Metabolomic Predictors of Dysglycemia in Two U.S. Youth Cohorts
Abstract
:1. Introduction
2. Result
2.1. Background Characteristics and Descriptive Statistics for Both Cohorts
2.2. Results from EPOCH
2.3. Results from Project Viva
3. Discussion
3.1. Summary
3.2. Biological Relevance of Metabolites
3.3. Predictive Capacity of Conventional Risk Factors, Biomarkers, and Metabolites
3.4. Strengths & Limitations
4. Methods
4.1. Exploring Perinatal Outcomes among Children (EPOCH)
4.1.1. T2D Risk Factors at Baseline in EPOCH
4.1.2. Conventional Biomarkers of T2D Risk at Baseline in EPOCH
4.1.3. Untargeted Metabolomics Profiling at Baseline in EPOCH
4.1.4. Glycemia at Follow-Up in EPOCH
4.2. Project Viva
4.2.1. T2D Risk Factors at Baseline in Project Viva
4.2.2. Conventional Biomarkers of T2D Risk in Project Viva
4.2.3. Untargeted Metabolomics Profiling in Project Viva
4.3. Data Analysis
4.3.1. Step 1: Identify Metabolite Predictors of Fasting Glucose in EPOCH
4.3.2. Step 2: Associations of Metabolites at Baseline with Fasting Glucose at Follow-Up in EPOCH
4.3.3. Step 3: Predictive Capacity of T2D Risk Factors, Conventional Biomarkers, and Metabolites in EPOCH
4.3.4. Step 4: Assessment of Models in Project Viva
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Tilllotson, C.V.; Bowden, S.A.; Boktor, S.W. Pediatric Type 2 Diabetes Mellitus; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Markovic-Jovanovic, S.R.; Stolic, R.V.; Jovanovic, A.N. The reliability of body mass index in the diagnosis of obesity and metabolic risk in children. J. Pediatric Endocrinol. Metab. 2015, 28, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Ferrannini, E. Insulin resistance is central to the burden of diabetes. Diabetes Metab. Rev. 1997, 13, 81–86. [Google Scholar] [CrossRef]
- Hivert, M.F.; Perng, W.; Watkins, S.M.; Newgard, C.S.; Kenny, L.; Kristal, B.S.; Patti, M.E.; Isganaitis, E.; DeMeo, D.L.; Oken, E.; et al. Metabolomics in the developmental origins of obesity and its cardiometabolic consequences. J. Dev. Orig. Health Dis. 2015, 6, 65–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.J.; Larson, M.G.; Vasan, R.S.; Cheng, S.; Rhee, E.P.; McCabe, E.; Lewis, G.D.; Fox, C.S.; Jacques, P.F.; Fernandez, C.; et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011, 17, 448–453. [Google Scholar] [CrossRef]
- Newgard, C.B. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 2012, 15, 606–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Würtz, P.; Soininen, P.; Kangas, A.J.; Rönnemaa, T.; Lehtimäki, T.; Kähönen, M.; Viikari, J.S.; Raitakari, O.T.; Ala-Korpela, M. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care 2013, 36, 648–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perng, W.; Gillman, M.W.; Fleisch, A.F.; Michalek, R.D.; Watkins, S.M.; Isganaitis, E.; Patti, M.-E.; Oken, E. Metabolomic profiles and childhood obesity. Obesity 2014, 22, 2570–2578. [Google Scholar] [CrossRef] [PubMed]
