Plasma Metabolite Response to Simple, Refined and Unrefined Carbohydrate-Enriched Diets in Older Adults—Randomized Controlled Crossover Trial
Abstract
:1. Introduction
2. Results
2.1. Characteristics and Response of Study Participants
2.2. Metabolites Profiling
2.3. Receiving Operating Characteristics (ROC) Curve for Biomarker Analysis
2.4. Enrichment and Hierarchical Cluster Analyses
2.5. Correlations between Top 5 Metabolites and Cardiometabolic Risk Factors
3. Discussion
4. Materials and Methods
4.1. Study Participants and Design
4.2. Diet Intervention
4.3. Untargeted Metabolomics
4.3.1. Primary Metabolites Extraction, Data Acquisition and Processing
4.3.2. Complex Lipids and Biogenic Amines Extraction, Data Acquisition and Processing
4.4. Clinical Laboratory Measures
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Lichtenstein, A.H.; Appel, L.J.; Vadiveloo, M.; Hu, F.B.; Kris-Etherton, P.M.; Rebholz, C.M.; Sacks, F.M.; Thorndike, A.N.; Van Horn, L.; Wylie-Rosett, J.; et al. 2021 Dietary Guidance to Improve Cardiovascular Health: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e472–e487. [Google Scholar] [CrossRef] [PubMed]
- Subar, A.F.; Kipnis, V.; Troiano, R.P.; Midthune, D.; Schoeller, D.A.; Bingham, S.; Sharbaugh, C.O.; Trabulsi, J.; Runswick, S.; Ballard-Barbash, R.; et al. Using Intake Biomarkers to Evaluate the Extent of Dietary Misreporting in a Large Sample of Adults: The OPEN Study. Am. J. Epidemiol. 2003, 158, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Playdon, M.C.; Moore, S.C.; Derkach, A.; Reedy, J.; Subar, A.F.; Sampson, J.N.; Albanes, D.; Gu, F.; Kontto, J.; Lassale, C.; et al. Identifying biomarkers of dietary patterns by using metabolomics. Am. J. Clin. Nutr. 2017, 105, 450–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKeown, N.M.; Hruby, A.; Landberg, R.; Herrington, D.M.; Lichtenstein, A.H. Plasma alkylresorcinols, biomarkers of whole-grain intake, are not associated with progression of coronary artery atherosclerosis in postmenopausal women with coronary artery disease. Public Health Nutr. 2016, 19, 326–331. [Google Scholar] [CrossRef] [Green Version]
- Andersen, M.-B.S.; Rinnan, A.; Manach, C.; Poulsen, S.K.; Pujos-Guillot, E.; Larsen, T.M.; Astrup, A.; Dragsted, L.O. Untargeted Metabolomics as a Screening Tool for Estimating Compliance to a Dietary Pattern. J. Proteome Res. 2014, 13, 1405–1418. [Google Scholar] [CrossRef]
- Ross, A.B.; Bourgeois, A.; Macharia, H.N.; Kochhar, S.; Jebb, S.A.; Brownlee, I.A.; Seal, C.J. Plasma alkylresorcinols as a biomarker of whole-grain food consumption in a large population: Results from the WHOLEheart Intervention Study. Am. J. Clin. Nutr. 2012, 95, 204–211. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Rong, Y.; Hu, X.; Zhu, Y.; Huang, H.; Chen, L.; Li, P.; Li, S.; Yang, W.; Cheng, J.; et al. Plasma Alkylresorcinol Metabolite, a Biomarker of Whole-Grain Wheat and Rye Intake, and Risk of Type 2 Diabetes and Impaired Glucose Regulation in a Chinese Population. Diabetes Care 2018, 41, 440–445. [Google Scholar] [CrossRef] [Green Version]
