O-rhamnoside-7-O-glucoside | 593.149 | 11.72 | [ M−H ]− | C27H30O15 | 24 | 24 | ||||
18 | 2’,4’,4-Trihydroxy-3’-prenylchalcone | 323.133 | 4.04 | [ M−H ]− | C20H20O4 | 18 | 18 | ||||
Lignans * | |||||||||||
19 | G(8-O-4)G hexoside | 537.196 | 5.30 | [ M−H ]− | C26H34O12 | 24 | 18 | ||||
20 | Lariciresinol hexoside | 521.201 | 11.72 | [ M−H ]− | C26H34O11 | 0, 12, 18, 24 | 0, 12, 18 | 0, 12 | |||
21 | G(8–5)FA malate | 487.128 | 14.55 | [ M−H ]− | C24H24O11 | 0 | 0, 18, 24 | ||||
Lipids, Oxylipins and Arabidopsides | |||||||||||
22 | Methyl 8-hydroxy-11E,17-Octadecadien-9-ynoate | 307.223 | 23.55 | [M + H]+ | C19H30O3 | 12, 18, 24 | 0, 12, 18, 24 | 0, 12, 18, 24 | 0, 12, 18, 24 | 12, 18, 24 | 0, 12, 18, 24 |
23 | 9,12,13-Trihydroxy-10,15-octadecadienoic acid | 327.216 | 17.10 | [ M−H ]− | C18H32O5 | 0, 12, 18, 24 | 0, 12, 18, 24 | 0, 12, 18, 24 | 0, 12, 18, 24 | 12, 18, 24 | 0, 12, 18, 24 |
24 | 9,12,13-Trihydroxyoctadec-10-enoic acid (9, 12, 13-TriHOME) | 329.232 | 17.75 | [ M−H ]− | C18H34O5 | 12, 18, 24 | 0, 12, 18, 24 | 0, 12, 18, 24 | 0, 12, 18, 24 | 18, 24 | 18, 24 |
25 | 13S-Hydroperoxy-9Z, 11E, 15Z octadecatrienoic acid (13(S)-HPOTrE) | 309.206 | 20.76 | [ M−H ]− | C18H30O4 | 18, 24 | 0, 12, 18, 24 | 0, 18 | 0, 24 | 0 | 12, 18, 24 |
26 | 7S,8S-Dihydroxy-9Z,12Z-octadecadienoic acid (7S,8S-DiHODE) | 311.221 | 20.34 | [ M−H ]− | C18H32O4 | 12, 18, 24 | 0, 12, 18, 24 | 0, 18, 24 | 0, 12, 18, 24 | 24 | 24 |
27 | Methyl 9,12-dihydroxy-13-oxo-10-octadecenoate | 341.231 | 18.73 | [ M−H ]− | C19H34O5 | 18 | 18 | ||||
28 | 3’-O-Linolenoylglyceryl 6-O-galactopyranosyl-galactopyranoside isomer I | 721.366 | 20.96 | [ M−H + FA]− | C33H56O14 | 0, 12 | |||||
29 | 3’-O-Linolenoylglyceryl 6-O-galactopyranosyl-galactopyranoside isomer II | 721.365 | 21.21 | [ M−H + FA]− | C33H56O14 | 0, 18 | 12, 18 | 0,12 | 0 | ||
30 | Arabidopside A | 775.463 | 23.10 | [M + H]+ | C43H66O12 | 0, 12, 18, 24 | 12, 18, 24 | ||||
31 | Arabidopside D | 1,009.500 | 22.85 | [ M−H + FA]− | C51H80O17 | 0, 12 | 12 | 0, 12 | |||
32 | 12-Oxo-phytodienoic Acid (12-OPDA) | 291.198 | 21.26 | [ M−H ]− | C18 H28O3 | 18, 24 | 0, 12, 18, 24 | 0, 18, 24 | 0, 12, 18, 24 | 18, 24 | 12, 18, 24 |
33 | Dinor-12-oxo phytodienoic acid (dinor-OPDA) | 263.163 | 19.50 | [ M−H ]− | C16H24O3 | 0, 12, 18, 24 | 0, 12, 18, 24 | 0, 12, 18, 24 | 0, 12, 18, 24 | 12, 18, 24 | 0, 12, 18, 24 |
34 | Sn2-O-(dinoroxophytodienoyl)- monogalactosyl monogylceride | 545.261 | 16.84 | [ M−H + FA]− | C25H40O10 | 0, 12 | 0 | 0 | 0, 12 | 12 | |
35 | Sn2-O-(dinoroxophytodienoyl)-digalactosyl isomer I | 707.317 | 15.96 | [ M−H + FA]− | C31H50O15 | 18, 24 | 0, 18 | 12 | 12, 24 | ||