- Perng, W.; Rifas-Shiman, S.L.; Sordillo, J.; Hivert, M.-F.; Oken, E. Metabolomic Profiles of Overweight/Obesity Phenotypes During Adolescence: A Cross-Sectional Study in Project Viva. Obesity 2020, 28, 379–387. [Google Scholar] [CrossRef]
- LaBarre, J.L.; Peterson, K.E.; Kachman, M.T.; Perng, W.; Tang, L.; Hao, W.; Zhou, L.; Karnovsky, A.; Cantoral, A.; Téllez-Rojo, M.M.; et al. Mitochondrial Nutrient Utilization Underlying the Association Between Metabolites and Insulin Resistance in Adolescents. J. Clin. Endocrinol. Metab. 2020, 105, 2442–2455. [Google Scholar] [CrossRef]
- Perng, W.; Hector, E.C.; Song, P.X.; Rojo, M.T.; Raskind, S.; Kachman, M.; Cantoral, A.; Burant, C.F.; Peterson, K.E. Metabolomic Determinants of Metabolic Risk in Mexican Adolescents. Obesity 2017, 25, 1594–1602. [Google Scholar] [CrossRef]
- Perng, W.; Ringham, B.M.; Smith, H.A.; Michelotti, G.; Kechris, K.M.; Dabelea, D. A prospective study of associations between in utero exposure to gestational diabetes mellitus and metabolomic profiles during late childhood and adolescence. Diabetologia 2020, 63, 296–312. [Google Scholar] [CrossRef] [PubMed]
- McCormack, S.E.; Shaham, O.; McCarthy, M.A.; Deik, A.A.; Wang, T.J.; Gerszten, R.E.; Clish, C.B.; Mootha, V.K.; Grinspoon, S.K.; Fleischman, A. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatric Obes. 2013, 8, 52–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perng, W.; Rifas-Shiman, S.L.; Hivert, M.-F.; Chavarro, J.E.; Oken, E. Branched Chain Amino Acids, Androgen Hormones, and Metabolic Risk Across Early Adolescence: A Prospective Study in Project Viva. Obesity 2018, 26, 916–926. [Google Scholar] [CrossRef] [PubMed]
- Perng, W.; Tamayo-Ortiz, M.; Tang, L.; Sánchez, B.N.; Cantoral, A.; Meeker, J.D. Early Life Exposure in Mexico to ENvironmental Toxicants (ELEMENT) Project. BMJ Open 2019, 9, e030427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perng, W.; Tang, L.; Song, P.X.K.; Tellez-Rojo, M.M.; Cantoral, A.; Peterson, K.E. Metabolomic profiles and development of metabolic risk during the pubertal transition: A prospective study in the ELEMENT Project. Pediatr. Res. 2019, 85, 262–268. [Google Scholar] [CrossRef]
- Perng, W.; Rifas-Shiman, S.L.; Hivert, M.F.; Chavarro, J.E.; Sordillo, J.; Oken, E. Metabolic trajectories across early adolescence: Differences by sex, weight, pubertal status and race/ethnicity. Ann. Hum. Biol. 2019, 46, 205–214. [Google Scholar] [CrossRef]
- Dearden, L.; Bouret, S.G.; Ozanne, S.E. Sex and gender differences in developmental programming of metabolism. Mol. Metab. 2018, 15, 8–19. [Google Scholar] [CrossRef]
