PNPLA1-Mediated Acylceramide Biosynthesis and Autosomal Recessive Congenital Ichthyosis
Abstract
:1. Introduction
2. The Structure, Expression and Subcellular Location of PNPLA1
3. PNPLA1 Acts as a CoA-Independent Transacylase for Acylceramide Biosynthesis
4. PNPLA1 Is Essential for Skin Barrier Function
5. Mutations of PNPLA1 Cause ARCI
6. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Hirabayashi, T.; Murakami, M.; Kihara, A. The role of PNPLA1 in ω-O-acylceramide synthesis and skin barrier function. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 869–879. [Google Scholar] [CrossRef] [PubMed]
- Grall, A.; Guaguère, E.; Planchais, S.; Grond, S.; Bourrat, E.; Hausser, I.; Hitte, C.; Le Gallo, M.; Derbois, C.; Kim, G.J.; et al. PNPLA1 mutations cause autosomal recessive congenital ichthyosis in golden retriever dogs and humans. Nat. Genet. 2012, 44, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.A.; Sun, Y.J.; Huang, F.F.; Qin, W.Z.; Chen, Y.Y.; Zeng, X.; Wu, Y.J. Identification of human patatin-like phospholipase domain-containing protein 1 and a mutant in human cervical cancer HeLa cells. Mol. Biol. Rep. 2013, 40, 5597–5605. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, A.D.; Kim, G.J.; Hotz, A.; Bourrat, E.; Hausser, I.; Has, C.; Oji, V.; Stieler, K.; Vahlquist, A.; Kunde, V.; et al. Sixteen novel mutations in PNPLA1 in patients with autosomal recessive congenital ichthyosis reveal the importance of an extended patatin domain in PNPLA1 that is essential for proper human skin barrier function. Br. J. Dermatol. 2017, 177, 445–455. [Google Scholar] [CrossRef]
- Chang, P.A.; Han, L.P.; Sun, L.X.; Huang, F.F. Identification mouse patatin-like phospholipase domain containing protein 1 as a skin-specific and membrane-associated protein. Gene 2016, 591, 344–350. [Google Scholar] [CrossRef]
- Grond, S.; Eichmann, T.O.; Dubrac, S.; Kolb, D.; Schmuth, M.; Fischer, J.; Crumrine, D.; Elias, P.M.; Haemmerle, G.; Zechner, R.; et al. PNPLA1 Deficiency in Mice and Humans Leads to a Defect in the Synthesis of Omega-O-Acylceramides. J. Investig. Dermatol. 2017, 137, 394–402. [Google Scholar] [CrossRef] [Green Version]
- Hirabayashi, T.; Anjo, T.; Kaneko, A.; Senoo, Y.; Shibata, A.; Takama, H.; Yokoyama, K.; Nishito, Y.; Ono, T.; Taya, C.; et al. PNPLA1 has a crucial role in skin barrier function by directing acylceramide biosynthesis. Nat. Commun. 2017, 8, 14609. [Google Scholar] [CrossRef]
- Kien, B.; Grond, S.; Haemmerle, G.; Lass, A.; Eichmann, T.O.; Radner, F.P.W. ABHD5 stimulates PNPLA1-mediated ω-O-acylceramide biosynthesis essential for a functional skin permeability barrier. J. Lipid Res. 2018, 59, 2360–2367. [Google Scholar] [CrossRef] [Green Version]
- Ohno, Y.; Nara, A.; Nakamichi, S.; Kihara, A. Molecular mechanism of the ichthyosis pathology of Chanarin-Dorfman syndrome: Stimulation of PNPLA1-catalyzed ω-O-acylceramide production by ABHD5. J. Dermatol. Sci. 2018, 92, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Onal, G.; Kutlu, O.; Ozer, E.; Gozuacik, D.; Karaduman, A.; Dokmeci Emre, S. Impairment of lipophagy by PNPLA1 mutations causes lipid droplet accumulation in primary fibroblasts of autosomal recessive congenital ichthyosis patients. J. Dermatol. Sci. 2019, 93, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Uchida, Y.; Park, K. Ceramides in skin health and disease: An update. Am. J. Clin. Dermatol. 2021, 2, 853–866. [Google Scholar] [CrossRef] [PubMed]