36 | Sn2-O-(dinoroxophytodienoyl)-digalactosyl isomer II | 707.312 | 16.31 | [ M−H + FA]− | C31H50O15 | 0, 18, 24 | 18, 24 | 18 | 24 | ||
37 | Sn1-O-(12-oxophytodienoyl)-digalactosyl monoglyceride isomer I | 735.351 | 17.64 | [ M−H + FA]− | C33H54O15 | 0, 12, 18 | 0, 12, 18, 24 | 0, 12 | 0, 12, 18 | 0, 12, 24 | |
38 | Sn1-O-(12-oxophytodienoyl)-digalactosyl monoglyceride isomer II | 735.351 | 17.96 | [ M−H + FA]− | C33H54O15 | 0, 24 | 12, 18 | 12, 24 | |||
Phytohormones | |||||||||||
39 | Abscisic acid | 265.177 | 19.51 | [M + H]+ | C15H20O4 | 18, 24 | 0, 12, 18, 24 | 0, 12, 18, 24 | 0, 12, 18, 24 | 18, 24 | 12, 18, 24 |
40 | Salicylic acid 2-O-beta-D-glucoside | 299.075 | 4.10 | [ M−H ]− | C13H16O8 | 12 | 0, 12 | ||||
Others | |||||||||||
41 | L-Threonine | 120.080 | 1.88 | [M + H]+ | C4H9NO3 | 12, 18 | 0, 12 | 12, 18, 24 | 0, 12, 18, 24 | ||
42 | Citric acid | 191.016 | 1.05 | [ M−H ]− | C6H8O7 | 12, 18 | 18 | 12, 18, 24 | 12, 18, 24 | 0, 12, 18, 24 | 0, 12, 18, 24 |
43 | Adenosine | 268.104 | 1.17 | [M + H]+ | C10H13N5O4 | 0, 12, 18, 24 | 0, 12, 18, 24 | 0, 12, 18, 24 | 0, 12, 18, 24 | 0, 12, 18, 24 | 0, 12, 18, 24 |
44 | Corchoionoside C | 431.189 | 8.54 | [ M−H + FA]− | C19H30O8 | 0, 12, 18 | 0, 12 | 0, 18 | 0, 18, 24 | 12, 18 | 0, 12 |
45 | Sulforaphane-glutathione | 485.116 | 2.86 | [M + H]+ | C16H28N4O7S3 | 0, 12, 18, 24 | 12, 18, 24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Offor, B.C.; Mhlongo, M.I.; Steenkamp, P.A.; Dubery, I.A.; Piater, L.A. Untargeted Metabolomics Profiling of Arabidopsis WT, lbr-2-2 and bak1-4 Mutants Following Treatment with Two LPS Chemotypes. Metabolites 2022, 12, 379. https://doi.org/10.3390/metabo12050379
Offor BC, Mhlongo MI, Steenkamp PA, Dubery IA, Piater LA. Untargeted Metabolomics Profiling of Arabidopsis WT, lbr-2-2 and bak1-4 Mutants Following Treatment with Two LPS Chemotypes. Metabolites. 2022; 12(5):379. https://doi.org/10.3390/metabo12050379
Chicago/Turabian StyleOffor, Benedict C., Msizi I. Mhlongo, Paul A. Steenkamp, Ian A. Dubery, and Lizelle A. Piater. 2022. "Untargeted Metabolomics Profiling of Arabidopsis WT, lbr-2-2 and bak1-4 Mutants Following Treatment with Two LPS Chemotypes" Metabolites 12, no. 5: 379. https://doi.org/10.3390/metabo12050379
APA StyleOffor, B. C., Mhlongo, M. I., Steenkamp, P. A., Dubery, I. A., & Piater, L. A. (2022). Untargeted Metabolomics Profiling of Arabidopsis WT, lbr-2-2 and bak1-4 Mutants Following Treatment with Two LPS Chemotypes. Metabolites, 12(5), 379. https://doi.org/10.3390/metabo12050379