- Wu, B.N.; O’Sullivan, A.J. Sex differences in energy metabolism need to be considered with lifestyle modifications in humans. J. Nutr. Metab. 2011, 2011, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.-J.; Yoon, Y.; Lee, K.-Y.; Kang, Y.-P.; Lim, D.; Kwon, S.W.; Kang, K.-W.; Lee, S.-M.; Lee, B.-H. Orotic Acid Induces Hypertension Associated with Impaired Endothelial Nitric Oxide Synthesis. Toxicol. Sci. 2015, 144, 307–317. [Google Scholar] [CrossRef] [Green Version]
- Holm, L.J.; Buschard, K. L-serine: A neglected amino acid with a potential therapeutic role in diabetes. APMIS Acta Pathol. Microbiol. Immunol. Scand. 2019, 127, 655–659. [Google Scholar] [CrossRef] [Green Version]
- Ottosson, F.; Smith, E.; Melander, O.; Fernandez, C. Altered Asparagine and Glutamate Homeostasis Precede Coronary Artery Disease and Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2018, 103, 3060–3069. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.; Nager, R.G.; Costantini, D. Meta-analysis indicates that oxidative stress is both a constraint on and a cost of growth. Ecol. Evol. 2016, 6, 2833–2842. [Google Scholar] [CrossRef] [PubMed]
- Faerch, K.; Borch-Johnsen, K.; Holst, J.J.; Vaag, A. Pathophysiology and aetiology of impaired fasting glycaemia and impaired glucose tolerance: Does it matter for prevention and treatment of type 2 diabetes? Diabetologia 2009, 52, 1714–1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michaliszyn, S.F.; Sjaarda, L.A.; Mihalik, S.J.; Lee, S.; Bacha, F.; Chace, D.H.; de Jesus, V.R.; Vockley, J.; Arslanian, S.A. Metabolomic profiling of amino acids and beta-cell function relative to insulin sensitivity in youth. J. Clin. Endocrinol. Metab. 2012, 97, E2119–E2124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perng, W.; Oken, E.; Roumeliotaki, T.; Sood, D.; Siskos, A.; Chalkiadaki, G.; Dermitzaki, E.; Vafeiadi, M.; Kyrtopoulos, S.; Kogevinas, M.; et al. Leptin, acylcarnitine metabolites, and development of adiposity in the Rhea Mother-Child Cohort in Crete, Greece. Obes. Sci. Pract. 2016; in press. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihalik, S.J.; Michaliszyn, S.F.; de las Heras, J.; Bacha, F.; Lee, S.; Chace, D.H.; DeJesus, V.R.; Vockley, J.; Arslanian, S.A. Metabolomic profiling of fatty acid and amino acid metabolism in youth with obesity and type 2 diabetes: Evidence for enhanced mitochondrial oxidation. Diabetes Care 2012, 35, 605–611. [Google Scholar] [CrossRef] [Green Version]
- Butte, N.F.; Liu, Y.; Zakeri, I.F.; Mohney, R.P.; Mehta, N.R.; Voruganti, V.S.; Goring, H.H.H.; Cole, S.A.; Comuzzie, A.G. Global metabolomic profiling targeting childhood obesity in the Hispanic population. Am. J. Clin. Nutr. 2015, 102, 256–267. [Google Scholar] [CrossRef]
