Effects of a Polyherbal Dietary Additive on Performance, Dietary Energetics, Carcass Traits, and Blood Metabolites of Finishing Lambs
Abstract
:1. Introduction
2. Results
2.1. Growth Performance and Dietary Energetics
2.2. Carcass Traits and Carcass Biometrics
2.3. Non-Carcass Components and Meat Composition
2.4. Hematological Parameters
2.5. Blood Biochemistry
3. Discussion
3.1. Growth Performance and Dietary Energetics
3.2. Carcass Traits, Carcass Biometrics, and Non-Carcass Components
3.3. pH and Meat Composition
3.4. Blood Metabolites
4. Materials and Methods
4.1. Experimental Location
4.2. Polyherbal Mixture Characteristics
4.3. Animals, Experimental Design, and Diet Composition
4.4. Calculations
4.5. Carcass Traits, Carcass Biometrics, and Non-Carcass Components
4.6. pH and Meat Composition
4.7. Blood Metabolites
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iskandar, K.; Molinier, L.; Hallit, S.; Sartelli, M.; Catena, F.; Coccolini, F.; Craig Hardcastle, T.; Roques, C.; Salameh, P. Drivers of Antibiotic Resistance Transmission in Low- and Middle-Income Countries from a “One Health” Perspective—A Review. Antibiotics 2020, 9, 372. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.U.; Khan, A.; Naz, S.; Ullah, Q.; Laudadio, V.; Tufarelli, V.; Ragni, M. Potential Applications of Moringa oleifera in Poultry Health and Production as Alternative to Antibiotics: A Review. Antibiotics 2021, 10, 1540. [Google Scholar] [CrossRef] [PubMed]
- Hashemzadeh, F.; Rafeie, F.; Hadipour, A.; Rezadoust, M.H. Supplementing a phytogenic-rich herbal mixture to heat-stressed lambs: Growth performance, carcass yield, and muscle and liver antioxidant status. Small Rumin. Res. 2022, 206, 106596. [Google Scholar] [CrossRef]
- Redoy, M.R.A.; Shuvo, A.A.S.; Cheng, L.; Al-Mamun, M. Effect of herbal supplementation on growth, immunity, rumen histology, serum antioxidants and meat quality of sheep. Animal 2020, 14, 2433–2441. [Google Scholar] [CrossRef]
- Orzuna-Orzuna, J.F.; Dorantes-Iturbide, G.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Hernández-García, P.A. Growth Performance, Carcass Characteristics, and Blood Metabolites of Lambs Supplemented with a Polyherbal Mixture. Animals 2021, 11, 955. [Google Scholar] [CrossRef]
- Orzuna-Orzuna, J.F.; Dorantes-Iturbide, G.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; López-Ordaz, R.; Hernández-García, P.A. Productive Performance, Carcass Traits, and Meat Quality in Finishing Lambs Supplemented with a Polyherbal Mixture. Agriculture 2021, 11, 942. [Google Scholar] [CrossRef]
- Yamani, H.A.; Pang, E.C.; Mantri, N.; Deighton, M.A. Antimicrobial Activity of Tulsi (Ocimum tenuiflorum) Essential Oil and Their Major Constituents against Three Species of Bacteria. Front. Microbiol. 2016, 7, 681. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Singh, B.; Bajpai, V. Andrographis paniculata (Burm.f.) Nees: Traditional uses, phytochemistry, pharmacological properties and quality control/quality assurance. J. Ethnopharmacol. 2021, 275, 114054. [Google Scholar] [CrossRef]
- Orzuna-Orzuna, J.F.; Dorantes-Iturbide, G.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Hernández-García, P.A. Effects of Dietary Tannins’ Supplementation on Growth Performance, Rumen Fermentation, and Enteric Methane Emissions in Beef Cattle: A Meta-Analysis. Sustainability 2021, 13, 7410. [Google Scholar] [CrossRef]
- Rojas-Román, L.; Castro-Pérez, B.; Estrada-Angulo, A.; Angulo-Montoya, C.; Yocupicio-Rocha, J.; López-Soto, M.; Barreras, A.; Zinn, R.A.; Plascencia, A. Influence of long-term supplementation of tannins on growth performance, dietary net energy and carcass characteristics: Finishing lambs. Small Rumin. Res. 2017, 153, 137–141. [Google Scholar] [CrossRef]
- Orzuna-Orzuna, J.F.; Dorantes-Iturbide, G.; Lara-Bueno, A.; Mendoza-Martínez, G.D.; Miranda-Romero, L.A.; Lee-Rangel, H.A. Growth Performance, Meat Quality and Antioxidant Status of Sheep Supplemented with Tannins: A Meta-Analysis. Animals 2021, 11, 3184. [Google Scholar] [CrossRef] [PubMed]