- Huang, N.K.; Matthan, N.R.; Matuszek, G.; Lichtenstein, A.H. Plasma Metabolite Profiles Following Consumption of Animal Protein and Soybean-Based Diet in Hypercholesterolemic Postmenopausal Women. Metabolites 2022, 12, 209. [Google Scholar] [CrossRef]
- Shibutami, E.; Ishii, R.; Harada, S.; Kurihara, A.; Kuwabara, K.; Kato, S.; Iida, M.; Akiyama, M.; Sugiyama, D.; Hirayama, A.; et al. Charged metabolite biomarkers of food intake assessed via plasma metabolomics in a population-based observational study in Japan. PLoS ONE 2021, 16, e0246456. [Google Scholar] [CrossRef]
- Tuomainen, M.; Kärkkäinen, O.; Leppänen, J.; Auriola, S.; Lehtonen, M.; Savolainen, M.J.; Hermansen, K.; Risérus, U.; Åkesson, B.; Thorsdottir, I.; et al. Quantitative assessment of betainized compounds and associations with dietary and metabolic biomarkers in the randomized study of the healthy Nordic diet (SYSDIET). Am. J. Clin. Nutr. 2019, 110, 1108–1118. [Google Scholar] [CrossRef]
- Kärkkäinen, O.; Lankinen, M.A.; Vitale, M.; Jokkala, J.; Leppänen, J.; Koistinen, V.; Lehtonen, M.; Giacco, R.; Rosa-Sibakov, N.; Micard, V.; et al. Diets rich in whole grains increase betainized compounds associated with glucose metabolism. Am. J. Clin. Nutr. 2018, 108, 971–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, H.; Matthan, N.R.; Fried, S.K.; Berciano, S.; Walker, M.; Galluccio, J.M.; Lichtenstein, A.H. Effect of Dietary Carbohydrate Type on Serum Cardiometabolic Risk Indicators and Adipose Tissue Inflammatory Markers. J. Clin. Endocrinol. Metab. 2018, 103, 3430–3438. [Google Scholar] [CrossRef] [PubMed]
- Keaveney, E.M.; Price, R.K.; Hamill, L.L.; Wallace, J.M.W.; McNulty, H.; Ward, M.; Strain, J.J.; Ueland, P.M.; Molloy, A.M.; Piironen, V.; et al. Postprandial plasma betaine and other methyl donor-related responses after consumption of minimally processed wheat bran or wheat aleurone, or wheat aleurone incorporated into bread. Br. J. Nutr. 2015, 113, 445–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanhineva, K.; Lankinen, M.A.; Pedret, A.; Schwab, U.; Kolehmainen, M.; Paananen, J.; de Mello, V.; Solà, R.; Lehtonen, M.; Poutanen, K.; et al. Nontargeted Metabolite Profiling Discriminates Diet-Specific Biomarkers for Consumption of Whole Grains, Fatty Fish, and Bilberries in a Randomized Controlled Trial. J. Nutr. 2015, 145, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Servillo, L.; Giovane, A.; Balestrieri, M.L.; Ferrari, G.; Cautela, D.; Castaldo, D. Occurrence of Pipecolic Acid and Pipecolic Acid Betaine (Homostachydrine) in Citrus Genus Plants. J. Agric. Food Chem. 2012, 60, 315–321. [Google Scholar] [CrossRef]
- Esko, T.; Hirschhorn, J.N.; Feldman, H.A.; Hsu, Y.-H.H.; Deik, A.A.; Clish, C.B.; Ebbeling, C.B.; Ludwig, D.S. Metabolomic profiles as reliable biomarkers of dietary composition. Am. J. Clin. Nutr. 2017, 105, 547–554. [Google Scholar] [CrossRef]