- Crume, T.L.; Ogden, L.; West, N.A.; Vehik, K.S.; Scherzinger, A.; Daniels, S.; McDuffie, R.; Bischoff, K.; Hamman, R.F.; Norris, J.M.; et al. Association of exposure to diabetes in utero with adiposity and fat distribution in a multiethnic population of youth: The Exploring Perinatal Outcomes among Children (EPOCH) Study. Diabetologia 2011, 54, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Qi, Q.; Stilp, A.M.; Sofer, T.; Moon, J.-Y.; Hidalgo, B.; Szpiro, A.A.; Wang, T.; Ng, M.C.; Guo, X.; MEta-Analysis of Type 2 DIabetes in African Americans (MEDIA) Consortium; et al. Genetics of Type 2 Diabetes in U.S. Hispanic/Latino Individuals: Results From the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Diabetes 2017, 66, 1419–1425. [Google Scholar] [CrossRef] [Green Version]
- de Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes. Diabetes Care 2017, 40, S11–S24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey (NHANES). In Anthropometry Procedures Manual; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2007. [Google Scholar]
- Marshall, W.A.; Tanner, J.M. Growth and physiological development during adolescence. Annu. Rev. Med. 1968, 19, 283–300. [Google Scholar] [CrossRef] [PubMed]
- Chavarro, J.E.; Watkins, D.J.; Afeiche, M.C.; Zhang, Z.; Sánchez, B.N.; Cantonwine, D.; Mercado-García, A.; Blank-Goldenberg, C.; Meeker, J.; Rojo, M.T.; et al. Validity of Self-Assessed Sexual Maturation Against Physician Assessments and Hormone Levels. J. Pediatr. 2017, 186, 172–178.e3. [Google Scholar] [CrossRef] [PubMed]
- Ibáñez, L.; Potau, N.; Zampolli, M.; Riqué, S.; Saenger, P.; Carrascosa, A. Hyperinsulinemia and decreased insulin-like growth factor-binding protein-1 are common features in prepubertal and pubertal girls with a history of premature pubarche. J. Clin. Endocrinol. Metab. 1997, 82, 2283–2288. [Google Scholar] [PubMed]
- Perng, W.; Francis, E.; Smith, H.A.; Carey, J.; Wang, D.; Kechris, K.M.; Dabelea, D. Sex-Specific Metabolite Biomarkers of NAFLD in Youth: A Prospective Study in the EPOCH Cohort. J. Clin. Endocrinol. Metab. 2020, 105, e3437–e3450. [Google Scholar] [CrossRef]
- Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 2003, 26, S5–S20. [Google Scholar] [CrossRef] [Green Version]
- Oken, E.; Baccarelli, A.; Gold, D.R.; Kleinman, K.; Litonjua, A.A.; De Meo, D.; Rich-Edwards, J.W.; Rifas-Shiman, S.L.; Sagiv, S.; Taveras, E.M.; et al. Cohort Profile: Project Viva. Int. J. Epidemiol. 2015, 44, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Regnault, N.; Gillman, M.W.; Rifas-Shiman, S.L.; Eggleston, E.; Oken, E. Sex-Specific Associations of Gestational Glucose Tolerance With Childhood Body Composition. Diabetes Care 2013, 36, 3045–3053. [Google Scholar] [CrossRef] [Green Version]
- Gall, W.E.; Beebe, K.; Lawton, K.A.; Adam, K.-P.; Mitchell, M.; Nakhle, P.J.; Ryals, J.A.; Milburn, M.V.; Nannipieri, M.; Camastra, S.; et al. alpha-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS ONE 2010, 5, e10883. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.-Y.; Fauman, E.B.; Petersen, A.-K.; Krumsiek, J.; Santos, R.; Huang, J.; Arnold, M.; Erte, I.; Forgetta, V.; Yang, T.-P.; et al. An atlas of genetic influences on human blood metabolites. Nat. Genet. 2014, 46, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Evans, A.M.; Br, B.; Liu, Q.; Mitchell, M.; Rj, R.; Dai, H.; Sj, S.; DeHaven, C.D.; Lad, M. High resolution mass spectrometry improves data quantity and quality as compared to unit mass resolution mass spectrometry in high-throughput profiling metabolomics. Metabolomics 2014, 4, 1000132. [Google Scholar]