- Muqier, Q.S.; Wang, T.; Chen, R.; Wang, C.; Ao, C. Effects of flavonoids from Allium mongolicum Regel on growth performance and growth-related hormones in meat sheep. Anim. Nutr. 2017, 3, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Wang, P.; Ren, Y.; Liu, G.; Zhang, J.; Leury, B.; Zhang, C. Effects of Astragalus membranaceus roots supplementation on growth performance, serum antioxidant and immune response in finishing lambs. Asian-Australas. J. Anim. Sci. 2020, 33, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Zhang, T.; Cao, Y.; Deng, B.; Zhang, J.; Zhao, J. Effects of dietary sea buckthorn pomace supplementation on skeletal muscle mass and meat quality in lambs. Meat Sci. 2020, 166, 108141. [Google Scholar] [CrossRef] [PubMed]
- Yanza, Y.R.; Szumacher-Strabel, M.; Lechniak, D.; Ślusarczyk, S.; Kolodziejski, P.; Patra, A.K.; Váradyová, Z.; Lisiak, D.; Vazirigohar, M.; Cieslak, A. Dietary Coleus amboinicus Lour. decreases ruminal methanogenesis and biohydrogenation, and improves meat quality and fatty acid composition in longissimus thoracis muscle of lambs. J. Animal. Sci. Biotechnol. 2022, 13, 5. [Google Scholar] [CrossRef]
- Paniagua, M.; Crespo, F.J.; Arís, A.; Devant, M. Effects of flavonoids extracted from citrus aurantium on performance, behavior, and rumen gene expression in holstein bulls fed with high-concentrate diets in pellet form. Animals 2021, 11, 1387. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wu, J.; Lei, Y.; Bai, Y.; Jia, L.; Li, Z.; Liu, T.; Xu, Y.; Sun, J.; Wang, Y.; et al. Oregano Essential Oils Promote Rumen Digestive Ability by Modulating Epithelial Development and Microbiota Composition in Beef Cattle. Front. Nutr. 2021, 8, 722557. [Google Scholar] [CrossRef]
- Estrada-Angulo, A.; Arteaga-Wences, Y.J.; Castro-Pérez, B.I.; Urías-Estrada, J.D.; Gaxiola-Camacho, S.; Angulo-Montoya, C.; Ponce-Barraza, E.; Barreras, A.; Corona, L.; Zinn, R.A.; et al. Blend of Essential Oils Supplemented Alone or Combined with Exogenous Amylase Compared with Virginiamycin Supplementation on Finishing Lambs: Performance, Dietary Energetics, Carcass Traits, and Nutrient Digestion. Animals 2021, 11, 2390. [Google Scholar] [CrossRef]
- Latack, B.C.; Montano, M.F.; Zinn, R.A.; Salinas-Chavira, J. Effects of a blend of cinnamaldehyde-eugenol and capsicum (Xtract® Ruminant 7065) and ionophore on performance of finishing Holstein steers and on characteristics of ruminal and total tract digestion. J. Appl. Res. 2021, 49, 185–193. [Google Scholar] [CrossRef]
- Wu, J.P.; Zhou, R.; Liu, L.S.; Casper, D.P.; Lang, X.; Wang, C.L.; Zhang, L.P.; Wei, S.; Liu, H.B. Growth performance, nutrient digestibility, blood parameters, and carcass characteristics by lambs fed an oregano and cobalt blend. Animal 2021, 15, 100365. [Google Scholar] [CrossRef]
- Zhou, R.; Wu, J.; Zhang, L.; Liu, L.; Casper, D.P.; Jiao, T.; Liu, T.; Wang, J.; Lang, X.; Song, S.; et al. Effects of oregano essential oil on the ruminal pH and microbial population of sheep. PLoS ONE 2019, 14, e0217054. [Google Scholar] [CrossRef] [PubMed]
- Leal, K.W.; Alba, D.F.; Cunha, M.G.; Marcon, H.; Oliveira, F.C.; Wagner, R.; Silva, A.D.; Lopes, T.F.; de Jesus, L.S.B.; Schetinger, M.R.C.; et al. Effects of biocholine powder supplementation in ewe lambs: Growth, rumen fermentation, antioxidant status, and metabolism. Biotechnol. Rep. 2021, 29, e00580. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Sánchez, M.; Mendoza-Martínez, G.D.; Martínez-García, J.A.; Torre-Hernández., M.E.; Chamorro-Ramírez., F.H.; Matínez-Aispuro, J.A.; Cordero-Mora, J.L.; Sánchez-Torres, M.T.; Hernández-García, P.A.; Jones, R. Evaluation of polyherbal with vitamin C activity on lamb performance and meat characteristics. R. Bras. Zootec. 2021, 50, e20200166. [Google Scholar] [CrossRef]
- Rivera-Mendez, C.; Plascencia, A.; Torrentera, N.; Zinn, R.A. Effect of level and source of supplemental tannin on growth performance of steers during the late finishing phase. J. Appl. Anim. Res. 2017, 45, 199–203. [Google Scholar] [CrossRef] [Green Version]
- Belanche, A.; Newbold, C.J.; Morgavi, D.P.; Bach, A.; Zweifel, B.; Yáñez-Ruiz, D.R. A Meta-analysis Describing the Effects of the Essential oils Blend Agolin Ruminant on Performance, Rumen Fermentation and Methane Emissions in Dairy Cows. Animals 2020, 10, 620. [Google Scholar] [CrossRef] [Green Version]
- NRC. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; National Academies Press: Washington, DC, USA, 2007.