- Kihara, A. Synthesis and degradation pathways, functions, and pathology of ceramides and epidermal acylceramides. Prog. Lipid Res. 2016, 63, 50–69. [Google Scholar] [CrossRef] [PubMed]
- Kihara, A.; Igarashi, Y. FVT-1 is a mammalian 3-ketodihydrosphingosine reductase with an active site that faces the cytosolic side of the endoplasmic reticulum membrane. J. Biol. Chem. 2004, 279, 49243–49250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sassa, T.; Ohno, Y.; Suzuki, S.; Nomura, T.; Nishioka, C.; Kashiwagi, T.; Hirayama, T.; Akiyama, M.; Taguchi, R.; Shimizu, H.; et al. Impaired epidermal permeability barrier in mice lacking elovl1, the gene responsible for very-long-chain fatty acid production. Mol. Cell. Biol. 2013, 33, 2787–2796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasireddy, V.; Uchida, Y.; Salem, N., Jr.; Kim, S.Y.; Mandal, M.N.; Reddy, G.B.; Bodepudi, R.; Alderson, N.L.; Brown, J.C.; Hama, H.; et al. Loss of functional ELOVL4 depletes very long-chain fatty acids (> or =C28) and the unique omega-O-acylceramides in skin leading to neonatal death. Hum. Mol. Genet. 2007, 16, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Ohno, Y.; Nakamichi, S.; Ohkuni, A.; Kamiyama, N.; Naoe, A.; Tsujimura, H.; Yokose, U.; Sugiura, K.; Ishikawa, J.; Akiyama, M.; et al. Essential role of the cytochrome P450 CYP4F22 in the production of acylceramide, the key lipid for skin permeability barrier formation. Proc. Natl. Acad. Sci. USA 2015, 112, 7707–7712. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, M.; Itoh, N.; Sawai, M.; Sassa, T.; Kihara, A. Severe skin permeability barrier dysfunction in knockout mice deficient in a fatty acid ω-hydroxylase crucial to acylceramide production. J. Investig. Dermatol. 2020, 140, 319–326. [Google Scholar] [CrossRef]
- Lin, M.H.; Hsu, F.F.; Crumrine, D.; Meyer, J.; Elias, P.M.; Miner, J.H. Fatty acid transport protein 4 is required for incorporation of saturated ultralong-chain fatty acids into epidermal ceramides and monoacylglycerols. Sci. Rep. 2019, 9, 13254. [Google Scholar] [CrossRef]
- Yamamoto, H.; Hattori, M.; Chamulitrat, W.; Ohno, Y.; Kihara, A. Skin permeability barrier formation by the ichthyosis-causative gene FATP4 through formation of the barrier lipid ω-O-acylceramide. Proc. Natl. Acad. Sci. USA 2020, 117, 2914–2922. [Google Scholar] [CrossRef]
- Jennemann, R.; Rabionet, M.; Gorgas, K.; Epstein, S.; Dalpke, A.; Rothermel, U.; Bayerle, A.; vander Hoeven, F.; Imgrund, S.; Kirsch, J.; et al. Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum. Mol. Genet. 2012, 21, 586–608. [Google Scholar] [CrossRef] [Green Version]
- Ohno, Y.; Kamiyama, N.; Nakamichi, S.; Kihara, A. PNPLA1 is a transacylase essential for the generation of the skin barrier lipid ω-O-acylceramide. Nat. Commun. 2017, 8, 14610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kato, A.; Ito, M.; Sanaki, T.; Okuda, T.; Tsuchiya, N.; Yoshimoto, R.; Yukioka, H. Acsl1 is essential for skin barrier function through the activation of linoleic acid and biosynthesis of ω-O-acylceramide in mice. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2022, 1867, 159085. [Google Scholar] [CrossRef] [PubMed]