- Faits, T.; Walker, M.E.; Rodriguez-Morato, J.; Meng, H.; Gervis, J.E.; Galluccio, J.M.; Lichtenstein, A.H.; Johnson, W.E.; Matthan, N.R. Exploring changes in the human gut microbiota and microbial-derived metabolites in response to diets enriched in simple, refined, or unrefined carbohydrate-containing foods: A post hoc analysis of a randomized clinical trial. Am. J. Clin. Nutr. 2020, 112, 1631–1641. [Google Scholar] [CrossRef]
- Roager, H.M.; Vogt, J.K.; Kristensen, M.; Hansen, L.B.S.; Ibrügger, S.; Mærkedahl, R.B.; Bahl, M.I.; Lind, M.V.; Nielsen, R.L.; Frøkiær, H.; et al. Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: A randomised cross-over trial. Gut 2019, 68, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Rothwell, J.A.; Madrid-Gambin, F.; Garcia-Aloy, M.; Andres-Lacueva, C.; Logue, C.; Gallagher, A.M.; Mack, C.; Kulling, S.E.; Gao, Q.; Praticò, G.; et al. Biomarkers of intake for coffee, tea, and sweetened beverages. Genes Nutr. 2018, 13, 15. [Google Scholar] [CrossRef] [Green Version]
- Muli, S.; Goerdten, J.; Oluwagbemigun, K.; Floegel, A.; Schmid, M.; Nöthlings, U. A Systematic Review of Metabolomic Biomarkers for the Intake of Sugar-Sweetened and Low-Calorie Sweetened Beverages. Metabolites 2021, 11, 546. [Google Scholar] [CrossRef]
- Fiehn, O. Metabolomics by Gas Chromatography–Mass Spectrometry: Combined Targeted and Untargeted Profiling. Curr. Protoc. Mol. Biol. 2016, 114, 30.4.1–30.4.32. [Google Scholar] [CrossRef]
- Fiehn, O.; Kind, T. Metabolite Profiling in Blood Plasma. Methods Mol. Biol. 2007, 358, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Kind, T.; Liu, K.-H.; Lee, D.Y.; DeFelice, B.; Meissen, J.K.; Fiehn, O. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat. Methods 2013, 10, 755–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
Variables | Participants (N = 10) |
---|---|
Age, y | 65 ± 8 |
Female, n (%) | 6 (60%) |
Weight, kg | 85 ± 12 |
Body Mass Index, kg/m2 | 29.8 ± 3.2 |
Fasting glucose, mmol/L | 5.6 ± 0.6 |
Total cholesterol, mmol/L | 5.6 ± 0.9 |
VLDL-C, mmol/L | 0.8 ± 0.3 |
LDL-C, mmol/L | 3.5 ± 0.7 |
HDL-C, mmol/L | 1.3 ± 0.3 |
Triacylglycerol, mmol/L | 1.7 ± 0.6 |
Metabolite | Pathway Involved | VIP Score 1 |
---|---|---|
Phenylethylamine | Amino acid | 3.03 |
Cysteine | Amino acid | 3.00 |
Betaine | Xenobiotics | 2.84 |
Pipecolic acid | Amino acid | 2.83 |
TMAO | Amino acids | 2.57 |
3-Methylhistidine | Amino acids | 2.49 |
PC 38:3 | PC/lipid metabolism | 2.47 |
TG 42:0 | lipid metabolism | 2.45 |
TG 51:1(TG 16:0_17:0_18:1) | Lipid metabolism | 2.45 |
Conduritol-beta-epoxide | Xenobiotics | 2.37 |
N-acetylglycine | Amino acids | 2.37 |
TG 45:1(TG 12:0_16:0_17:1) | Lipid metabolism | 2.29 |
PI 36:4 | PI/Lipid metabolism | 2.25 |
TG 46:2 | Lipid metabolism | 2.24 |
TG 44:0 | Lipid metabolism | 2.23 |
Pipecolinic acid | Amino acids | 2.23 |
Coniferyl aldehyde | Xenobiotics | 2.17 |