- Estrada-Angulo, A.; Zapata-Ramírez, O.; Castro-Pérez, B.I.; Urías-Estrada, J.D.; Gaxiola-Camacho, S.; Angulo-Montoya, C.; Ríos-Rincón, F.G.; Barreras, A.; Zinn, R.A.; Leyva-Morales, J.B.; et al. The Effects of Single or Combined Supplementation of Probiotics and Prebiotics on Growth Performance, Dietary Energetics, Carcass Traits, and Visceral Mass in Lambs Finished under Subtropical Climate Conditions. Biology 2021, 10, 1137. [Google Scholar] [CrossRef]
- Flees, J.; Greene, E.; Ganguly, B.; Dridi, S. Phytogenic feed- and water-additives improve feed efficiency in broilers via modulation of (an)orexigenic hypothalamic neuropeptide expression. Neuropeptides 2020, 81, 102005. [Google Scholar] [CrossRef]
- Flees, J.J.; Ganguly, B.; Dridi, S. Phytogenic feed additives improve broiler feed efficiency via modulation of intermediary lipid and protein metabolism–related signaling pathways. Poult. Sci. 2021, 100, 100963. [Google Scholar] [CrossRef]
- Laplante, M.; Sabatini, D.M. mTOR Signaling in Growth Control and Disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Xu, L.; Zhao, X.; Pan, K.; Yi, Z.; Bai, J.; Qi, X.; Xin, J.; Li, M.; Ouyang, K.; et al. RNA-Seq analysis reveals the potential molecular mechanisms of daidzein on adipogenesis in subcutaneous adipose tissue of finishing Xianan beef cattle. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1–11. [Google Scholar] [CrossRef]
- Hwang, H.J.; Hwang, Y.J.; Kim, Y.J.; Kim, M.; Hwang, K.A. Immature sword bean pods (Canavalia gladiata) inhibit adipogenesis in C3H10T1/2 cells and mice with high-fat diet–induced obesity. J. Chin. Med. Assoc. 2022, 85, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Liu, G.; Tan, X.; Zhang, X.; Liu, X.; Wei, C. Gallic acid as a key substance to inhibit proliferation and adipogenesis in bovine subcutaneous adipocyte. Anim. Biotechnol. 2020, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, Y.; Naka, A.; Ohara, N.; Kondo, K.; Iida, K. Daidzein regulates proinflammatory adipokines thereby improving obesity-related inflammation through PPARγ. Mol. Nutr. Food Res. 2014, 58, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Simon, G.; Heckmann, V.; Tóth, D.; Pauka, D.; Petrus, K.; Molnár, T.F. The effect of hepatic steatosis and fibrosis on liver weight and dimensions. Leg. Med. 2020, 47, 101781. [Google Scholar] [CrossRef]
- Fluharty, F.L.; McClure, K.E. Effects of dietary energy intake and protein concentration on performance and visceral organ mass in lambs. J. Anim. Sci. 1997, 75, 604–610. [Google Scholar] [CrossRef]
- Sañudo, C.; Santolaria, M.P.; Maria, G.; Osorio, M.; Sierra, I. Influence of carcass weight on instrumental and sensory lamb meat quality in intensive production systems. Meat Sci. 1996, 42, 195–202. [Google Scholar] [CrossRef]
- Barcenilla, C.; Ducic, M.; López, M.; Prieto, M.; Álvarez-Ordóñez, A. Application of Lactic Acid Bacteria for the Biopreservation of Meat Products: A Systematic Review. Meat Sci. 2022, 183, 108661. [Google Scholar] [CrossRef]
- Biondi, L.; Randazzo, C.L.; Russo, N.; Pino, A.; Natalello, A.; Van Hoorde, K.; Caggia, C. Dietary Supplementation of Tannin-Extracts to Lambs: Effects on Meat Fatty Acids Composition and Stability and on Microbial Characteristics. Foods 2019, 8, 469. [Google Scholar] [CrossRef] [Green Version]
- Hsouna, A.B.; Halima, N.B.; Smaoui, S.; Hamdi, N. Citrus lemon essential oil: Chemical composition, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in minced beef meat. Lipids Health Dis. 2017, 16, 146. [Google Scholar] [CrossRef] [Green Version]
- Yusuf, A.L.; Adeyemi, K.D.; Roselina, K.; Alimon, A.R.; Goh, Y.H.; Samsudin, A.A.; Sazili, A.Q. Dietary supplementation of different parts of Andrographis paniculata affects the fatty acids, lipid oxidation, microbiota, and quality attributes of longissimus muscle in goats. Food Res. Int. 2018, 111, 699–707. [Google Scholar] [CrossRef]