- Stone, S.J.; Myers, H.M.; Watkins, S.M.; Brown, B.E.; Feingold, K.R.; Elias, P.M.; Farese, R.V., Jr. Lipopenia and skin barrier abnormalities in DGAT2-deficient mice. J. Biol. Chem. 2004, 279, 11767–11776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pichery, M.; Huchenq, A.; Sandhoff, R.; Severino-Freire, M.; Zaafouri, S.; Opálka, L.; Levade, T.; Soldan, V.; Bertrand-Michel, J.; Lhuillier, E.; et al. PNPLA1 defects in patients with autosomal recessive congenital ichthyosis and KO mice sustain PNPLA1 irreplaceable function in epidermal omega-O-acylceramide synthesis and skin permeability barrier. Hum. Mol. Genet. 2017, 26, 1787–1800. [Google Scholar] [CrossRef]
- Patel, R.; Santoro, A.; Hofer, P.; Tan, D.; Oberer, M.; Nelson, A.T.; Konduri, S.; Siegel, D.; Zechner, R.; Saghatelian, A.; et al. ATGL is a biosynthetic enzyme for fatty acid esters of hydroxy fatty acids. Nature 2022, 606, 968–975. [Google Scholar] [CrossRef]
- Feingold, K.R.; Elias, P.M. Role of lipids in the formation and maintenance of the cutaneous permeability barrier. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2014, 1841, 280–294. [Google Scholar] [CrossRef]
- Van Smeden, J.; Bouwstra, J.A. Stratum corneum lipids: Their role for the skin barrier function in healthy subjects and atopic dermatitis patients. Curr. Probl. Dermatol. 2016, 49, 8–26. [Google Scholar]
- Akiyama, M. Corneocyte lipid envelope (CLE), the key structure for skin barrier function and ichthyosis pathogenesis. J. Dermatol. Sci. 2017, 88, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Opálka, L.; Kováčik, A.; Pullmannová, P.; Maixner, J.; Vávrová, K. Effects of omega-O-acylceramide structures and concentrations in healthy and diseased skin barrier lipid membrane models. J. Lipid Res. 2020, 61, 219–228. [Google Scholar] [CrossRef]
- Opálka, L.; Meyer, J.M.; Ondrejčeková, V.; Svatošová, L.; Radner, F.P.W.; Vávrová, K. ω-O-Acylceramides but not ω-hydroxy ceramides are required for healthy lamellar phase architecture of skin barrier lipids. J. Lipid Res. 2022, 11, 100226. [Google Scholar] [CrossRef]
- Takeichi, T.; Hirabayashi, T.; Miyasaka, Y.; Kawamoto, A.; Okuno, Y.; Taguchi, S.; Tanahashi, K.; Murase, C.; Takama, H.; Tanaka, K.; et al. SDR9C7 catalyzes critical dehydrogenation of acylceramides for skin barrier formation. J. Clin. Investig. 2020, 130, 890–903. [Google Scholar] [CrossRef] [PubMed]
- Tran, Q.T.; Kennedy, L.H.; Leon Carrion, S.; Bodreddigari, S.; Goodwin, S.B.; Sutter, C.H.; Sutter, T.R. EGFR regulation of epidermal barrier function. Physiol. Genom. 2012, 44, 455–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vahidnezhad, H.; Youssefian, L.; Saeidian, A.H.; Zeinali, S.; Mansouri, P.; Sotoudeh, S.; Barzegar, M.; Mohammadi-Asl, J.; Karamzadeh, R.; Abiri, M.; et al. Gene-targeted next generation sequencing identifies PNPLA1 mutations in patients with a phenotypic spectrum of autosomal recessive congenital ichthyosis: The impact of consanguinity. J. Investig. Dermatol. 2017, 137, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Karim, N.; Ullah, A.; Murtaza, G.; Naeem, M. Molecular genetic study of a large inbred Pakistani family affected with autosomal recessive congenital ichthyosis through whole exome sequencing. Genet. Test. Mol. Biomark. 2019, 23, 428–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, F.; Ahmed, I.; Alam, Q.; Ahmad, T.; Khan, A.; Ahmad, I.; Bilal, M.; Hayat, A.; Khan, A.; Waqas, A.; et al. Variants in the PNPLA1 gene in families with autosomal recessive congenital ichthyosis reveal clinical significance. Mol. Syndromol. 2021, 12, 351–361. [Google Scholar] [CrossRef]