- Wang, D.; A Karvonen-Gutierrez, C.; Jackson, E.A.; Elliott, M.R.; Appelhans, B.M.; Barinas-Mitchell, E.; Bielak, L.F.; Huang, M.-H.; Baylin, A. Western Dietary Pattern Derived by Multiple Statistical Methods Is Prospectively Associated with Subclinical Carotid Atherosclerosis in Midlife Women. J. Nutr. 2020, 150, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Batis, C.; Mendez, M.A.; Gordon-Larsen, P.; Sotres-Alvarez, D.; Adair, L.; Popkin, B. Using both principal component analysis and reduced rank regression to study dietary patterns and diabetes in Chinese adults. Public Health Nutr. 2015, 19, 195–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Na | Mean ± SD Fasting Glucose (mmoL/L) at Follow-Up | p-Value b | |
---|---|---|---|
Sociodemographic characteristics | |||
Sex | 0.09 | ||
Female | 194 | 5.01 ± 1.70 | |
Male | 197 | 5.07 ± 0.83 | |
Age at baseline (years) | 0.24 | ||
6 to <9 y | 67 | 5.22 ± 2.21 | |
9 to <10 y | 79 | 4.88 ± 0.52 | |
10 to <11 y | 79 | 4.93 ± 0.37 | |
11 to <14 y | 165 | 5.10 ± 1.41 | |
Race/ethnicity | 0.08 | ||
Hispanic | 139 | 5.19 ± 1.98 | |
Non-Hispanic | 251 | 4.95 ± 0.76 | |
Family history of type 2 diabetes | <0.0001 | ||
Yes | 60 | 5.70 ± 3.22 | |
No | 331 | 4.92 ± 0.41 | |
Characteristics at baseline (age ~10 y) | |||
Body mass index (BMI) z-score c | 0.0002 | ||
Underweight (<−2.0) | 16 | 5.02 ± 0.91 | |
Normal weight (≥−2.0 to ≤1.0) | 259 | 4.91 ± 0.36 | |
Overweight (>1.0 to ≤2.0) | 87 | 5.07 ± 1.14 | |
Obese (>2.0) | 27 | 6.18 ± 4.25 | |
Waist circumference (cm) | 0.004 | ||
Q1 (median: 54.1) | 95 | 4.89 ± 0.48 | |
Q2 (median: 59.1) | 99 | 4.95 ± 0.35 | |
Q3 (median: 65.2) | 99 | 4.87 ± 0.39 | |
Q4 (median: 78.9) | 97 | 5.44 ± 2.54 | |
Fasting glucose (mmol/L) | 0.0004 | ||
Q1 (median: 3.8) | 87 | 4.80 ± 0.37 | |
Q2 (median: 4.3) | 92 | 4.87 ± 0.47 | |
Q3 (median: 4.7) | 107 | 5.28 ± 2.24 | |
Q4 (median: 5.2) | 104 | 5.14 ± 1.03 | |
Fasting insulin (uU/mL) | 0.08 | ||
Q1 (median: 4.0) | 95 | 4.93 ± 0.49 | |
Q2 (median: 7.0) | 98 | 4.92 ± 0.36 | |
Q3 (median: 11.0) | 87 | 5.04 ± 1.16 | |
Q4 (median: 18.0) | 115 | 5.23 ± 2.18 | |
Total cholesterol (mg/dL) | 0.92 | ||
Q1 (median: 129.0) | 95 | 5.06 ± 1.16 | |
Q2 (median: 148.5) | 96 | 4.92 ± 0.35 | |
Q3 (median: 164.0) | 100 | 5.21 ± 2.32 | |
Q4 (median: 191.5) | 100 | 4.96 ± 0.37 | |
Triglycerides (mg/dL) | 0.65 | ||
Q1 (median: 50.0) | 94 | 4.95 ± 0.45 | |
Q2 (median: 65.0) | 96 | 5.04 ± 1.51 | |
Q3 (median: 85.0) | 102 | 4.97 ± 0.39 | |