- Roland, L.; Drillich, M.; Iwersen, M. Hematology as a diagnostic tool in bovine medicine. J. Vet. Diagn. Investig. 2014, 26, 592–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneko, J.J.; Harvey, J.W.; Bruss, M.L. Clinical Biochemistry of Domestic Animals, 6th ed.; Academic Press: San Diego, CA, USA, 2008; p. 916. [Google Scholar]
- Petrič, D.; Mravčáková, D.; Kucková, K.; Kišidayová, S.; Cieslak, A.; Szumacher-Strabel, M.; Huang, H.; Kolodziejski, P.; Lukomska, A.; Slusarczyk, S.; et al. Impact of zinc and/or herbal mixture on ruminal fermentation, microbiota, and histopathology in lambs. Front. Vet. Sci. 2021, 8, 630971. [Google Scholar] [CrossRef] [PubMed]
- Braun, J.P.; Trumenl, C.; Bézille, P. Clinical biochemistry in sheep: A selected review. Small Rumin. Res. 2010, 1–3, 10–18. [Google Scholar] [CrossRef]
- Dimauro, C.; Bonelli, P.; Nicolussi, P.; Rassu, S.P.G.; Cappio-Borlino, A.; Pulina, G. Estimating clinical chemistry reference values based on an existing data set of unselected animals. Vet. J. 2008, 178, 278–281. [Google Scholar] [CrossRef] [PubMed]
- Suybeng, B.; Charmley, E.; Gardiner, C.P.; Malau-Aduli, B.S.; Malau-Aduli, A.E.O. Plasma Metabolites, Productive Performance and Rumen Volatile Fatty Acid Profiles of Northern Australian Bos indicus Steers Supplemented with Desmanthus and Lucerne. Metabolites 2021, 11, 356. [Google Scholar] [CrossRef]
- Xiao, J.; Chen, T.; Alugongo, G.M.; Khan, M.Z.; Li, T.; Ma, J.; Liu, S.; Wang, W.; Wang, Y.; Li, S.; et al. Effect of the Length of Oat Hay on Growth Performance, Health Status, Behavior Parameters and Rumen Fermentation of Holstein Female Calves. Metabolites 2021, 11, 890. [Google Scholar] [CrossRef]
- Paengkoum, P.; Chen, S.; Paengkoum, S. Effects of crude protein and undegradable intake protein on growth performance, nutrient utilization, and rumen fermentation in growing Thai-indigenous beef cattle. Trop. Anim. Health Prod. 2019, 51, 1151–1159. [Google Scholar] [CrossRef]
- Tschuor, A.C.; Riond, B.; Braun, U.; Lutz, H. Hämatologische Und Klinisch-Chemische Referenzwerte Für Adulte Ziegen Und Schafe. Schweiz. Arch. Tierheilkd. 2008, 150, 287–295. [Google Scholar] [CrossRef] [Green Version]
- El-Azrak, K.M.; Morsy, A.S.; Soltan, Y.; Hashem, N.M.; Sallam, S.M. Impact of specific essential oils blend on milk production, serum biochemical parameters and kid performance of goats. Anim. Biotechnol. 2021, 1–9. [Google Scholar] [CrossRef]
- Kholif, A.E.; Olafadehan, O.A. Essential oils and phytogenic feed additives in ruminant diet: Chemistry, ruminal microbiota and fermentation, feed utilization and productive performance. Phytochem. Rev. 2021, 20, 1087–1108. [Google Scholar] [CrossRef]
- Hokamp, J.A.; Nabity, M.B. Renal biomarkers in domestic species. Vet. Clin. Pathol. 2016, 45, 28–56. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, H.P. Renal Function Testing. In Nephrology and Urology of Small Animals; Wiley-Blackwell: Hoboken, NJ, USA, 2011; ISBN 978-0-8138-1717-0. [Google Scholar]
- Giannini, E.G.; Testa, R.; Savarino, V. Liver enzyme alteration: A guide for clinicians. Cmaj 2005, 172, 367–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ndlovu, T.; Chimonyo, M.; Okoh, A.I.; Muchenje, V.; Dzama, K.; Raats, J.G. Assessing the nutritional status of beef cattle: Current practices and future prospects. Afr. J. Biotechnol. 2007, 6, 2727–2734. [Google Scholar] [CrossRef]
- García, E. Modificaciones del Sistema de Clasificación Climática de Köppen, 5th ed.; Instituto de Geografía, Universidad Nacional Autónoma de México: México City, Mexico, 2004; p. 51. (In Spanish) [Google Scholar]
- NOM. Normas Oficiales Mexicanas. Diario Oficial de la Federación. 1995. (NOM-051-ZOO-1995, NOM-033-ZOO-1995) Trato Humanitario de Animales de Producción, de Compañía y Animales Silvestres Durante el Proceso de Crianza, Desarrollo de Experimentos, Movilización y Sacrificio. 1995. Available online: http://dof.gob.mx (accessed on 24 January 2022).