TG 54:5(TG 18:1_18:2_18:2) | Lipid metabolism | 2.15 |
3-hydroxybutyric acid | Ketone/Lipid metabolism | 2.12 |
LPC 20:3 | LPC/Lipid metabolism | 2.11 |
Metabolites | SC vs. RC | SC vs. URC | RC vs. URC | |||
---|---|---|---|---|---|---|
AUC | FC | AUC | FC | AUC | FC | |
Phenylethylamine | 0.83 | 0.16 | 0.70 | 0.50 | 0.79 | 1.06 * |
Cysteine | 0.56 | −0.12 | 0.84 | 0.70 * | 0.86 | 0.73 * |
Betaine | 0.58 | 0.01 | 0.85 | 0.32 * | 0.80 | 0.05 * |
Pipecolic acid | 0.56 | −0.02 | 0.83 | 0.97 * | 0.74 | 0.38 * |
TMAO | 0.69 | −0.26 | 0.63 | 0.29 | 0.75 | 0.40 |
3-Methylhistidine | 0.73 | 0.80 | 0.58 | 0.12 | 0.78 | 1.08 * |
PC 38:3 | 0.59 | 0.06 | 0.65 | −0.22 | 0.73 | −0.15 |
TG 42:0 | 0.53 | −0.47 | 0.67 | −1.21 | 0.74 | −0.45 |
TG 51:1(TG 16:0_17:0_18:1) | 0.68 | 0.58 | 0.59 | −0.30 | 0.71 | −0.90 |
Conduritol-beta-epoxide | 0.63 | 1.33 | 0.66 | −1.24 | 0.74 | −0.99 |
N-Acetylglycine | 0.64 | 0.10 | 0.63 | 0.16 | 0.76 | 0.84 |
TG 45:1(TG 12:0_16:0_17:1) | 0.60 | −0.24 | 0.51 | −0.56 | 0.74 | −0.30 |
PI 36:4 | 0.58 | 2.42 | 0.60 | −0.47 | 0.73 | −0.99 |
TG 46:2 | 0.61 | −0.99 | 0.68 | −0.49 | 0.67 | −1.79 |
TG 44:0 | 0.53 | −0.47 | 0.66 | −1.41 | 0.70 | −1.28 |
Pipecolinic acid | 0.50 | −0.23 | 0.74 | 0.98 | 0.74 | 1.99 |
Coniferyl aldehyde | 0.70 | −0.28 | 0.52 | −0.24 | 0.77 | 0.29 |
TG 54:5(TG 18:1_18:2_18:2) | 0.64 | −0.13 | 0.59 | 0.14 | 0.75 | −0.22 |
3-hydroxybutyric acid | 0.67 | −0.07 | 0.66 | 0.76 | 0.66 | −0.29 |
LPC 20:3 | 0.61 | −0.07 | 0.63 | 0.09 | 0.71 | −0.12 |
Pathway | SC vs. RC | SC vs. URC |
---|---|---|
FDR | FDR | |
Mitochondria beta-oxidation of short chain saturated fatty acids | 2.69 × 10−3 | 8.27 × 10−7 |
Beta-oxidation of very long chain fatty acids | 4.36 × 10−3 | 1.41 × 10−5 |
Fatty acid biosynthesis | 7.11 × 10−3 | 1.73 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, N.K.; Matthan, N.R.; Matuszek, G.; Lichtenstein, A.H. Plasma Metabolite Response to Simple, Refined and Unrefined Carbohydrate-Enriched Diets in Older Adults—Randomized Controlled Crossover Trial. Metabolites 2022, 12, 547. https://doi.org/10.3390/metabo12060547
Huang NK, Matthan NR, Matuszek G, Lichtenstein AH. Plasma Metabolite Response to Simple, Refined and Unrefined Carbohydrate-Enriched Diets in Older Adults—Randomized Controlled Crossover Trial. Metabolites. 2022; 12(6):547. https://doi.org/10.3390/metabo12060547
Chicago/Turabian StyleHuang, Neil K., Nirupa R. Matthan, Gregory Matuszek, and Alice H. Lichtenstein. 2022. "Plasma Metabolite Response to Simple, Refined and Unrefined Carbohydrate-Enriched Diets in Older Adults—Randomized Controlled Crossover Trial" Metabolites 12, no. 6: 547. https://doi.org/10.3390/metabo12060547
APA StyleHuang, N. K., Matthan, N. R., Matuszek, G., & Lichtenstein, A. H. (2022). Plasma Metabolite Response to Simple, Refined and Unrefined Carbohydrate-Enriched Diets in Older Adults—Randomized Controlled Crossover Trial. Metabolites, 12(6), 547. https://doi.org/10.3390/metabo12060547