Q4 (median: 134.0) | 99 | 5.17 ± 2.12 | |
High density lipoprotein (HDL; mg/dL) | 0.07 | ||
Q1 (median: 37.0) | 93 | 5.26 ± 2.20 | |
Q2 (median: 45.5) | 94 | 5.06 ± 1.52 | |
Q3 (median: 52.0) | 100 | 4.95 ± 0.35 | |
Q4 (median: 62.0) | 102 | 4.90 ± 0.35 | |
Tanner stage for pubic hair development | 0.48 | ||
Stage 1 | 173 | 4.95 ± 0.36 | |
Stage 2 | 135 | 5.11 ± 1.83 | |
Stage 3 | 58 | 5.19 ± 1.92 | |
Stage 4 | 23 | 4.95 ± 0.43 |
Metabolite Name | Superpathway | Subpathway | Average RRR Regression Coefficient |
---|---|---|---|
Boys | |||
Leucine | Amino Acid | Leucine, Isoleucine and Valine Metabolism | 6.07 |
Glutamate | Amino Acid | Glutamate Metabolism | 4.03 |
Arginine | Amino Acid | Urea cycle; Arginine and Proline Metabolism | 2.96 |
Tryptophan | Amino Acid | Tryptophan Metabolism | 2.32 |
Margarate (17:0) | Lipid | Long Chain Fatty Acid | 2.03 |
Lactate | Carbohydrate | Glycolysis, Gluconeogenesis, and Pyruvate Metabolism | 1.95 |
N-Acetylvaline | Amino Acid | Leucine, Isoleucine and Valine Metabolism | 1.79 |
Malate | Energy | TCA Cycle | 1.59 |
Caprate (10:0) | Lipid | Fatty acid, Monohydroxy | 1.51 |
Urea | Amino Acid | Urea cycle; Arginine and Proline Metabolism | 1.44 |
Orotate | Nucleotide | Pyrimidine Metabolism, Orotate containing | 1.39 |
Thyroxine | Amino Acid | Tyrosine Metabolism | 1.24 |
N-Formylmethionine | Amino Acid | Methionine, Cysteine, SAM and Taurine Metabolism | 1.22 |
Sarcosine | Amino Acid | Glycine, Serine and Threonine Metabolism | 1.05 |
Quinolinate | Cofactors and Vitamins | Nicotinate and Nicotinamide Metabolism | 0.91 |
Tyrosine | Amino Acid | Tyrosine Metabolism | 0.80 |
2′-Deoxyuridine | Nucleotide | Pyrimidine Metabolism, Uracil containing | 0.70 |
Beta-alanine | Nucleotide | Pyrimidine Metabolism, Uracil containing | 0.70 |
Serine | Lipid | Medium Chain Fatty Acid | 0.45 |
Girls | |||
Glutamine | Amino Acid | Glutamate Metabolism | 8.80 |
Citrate | Energy | TCA Cycle | 6.18 |
N-acetylvaline | Amino Acid | Leucine, Isoleucine and Valine Metabolism | 5.36 |
Myristate (14:0) | Lipid | Long Chain Fatty Acid | 5.23 |
Margarate (17:0) | Lipid | Long Chain Fatty Acid | 4.56 |
Phenylalanine | Amino Acid | Phenylalanine Metabolism | 4.19 |
Kynurenate | Amino Acid | Tryptophan Metabolism | 3.61 |
Chenodeoxycholate | Lipid | Primary Bile Acid Metabolism | 3.38 |
Ornithine | Amino Acid | Urea cycle; Arginine and Proline Metabolism | 3.33 |
Cystine | Amino Acid | Methionine, Cysteine, SAM and Taurine Metabolism | 2.82 |
Serine | Lipid | Medium Chain Fatty Acid | 2.58 |
Adenine | Nucleotide | Purine Metabolism, Adenine containing | 1.88 |
Orotate | Nucleotide | Pyrimidine Metabolism, Orotate containing | 1.54 |
Succinate | Energy | TCA Cycle | 0.99 |
Outcomes at Follow-Up (Age ~16 y) | |||||||||
---|---|---|---|---|---|---|---|---|---|
IFG (Yes vs. No) | Elevated Fasting Glucose (Q4 vs. Q1 of Fasting Glucose) e | Dysglycemia (Yes vs. No) | |||||||