- Khan, T.; Ipshita, A.; Mazumdar, R.; Abdullah, A.; Islam, G.; Rahman, M. Bioactive polyphenol profiling and in-vitro antioxidant activity of Tinospora cordifolia Miers ex Hook F and Thoms: A potential ingredient for functional food development. Bangladesh J. Sci. Ind. Res. 2020, 55, 23–34. [Google Scholar] [CrossRef]
- Poojari, P.; Kiran, K.R.; Swathy, P.S.; Muthusamy, A. Withania somnifera (L.) Dunal: An Overview of Bioactive Molecules, Medicinal Properties and Enhancement of Bioactive Molecules Through Breeding Strategies. In In Vitro Plant Breeding towards a Novel Agronomic Traits Biotic and Abiotic Stress Tolerance; Kumar, M., Muthusamy, A., Kumar, V., Bhalla-Sarin, N., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–25. ISBN 978-981-32-9823-1. [Google Scholar] [CrossRef]
- Hossain, S.; Urbi, Z.; Karuniawati, H.; Mohiuddin, R.B.; Moh Qrimida, A.; Allzrag, A.M.M.; Ming, L.C.; Pagano, E.; Capasso, R. Andrographis paniculata (Burm. f.) Wall. ex Nees: An Updated Review of Phytochemistry, Antimicrobial Pharmacology, and Clinical Safety and Efficacy. Life 2021, 11, 348. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Singh, R.P.; Bhattacharya, G. Exploring the role of Azadirachta indica (neem) and its active compounds in the regulation of biological pathways: An update on molecular approach. 3 Biotech 2021, 11, 178. [Google Scholar] [CrossRef]
- Razo, O.P.B.; Mendoza, M.G.D.; Vázquez, S.G.; Osorio, T.A.I.; González, S.J.F.; Hernández, G.P.A.; Torre, H.M.E.; Espinosa, A.E. Polyherbal feed additive for lambs: Effects on performance, blood biochemistry and biometry. J. Appl. Anim. Res. 2020, 48, 419–424. [Google Scholar] [CrossRef]
- Sánchez, N.; Lee-Rangel, H.A.; Martínez-Cortés, I.; Mendoza, G.D.; Hernández, P.A.; Espinoza, E.; Vazquez-Valladolid, A.; Flores-Ramírez, R.; Roque-Jiménez, A.; Campillo-Navarro, M.; et al. A polyherbal phytogenic additive improved growth performance, health, and immune response in dairy calves. Food Agric. Immunol. 2021, 32, 482–498. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists, The William Byrd Press Inc.: Richmond, VA, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Cannas, A.; Tedeschi, L.O.; Fox, D.G.; Pell, A.N.; Van Soest, P.J. A mechanistic model for predicting the nutrient requirements and feed biological values for sheep. J. Anim. Sci. 2004, 82, 149–169. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. Nutrient Requirement of Sheep, 6th ed.; National Academy Science (NRC): Washington, DC, USA, 1985.
- Canton, G.J.; Bores, Q.R.; Baeza, R.J.; Quintal, F.J.; Santos, R.R.; Sandoval, C.C. Growth and Feed Efficiency of Pure and F1 Pelibuey Lambs Crossbred with Specialized Breeds for Production of Meat. J. Anim. Vet. Adv. 2009, 8, 26–32. Available online: https://www.medwelljournals.com/abstract/?doi=javaa.2009.26.32 (accessed on 10 February 2022).