- Fachal, L.; Rodríguez-Pazos, L.; Ginarte, M.; Carracedo, A.; Toribio, J.; Vega, A. Identification of a novel PNPLA1 mutation in a Spanish family with autosomal recessive congenital ichthyosis. Br. J. Dermatol. 2014, 170, 980–982. [Google Scholar] [CrossRef]
- Ahmad, F.; Ansar, M.; Mehmood, S.; Izoduwa, A.; Lee, K.; Nasir, A.; Abrar, M.; Mehmood, S.; Ullah, A.; Aziz, A.; et al. A novel missense variant in the PNPLA1 gene underlies congenital ichthyosis in three consanguineous families. J. Eur. Acad. Dermatol. Venereol. 2016, 30, e210–e213. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.; Rahman, O.U.; Khan, M.T.; Wadood, A.; Naeem, M.; Kang, C.; Jelani, M. Whole exome analysis reveals a novel missense PNPLA1 variant that causes autosomal recessive congenital ichthyosis in a Pakistani family. J. Dermatol. Sci. 2016, 82, 46–48. [Google Scholar] [CrossRef]
- Boyden, L.M.; Craiglow, B.G.; Hu, R.H.; Zhou, J.; Browning, J.; Eichenfield, L.; Lim, Y.L.; Luu, M.; Randolph, L.M.; Ginarte, M.; et al. Phenotypic spectrum of autosomal recessive congenital ichthyosis due to PNPLA1 mutation. Br. J. Dermatol. 2017, 177, 319–322. [Google Scholar] [CrossRef]
- Dökmeci-Emre, S.; Taşkıran, Z.E.; Yüzbaşıoğlu, A.; Önal, G.; Akarsu, A.N.; Karaduman, A.; Özgüç, M. Identification of two novel PNPLA1 mutations in Turkish families with autosomal recessive congenital ichthyosis. Turk. J. Pediatrics 2017, 59, 475–482. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.J.; Zeng, X.; Lei, P.C.; Jiang, X.D.; Li, X.M.; Yan, H.M.; Guo, D.Y.; Lu, X.Y.; Jiang, W. A Chinese family with autosomal recessive congenital ichthyosis and Leber congenital amaurosis due to mutations in PNPLA1 and LCA5. Eur. J. Dermatol. 2018, 28, 244–246. [Google Scholar]
- Diociaiuti, A.; Pisaneschi, E.; Zambruno, G.; Angioni, A.; Novelli, A.; Boldrini, R.; Hachem, M. Novel PNPLA1 mutations in two Italian siblings with autosomal recessive congenital ichthyosis. J. Eur. Acad. Dermatol. Venereol. 2018, 32, e110–e112. [Google Scholar] [CrossRef] [PubMed]
- Youssefian, L.; Touati, A.; Vahidnezhad, H.; Saeidian, A.H.; Sotoudeh, S.; Zeinali, S.; Uitto, J. Erythrokeratoderma: A manifestation associated with multiple types of ichthyoses with different gene defects. Br. J. Dermatol. 2018, 178, e219–e221. [Google Scholar] [CrossRef] [PubMed]
- Sitek, J.C.; Kulseth, M.A.; Rypdal, K.B.; Skodje, T.; Sheng, Y.; Retterstøl, L. Whole-exome sequencing for diagnosis of hereditary ichthyosis. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 1022–1027. [Google Scholar] [CrossRef] [PubMed]
- Esperón Moldes, U.S.; Ginarte Val, M.J.; Rodríguez Pazos, L.; Fachal Vilar, L.; Azaña, J.M.; Barberá Fons, M.; Viejo Diaz, M.; Vega Gliemmo, A.P. Novel and Recurrent PNPLA1 mutations in Spanish patients with autosomal recessive congenital ichthyosis; Evidence of a founder effect. Acta Derm. Venereol. 2019, 99, 894–898. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Liu, W.; Xu, Y.; Li, M.; Tang, Q.; Yu, B.; Cai, R.; Liu, S. Targeted regions sequencing identified four novel PNPLA1 mutations in two Chinese families with autosomal recessive congenital ichthyosis. Mol. Genet. Genom. Med. 2020, 8, e1076. [Google Scholar] [CrossRef] [Green Version]