AUC | β (95% CI) a | p | AUC | β (95% CI) | p | AUC | β (95% CI) | p | |
Boys (n = 197) | n = 14 vs. 183 | n = 53 vs. 50 | n = 18 vs. 179 | ||||||
Model 1: Conventional risk factors at ~10 y b | 0.65 | -- | -- | 0.68 | -- | -- | 0.63 | -- | -- |
Model 2: Model 1 + biomarkers at ~10 y c | 0.74 | 0.09 (−0.03, 0.21) | 0.15 | 0.73 | 0.05 (−0.03, 0.12) | 0.20 | 0.68 | 0.06 (−0.05, 0.17) | 0.28 |
Model 3: Model 2 + fasting glucose at ~10 y | 0.81 | 0.07 (−0.04, 0.19) | 0.18 | 0.80 | 0.07 (0.00, 0.15) | 0.06 | 0.74 | 0.06 (−0.07, 0.19) | 0.39 |
Model 4: Model 3 + metabolites at ~10 y d | 0.97 | 0.16 (0.06, 0.27) | 0.002 | 0.86 | 0.05 (−0.01, 0.11) | 0.08 | 0.89 | 0.15 (0.03, 0.28) | 0.02 |
Girls (n = 194) | n = 6 vs. 188 | n = 54 vs. 56 | n = 9 vs. 185 | ||||||
Model 1: Conventional risk factors at ~10 y b | -- | -- | -- | 0.70 | -- | -- | 0.80 | -- | -- |
Model 2: Model 1 + biomarkers at ~10 y c | -- | -- | -- | 0.72 | 0.02 (−0.05, 0.08) | 0.57 | 0.93 | 0.12 (0.00, 0.25) | 0.06 |
Model 3: Model 2 + fasting glucose at ~10 y | -- | -- | -- | 0.72 | 0.00 (−0.01, 0.00) | 0.48 | 0.93 | 0.01 (−0.02, 0.04) | 0.53 |
Model 4: Model 3 + metabolites at ~10 y d | -- | -- | -- | 0.88 | 0.16 (0.07, 0.26) | 0.0007 | -- | -- |
Q4 vs. Q1 of Fasting Glucose at ~18 y a | |||
---|---|---|---|
AUC | β (95% CI) b | p | |
Boys | n = 43 vs. 44 | ||
Model 1: Conventional risk factors at ~13 y c | 0.62 | -- | -- |
Model 2: Model 1 + biomarkers at ~13 y d | 0.64 | 0.02 (−0.06, 0.10) | 0.64 |
Model 3: Model 2 + fasting glucose at ~13 y | 0.66 | 0.02 (−0.05, 0.09) | 0.51 |
Model 4: Model 3 + metabolites at ~13 y e | 0.84 | 0.17 (0.06, 0.29) | 0.003 |
Girls | n = 29 vs. 38 | ||
Model 1: Conventional risk factors at ~13 y c | 0.73 | -- | -- |
Model 2: Model 1 + biomarkers at ~13 y d | 0.75 | 0.02 (−0.06, 0.09) | 0.59 |
Model 3: Model 2 + fasting glucose at ~13 y | 0.78 | 0.02 (−0.03, 0.08) | 0.37 |
Model 4: Model 3 + metabolites at ~13 y e | 0.89 | 0.12 (0.02, 0.22) | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perng, W.; Hivert, M.-F.; Michelotti, G.; Oken, E.; Dabelea, D. Metabolomic Predictors of Dysglycemia in Two U.S. Youth Cohorts. Metabolites 2022, 12, 404. https://doi.org/10.3390/metabo12050404
Perng W, Hivert M-F, Michelotti G, Oken E, Dabelea D. Metabolomic Predictors of Dysglycemia in Two U.S. Youth Cohorts. Metabolites. 2022; 12(5):404. https://doi.org/10.3390/metabo12050404
Chicago/Turabian StylePerng, Wei, Marie-France Hivert, Gregory Michelotti, Emily Oken, and Dana Dabelea. 2022. "Metabolomic Predictors of Dysglycemia in Two U.S. Youth Cohorts" Metabolites 12, no. 5: 404. https://doi.org/10.3390/metabo12050404
APA StylePerng, W., Hivert, M. -F., Michelotti, G., Oken, E., & Dabelea, D. (2022). Metabolomic Predictors of Dysglycemia in Two U.S. Youth Cohorts. Metabolites, 12(5), 404. https://doi.org/10.3390/metabo12050404