- Zinn, R.A.; Barreras, A.; Owens, F.N.; Plascencia, A. Performance by feedlot steers and heifers: ADG, mature weight, DMI and dietary energetics. J. Anim. Sci. 2008, 86, 2680–2689. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.R.; Gomes, M.J.; Dias-da-Silva, A.; Gil, L.F.; Azevedo, J.M.T. Estimation in vivo of the body and carcass chemical composition of growing lambs by real-time ultrasonography. J. Anim. Sci. 2005, 83, 350–357. [Google Scholar] [CrossRef] [PubMed]
- American Meat Science Association; National Cattlemen’s Beef Association (U.S.); National Pork Producers Council (U.S.). United States Standards for Grades of Beef, Veal, Pork and lamb Carcasses. In Meat Evaluation Handbook; American Meat Science Association: Savoy, IL, USA; National Cattlemen’s Beef Association, National Pork Producers Council: Iowa, IL, USA, 2001; pp. 117–137. [Google Scholar]
- Yáñez, E.A.; Resende, K.T.; Ferreira, A.C.D.; Medeiros, A.N.; da Silva, S.A.G.; Pereira, J.M.F.; Teixeira, I.A.M.A.; Artoni, S.M.B. Utilization of biometric measures for prediction of Saanen goats carcass traits. Rev. Bras. Zootec. 2004, 33, 1564–1572. [Google Scholar] [CrossRef] [Green Version]
- Anderson, S. Determination of fat, moisture, and protein in meat and meat products by using the FOSS FoodScan near-infrared spectrophotometer with FOSS artificial neural network calibration model and associated database: Collaborative study. J. AOAC Int. 2007, 90, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- SAS (Statistical Analysis System). SAS/STAT User’s Guide (Release 6.4); SAS Inst.: Cary, NC, USA, 2017. [Google Scholar]
Parameters | Treatments | SEM | p-Value | |||
---|---|---|---|---|---|---|
CON | PA1 | PA2 | PA3 | |||
Initial body weight, kg | 21.03 | 20.11 | 20.84 | 20.08 | 0.879 | 0.87 |
Final body weight (FBW), kg | 32.96 | 34.11 | 33.73 | 31.83 | 1.191 | 0.50 |
Average daily gain (ADG), kg d−1 | 0.213 b | 0.250 a | 0.230 ab | 0.209 b | 0.015 | 0.03 |
Dry matter intake (DMI), kg d−1 | 0.906 | 0.848 | 0.865 | 0.799 | 0.048 | 0.13 |
DMI variation (%) 2 | 17.36 | 17.57 | 17.65 | 17.86 | 2.141 | 0.86 |
Feed conversion ratio (FCR), DMI/ADG | 4.39 a | 3.47 b | 3.67 ab | 3.85 ab | 0.263 | 0.02 |
Observed dietary net energy, Mcal kg−1 of DM | ||||||
Maintenance (ObsNEm) | 1.985 b | 2.336 a | 2.198 ab | 2.148 ab | 0.093 | 0.01 |
Gain (ObsNEg) | 1.331 b | 1.639 a | 1.518 ab | 1.474 ab | 0.081 | 0.01 |
Observed to expected diet net energy 3, Mcal kg−1 of DM | ||||||
Maintenance (OExNEm) | 1.096 b | 1.291 a | 1.214 ab | 1.187 ab | 0.051 | 0.01 |
Gain (OExNEg) | 1.056 b | 1.301 a | 1.205 ab | 1.170 ab | 0.064 | 0.01 |
Observed to expected DMI | 0.96 a | 0.79 b | 0.83 ab | 0.85 ab | 0.047 | 0.02 |
Parameter | Treatment | SEM | p-Value | |||
---|---|---|---|---|---|---|
CON | PA1 | PA2 | PA3 | |||
Hot carcass weight (HCW), kg | 15.11 | 14.96 | 15.84 | 15.08 | 0.75 | 0.49 |
Hot carcass yield (HCY), % | 45.16 | 44.23 | 47.06 | 46.04 | 1.23 | 0.28 |
Cold carcass weight (CCW), kg | 14.50 | 14.27 | 14.73 | 13.91 | 0.63 | 0.51 |
Cold carcass yield (CCY), % | 43.36 | 42.31 | 43.77 | 42.84 | 0.67 | 0.67 |
Losses due to carcass cooling, % | 3.91 | 4.27 | 4.63 | 5.03 | 1.41 | 0.56 |
Backfat thickness (BFT), mm | 2.31 b | 2.77 a | 2.67 a | 2.55 ab | 0.13 | 0.02 |
Muscle area Longissimus dorsi (LDMA), cm2 | 9.87 b | 11.84 a | 11.70 a | 10.70 ab | 0.51 | 0.01 |