- Mohamad, J.; Samuelov, L.; Malchin, N.; Rabinowitz, T.; Assaf, S.; Malki, L.; Malovitski, K.; Israeli, S.; Grafi-Cohen, M.; Bitterman-Deutsch, O.; et al. Molecular epidemiology of non-syndromic autosomal recessive congenital ichthyosis in a Middle-Eastern population. Exp. Dermatol. 2021, 30, 1290–1297. [Google Scholar] [CrossRef]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Henikoff, S.; Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 2009, 4, 1073–1081. [Google Scholar] [CrossRef]
- Choi, Y.; Chan, A.P. PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 2015, 31, 2745–2747. [Google Scholar] [CrossRef] [Green Version]
- Tamamoto-Mochizuki, C.; Banovic, F.; Bizikova, P.; Laprais, A.; Linder, K.E.; Olivry, T. Autosomal recessive congenital ichthyosis due to PNPLA1 mutation in a golden retriever-poodle cross-bred dog and the effect of topical therapy. Vet. Dermatol. 2016, 27, 306-e75. [Google Scholar] [CrossRef] [PubMed]
- Graziano, L.; Vasconi, M.; Cornegliani, L. Prevalence of PNPLA1 gene mutation in 48 breeding golden retriever dogs. Vet. Sci. 2018, 5, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Nucleotide Change 1 | Aminoacid Change 1 | Variation Type | Protein Domain | Reference | Poly-Phen-2.1 (HumVar) 2 | SIFT 3 | PROVEAN 4 |
---|---|---|---|---|---|---|---|
c.391G>T | p.Glu131* | nonsense | patatin-like | [2] | - | - | 0.985 |
c.176C>T | p.Ala59Val | missense | patatin-like | [2] | 1 | 0.029 | 0.739 |
c.100G>A | p.Ala34Thr | missense | patatin-like | [36] | 1 | 0.015 | 0.971 |
c.102C>A | p.Asp34Glu | missense | patatin-like | [37] | 1 | 0.006 | - |
c.387C>A | p.Asp129Glu | missense | patatin-like | [38] | 1 | 0.012 | 0.924 |
c.56C>T | p.Ser19Leu | missense | patatin-like | [33] | 1 | 0.001 | 0.989 |
c.514G>A | p.Asp172Asn | missense | patatin-like | [33] | 1 | 0.007 | 0.999 |
c.421A>G | p.Lys141Glu | missense | patatin-like | [33] | 0.982 | 0.001 | 0.775 |
c.100G>C | p.Ala34Pro | missense | patatin-like | [33] | 1 | 0.006 | 0.991 |
c.374C>A | p.Thr125Asn | missense | patatin-like | [33] | 1 | 0 | 0.999 |
c.488C>T | p.Pro163Leu | missense | patatin-like | [33] | 1 | 0.038 | 0.999 |
c.266C>T | p.Pro89Leu | missense | patatin-like | [24] | 0.993 | 0.038 | 0.999 |
c.335C>A | p.Ser112Tyr | missense | patatin-like | [24] | 0.996 | 0.003 | 0.997 |
c.350C>T | p.Thr117Met | missense | patatin-like | [24] | 1 | 0.001 | 0.999 |
c.418T>C | p.Ser140Pro | missense | patatin-like | [24] | 0.975 | 0.002 | 0.997 |
c.820-820delC | p.Arg274Glyfs*7 | frameshift | outside of the patatin domain | [24] | - | - | 1 |
c.301A>G | p.Arg101Gly | missense | patatin-like | [4] | 0.968 | 0.001 | 0.796 |
c.275delC | p.Pro92Argfs*8 | frameshift | patatin-like | [4] | - | - | 1 |
c.752C>A | p.Ala251Glu | missense | outside of the patatin domain | [4] | 0.905 | 0 | 0.999 |
c.535C>T | p.Gln179* | nonsense | patatin-like | [4] | - | - | 1 |
c.88G>A | p.Gly30Arg | missense | patatin-like | [4] | 1 | 0 | 0.999 |
c.311T>C | p.Leu104Pro | missense | patatin-like | [4] | 0.215 | 0.052 | 0.999 |
c.121delC | p.Arg41Glyfs*17 | frameshift | patatin-like | [4] | - | -- | 1 |
c.667G>A | p.Glu223Lys | missense | outside of the patatin domain | [4] | 0.983 | 0.051 | 0.986 |
c.704delC | p.Pro235Argfs*4 | frameshift | outside of the patatin domain | [4] | - | - | 1 |
c.434T>C | p.Ile145Thr | missense | patatin-like | [4] | 0.986 | 0 | 0.985 |
c.536A>G | p.Gln179Arg | missense | patatin-like | [4] | 0.999 | 0.279 | 0.982 |
c.158C>T | p.Ser53Leu | missense | patatin-like | [4] | 1 | 0.009 | 0.989 |
c.496C>T | p.Arg166Cys | missense | patatin-like | [4] | 1 | 0 | 0.999 |