Yield grade (YG) | 0.39 b | 0.47 a | 0.47 a | 0.43 ab | 0.02 | 0.04 |
External length of the carcass (ELC), cm | 46.71 | 46.57 | 46.00 | 46.14 | 0.86 | 0.56 |
Internal length of the carcass (ILC), cm | 44.14 | 43.57 | 42.85 | 44.00 | 0.79 | 0.26 |
Chest girth (CG), cm | 66.00 | 66.43 | 67.00 | 66.57 | 1.05 | 0.50 |
Length of the leg (LL), cm | 29.28 * | 29.57 | 30.71 * | 29.57 | 0.51 | 0.06 |
Perimeter of the leg (PL), cm | 34.28 b | 37.71 a | 36.43 ab | 36.00 ab | 0.93 | 0.01 |
Compactness index (CI), kg cm−1 | 0.33 | 0.33 | 0.34 | 0.32 | 0.01 | 0.44 |
Parameter | Treatment | SEM | p-Value | |||
---|---|---|---|---|---|---|
CON | PA1 | PA2 | PA3 | |||
Stomach complex 2 (empty), kg | 0.955 b | 1.055 a | 1.024 ab | 0.937 ab | 0.034 | 0.05 |
Small intestine 3 (empty), kg | 0.735 | 0.877 | 0.781 | 0.786 | 0.055 | 0.12 |
Large intestine 4 (empty), kg | 1.082 * | 1.137 * | 1.078 | 1.056 | 0.063 | 0.08 |
Omental fat, kg | 1.003 | 1.144 | 1.150 | 1.148 | 0.081 | 0.21 |
Lungs and trachea, kg | 0.689 | 0.653 | 0.682 | 0.667 | 0.044 | 0.56 |
Heart, kg | 0.167 | 0.176 | 0.170 | 0.169 | 0.005 | 0.11 |
Liver, kg | 0.851 a | 0.761 ab | 0.757 ab | 0.730 b | 0.034 | 0.02 |
Kidneys, kg | 0.395 | 0.423 | 0.421 | 0.431 | 0.024 | 0.30 |
Spleen, kg | 0.099 | 0.099 | 0.082 | 0.080 | 0.008 | 0.11 |
Testicles, kg | 0.572 | 0.571 | 0.587 | 0.589 | 0.044 | 0.79 |
Skin, kg | 2.883 | 2.869 | 3.087 | 2.910 | 0.174 | 0.41 |
Head, kg | 0.844 | 0.841 | 0.896 | 0.861 | 0.026 | 0.13 |
Feet, kg | 1.908 | 1.920 | 2.073 | 2.049 | 0.064 | 0.16 |
Parameter | Treatment | SEM | p-Value | |||
---|---|---|---|---|---|---|
CON | PA1 | PA2 | PA3 | |||
pH | 5.96 | 5.97 | 5.96 | 5.76 | 0.11 | 0.20 |
Protein, g 100 g−1 | 20.05 * | 19.99 | 20.48 * | 20.37 | 0.17 | 0.09 |
Fat, g 100 g−1 | 2.32 | 2.23 | 2.06 | 2.36 | 0.18 | 0.34 |
Moisture, g 100 g−1 | 75.48 | 75.25 | 74.78 | 75.10 | 0.35 | 0.16 |
Collagen, g 100 g−1 | 1.46 a | 1.14 b | 1.32 ab | 1.37 ab | 0.10 | 0.03 |
Parameter | Treatment | SEM | p-Value | |||
---|---|---|---|---|---|---|
CON | PA1 | PA2 | PA3 | |||
Hematocrit, % | 30.00 * | 32.34 | 31.86 | 32.28 * | 0.86 | 0.09 |
Hemoglobin, g dL−1 | 8.68 * | 9.23 | 9.13 | 9.49 * | 0.27 | 0.06 |
Red blood cells, 106 mL−1 | 7.05 * | 7.41 | 7.48 | 7.59 * | 0.20 | 0.07 |
Mean corpuscular volume, Fl | 40.86 | 41.09 | 42.39 | 40.76 | 1.21 | 0.35 |
Mean corpuscular hemoglobin, pg | 12.38 | 12.52 | 12.37 | 12.40 | 0.08 | 0.60 |
Mean corpuscular hemoglobin concentration, g dL−1 | 31.47 | 30.48 | 29.82 | 30.92 | 1.25 | 0.28 |
Platelets, 103 mL−1 | 604.83 * | 681.57 | 704.86 | 747.17 * | 47.98 | 0.07 |
Leukocytes, 103 mL−1 | 9.30 * | 10.45 * | 9.86 | 9.52 | 0.44 | 0.07 |
Lymphocytes, 103 mL−1 | 45.86 | 47.14 | 45.67 | 54.28 | 3.80 | 0.13 |
Monocytes, 103 mL−1 | 11.57 | 12.66 | 12.00 | 12.28 | 1.45 | 0.61 |
Segmented neutrophils, 103 mL−1 | 38.71 | 38.14 | 41.28 | 36.00 | 4.59 | 0.69 |
Band neutrophils, 103 mL−1 | 0.57 | 0.42 | 0.14 | 0.14 | 0.28 | 0.28 |
Eosinophils, 103 mL−1 | 1.00 | 1.28 | 3.71 | 2.00 | 0.94 | 0.11 |
Basophils, 103 mL−1 | 0.50 * | 0.00 * | 0.14 | 0.28 | 0.16 | 0.06 |
Plasma protein, g dL−1 | 9.31 | 9.27 | 9.50 | 9.58 | 0.15 | 0.20 |
Parameter | Treatment | SEM | p-Value | |||
---|---|---|---|---|---|---|
CON | PA1 | PA2 | PA3 | |||
Glucose, mg dL−1 | 85.43 | 87.71 | 86.71 | 88.57 | 3.54 | 0.50 |
Urea, mg dL−1 | 80.50 a | 69.08 ab | 66.83 ab | 62.08 b | 6.61 | 0.05 |
Uric acid, mg dL−1 | 0.64 | 0.62 | 0.58 | 0.59 | 0.69 | 0.56 |
Cholesterol, mg dL−1 | 62.14 | 57.71 | 64.71 | 61.71 | 5.12 | 0.54 |
Total protein, g dL−1 | 8.74 | 8.64 | 8.81 | 8.91 | 0.24 | 0.62 |
Albumin, g dL−1 | 2.67 b | 2.74 ab | 2.81 ab | 2.88 a | 0.06 | 0.03 |
Globulin, g dL−1 | 5.85 | 5.90 | 6.00 | 6.07 | 2.14 | 0.48 |
Albumin/globulin | 0.44 | 0.46 | 0.45 | 0.47 | 0.02 | 0.31 |
Bilirubin, mg dL−1 | 0.15 | 0.18 | 0.19 | 0.18 | 0.02 | 0.16 |
Creatinine, mg dL−1 | 1.04 | 1.01 | 0.98 | 1.02 | 0.048 | 0.41 |
Alkaline phosphatase, UI dL−1 | 341.43 * | 424.43 | 496.28 * | 386.85 | 49.77 | 0.06 |
Lactate dehydrogenase, UI dL−1 | 198.86 | 233.28 | 211.43 | 215.14 | 23.90 | 0.31 |
Aspartate aminotransferase, UI dL−1 | 195.28 | 194.43 | 206.86 | 206.00 | 14.43 | 0.57 |
Calcium, mg dL−1 | 10.47 | 10.34 | 10.44 | 10.25 | 0.18 | 0.41 |
Phosphorus, mg dL−1 | 6.24 | 6.84 | 6.78 | 6.54 | 0.30 | 0.17 |
Ingredients, g kg−1 DM | Treatments | |||
---|---|---|---|---|
CON | PA1 | PA2 | PA3 | |
Oat straw | 194 | 194 | 194 | 194 |
Ground sorghum | 241 | 241 | 241 | 241 |
Soybean meal | 81 | 81 | 81 | 81 |
Ground corn | 303 | 302 | 301 | 300 |
Wheat bran | 71 | 71 | 71 | 71 |
Calcium carbonate | 3 | 3 | 3 | 3 |
Common salt | 5 | 5 | 5 | 5 |
Mineral remix and vitamins a | 5 | 5 | 5 | 5 |
Bypass fat | 23 | 23 | 23 | 23 |
Corn gluten | 74 | 74 | 74 | 74 |
Polyherbal additive (PA) b | 0 | 1 | 2 | 3 |
Total | 100 | 100 | 100 | 100 |
Nutrient composition, g kg−1 DM | ||||
Dry matter | 889.6 | 895.0 | 893.5 | 892.0 |
Crude protein | 156.9 | 156.8 | 156.8 | 157.9 |
Ether extract | 26.4 | 26.3 | 26.4 | 26.3 |
Ash | 55.2 | 54.2 | 49.6 | 50.1 |
Neutral detergen fiber | 260.4 | 274.9 | 270.5 | 275.7 |
Acid detergent fiber | 137.5 | 135.0 | 137.9 | 135.7 |
Calculated net energy, Mcal kg−1 | ||||
Maintenance c | 1.81 | 1.81 | 1.81 | 1.81 |
Gain c | 1.26 | 1.26 | 1.26 | 1.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorantes-Iturbide, G.; Orzuna-Orzuna, J.F.; Lara-Bueno, A.; Miranda-Romero, L.A.; Mendoza-Martínez, G.D.; Hernández-García, P.A. Effects of a Polyherbal Dietary Additive on Performance, Dietary Energetics, Carcass Traits, and Blood Metabolites of Finishing Lambs. Metabolites 2022, 12, 413. https://doi.org/10.3390/metabo12050413
Dorantes-Iturbide G, Orzuna-Orzuna JF, Lara-Bueno A, Miranda-Romero LA, Mendoza-Martínez GD, Hernández-García PA. Effects of a Polyherbal Dietary Additive on Performance, Dietary Energetics, Carcass Traits, and Blood Metabolites of Finishing Lambs. Metabolites. 2022; 12(5):413. https://doi.org/10.3390/metabo12050413
Chicago/Turabian StyleDorantes-Iturbide, Griselda, José Felipe Orzuna-Orzuna, Alejandro Lara-Bueno, Luis Alberto Miranda-Romero, Germán David Mendoza-Martínez, and Pedro Abel Hernández-García. 2022. "Effects of a Polyherbal Dietary Additive on Performance, Dietary Energetics, Carcass Traits, and Blood Metabolites of Finishing Lambs" Metabolites 12, no. 5: 413. https://doi.org/10.3390/metabo12050413
APA StyleDorantes-Iturbide, G., Orzuna-Orzuna, J. F., Lara-Bueno, A., Miranda-Romero, L. A., Mendoza-Martínez, G. D., & Hernández-García, P. A. (2022). Effects of a Polyherbal Dietary Additive on Performance, Dietary Energetics, Carcass Traits, and Blood Metabolites of Finishing Lambs. Metabolites, 12(5), 413. https://doi.org/10.3390/metabo12050413