c.775+3A>T | - | splice site | patatin-like | [4] | - | - | - |
c.1143delC | p.Ser382Alafs*74 | frameshift | outside of the patatin domain | [4] | - | - | 1 |
c.464C>T | p.Pro155Leu | missense | patatin-like | [39] | 1 | 0 | 0.999 |
c.92C>A | p.Ala31Asp | missense | patatin-like | [39] | 0.999 | 0.005 | 0.999 |
c.448T>C | p.Cys150Arg | missense | patatin-like | [39] | 1 | 0 | 0.999 |
c.1300delG; | p.Ala434fs | early termination | outside of the patatin domain | [39] | - | - | 1 |
c.646T>C | p.Cys216Arg | missense | distal to the patatin domain | [39] | 0.557 | 0.306 | 0.997 |
c.362A>C | p.His121Pro | missense | patatin-like | [39] | 1 | 0.009 | 0.937 |
c.438+2C>G | - | splice site | patatin-like | [39] | - | - | - |
c.939G>T c.940-952del. TGGGTTCCCAAAG | p.Glu313Dfs | early termination | outside of the patatin domain | [39] | - | - | - |
c.704C>T | p.Pro235Leu | missense | distal to the patatin domain | [39] | 1 | 0.019 | 0.999 |
c.157T>C | p.Ser53Pro | missense | patatin-like | [39] | 1 | 0.001 | 0.971 |
c.158C>G | p.Ser53Trp | missense | patatin-like | [39] | 1 | 0 | 0.999 |
c.733-735delTAC | p.Tyr245del | frameshift | outside of the patatin domain | [40] | - | - | 0.999 |
c.700C>T | p.Pro234Ser | missense | outside of the patatin domain | [41] | 1 | 0.01 | 0.999 |
c.233G>A | p.Gly78Asp | missense | patatin-like | [42] | 0.966 | 0.206 | 0.579 |
c.527C>T | p.Thr176Met | missense | patatin-like | [42] | 1 | 0 | 0.978 |
c.614C>T | p.Pro205Leu | missense | patatin-like | [43] | 1 | 0.009 | 0.999 |
c.1108-1109delinsTC | p.Pro370* | Indel | outside of the patatin domain | [44] | - | - | - |
c.206-1G>T | - | Splice site | patatin-like | [44] | - | - | - |
c.282dup | p.Lys95* | nonsense | patatin-like | [45] | - | - | 1 |
c.729C>G | p.Tyr243* | nonsense | outside of the patatin domain | [45] | - | - | 1 |
c.892C>T | p.Arg298* | nonsense | outside of the patatin domain | [35] | - | - | 0.999 |
c.417-418- delinsTC | p.Ser140Pro | missense | patatin-like | [45] | - | - | - |
c.762C>G | p.Tyr254* | nonsense | outside of the patatin domain | [34] | - | - | 1 |
c.604delC | p.Arg202Glyfs*27 | frameshift | outside of the patatin domain | [46] | - | - | 1 |
c.738-742delins | p.Gly247-Tyr248delins | in-frame | outside of the patatin domain | [46] | - | - | - |
c.816dupC | p.Arg274Profs*15 | frameshift | outside of the patatin domain | [46] | - | - | 1 |
c.820dupC | P.Arg274Profs*15 | frameshift | outside of the patatin domain | [46] | - | - | 1 |
c.424delG | p.E142Rfs*26 | frameshift | patatin-like | [47] | - | - | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, F.; Qin, W.; Huang, F.; Chang, P. PNPLA1-Mediated Acylceramide Biosynthesis and Autosomal Recessive Congenital Ichthyosis. Metabolites 2022, 12, 685. https://doi.org/10.3390/metabo12080685
Zeng F, Qin W, Huang F, Chang P. PNPLA1-Mediated Acylceramide Biosynthesis and Autosomal Recessive Congenital Ichthyosis. Metabolites. 2022; 12(8):685. https://doi.org/10.3390/metabo12080685
Chicago/Turabian StyleZeng, Fansi, Wenzhen Qin, Feifei Huang, and Pingan Chang. 2022. "PNPLA1-Mediated Acylceramide Biosynthesis and Autosomal Recessive Congenital Ichthyosis" Metabolites 12, no. 8: 685. https://doi.org/10.3390/metabo12080685
APA StyleZeng, F., Qin, W., Huang, F., & Chang, P. (2022). PNPLA1-Mediated Acylceramide Biosynthesis and Autosomal Recessive Congenital Ichthyosis. Metabolites, 12(8), 685. https://doi.org/10.3390/metabo12080685