NMR Metabolomics in Serum Fingerprinting of Schizophrenia Patients in a Serbian Cohort
Abstract
:1. Introduction
2. Results
2.1. Chemometrics
2.1.1. Exploratory Analysis
2.1.2. PCA Models
2.1.3. OPLS-DA Models
2.1.4. PLS-DA for Unequal Class Size
2.1.5. Discriminatory Metabolites and Variable Importance in Projection Signatures
2.2. NMR Analyses
3. Discussion
4. Materials and Methods
4.1. Sampling and Sample Preparation
4.2. Chemometrics
4.2.1. Software
4.2.2. Reading in Data
4.2.3. Peak Alignment
4.2.4. Data Pretreatment (Preprocessing)
4.2.5. Cross-Validation (CV)
4.2.6. Transformation and Scaling
4.3. NMR
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vos, T.; Barber, R.M.; Bell, B.; Bertozzi-Villa, A.; Biryukov, S.; Bolliger, I.; Charlson, F.; Davis, A.; Degenhardt, L.; Dicker, D.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 386, 743–800. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Schizophrenia. Available online: https://www.who.int/news-room/fact-sheets/detail/schizophrenia (accessed on 23 March 2022).
- World Health Organization. Mental Disorders. Available online: https://www.who.int/news-room/fact-sheets/detail/mental-disorders (accessed on 23 March 2022).
- Zhu, B.; Ascher-Svanum, H.; Faries, D.E.; Peng, X.; Salkever, D.; Slade, E.P. Costs of treating patients with schizophrenia who have illness-related crisis events. BMC Psychiatry 2008, 8, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa, W.B.; de Oliveira Costa, J.; de Lemos, L.L.P.; Gomes, R.M.; de Oliveira, H.N.; Ruas, C.M.; de Assis Acurcio, F.; Barbui, C.; Bennie, M.; Godman, B.; et al. Costs in the Treatment of Schizophrenia in Adults Receiving Atypical Antipsychotics: An 11-Year Cohort in Brazil. Appl. Health Econ. Health Policy 2018, 16, 697–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaiyakunapruk, N.; Chong, H.Y.; Teoh, S.L.; Wu, D.B.-C.; Kotirum, S.; Chiou, C.-F. Global economic burden of schizophrenia: A systematic review. Neuropsychiatr. Dis. Treat. 2016, 12, 357–373. [Google Scholar] [CrossRef] [Green Version]
- Bzdok, D.; Meyer-Lindenberg, A. Machine Learning for Precision Psychiatry: Opportunities and Challenges. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Gowda, N.; Raftery, D. Can NMR solve some significant challenges in metabolomics? J. Magn. Reson. 2015, 260, 144–160. [Google Scholar] [CrossRef] [Green Version]
- Tasic, L.; Pontes, J.G.M.; Carvalho, M.S.; Cruz, G.; Dal Mas, C.; Sethi, S.; Pedrini, M.; Rizzo, L.B.; Zeni-Graiff, M.; Asevedo, E.; et al. Metabolomics and lipidomics analyses by 1H nuclear magnetic resonance of schizophrenia patient serum reveal potential peripheral biomarkers for diagnosis. Schizophr. Res. 2017, 185, 182–189. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, J.; Chen, Y.; Feng, R. Metabolomics strategy assisted by transcriptomics analysis to identify biomarkers associated with schizophrenia. Anal. Chim. Acta. 2020, 1140, 18–29. [Google Scholar] [CrossRef]
- Wang, T.; Li, P.; Meng, X.; Zhang, J.; Liu, Q.; Jia, C.; Meng, N.; Zhu, K.; Lv, D.; Sun, L.; et al. An integrated pathological research for precise diagnosis of schizophrenia combining LC-MS/1H NMR metabolomics and transcriptomics. Clin. Chim. Acta. 2022, 524, 84–95. [Google Scholar] [CrossRef]
- Tasic, L.; Larcerda, A.T.L.; Pontes, J.G.M.; da Costa, T.B.B.C.; Nani, J.; Martins, L.G.; Santos, L.; Nunes, M.F.Q.; Adelino, M.P.M.; Pedrin, M.; et al. Peripheral biomarkers allow differential diagnosis between schizophrenia and bipolar disorder. J. Psychiatr. Res. 2019, 119, 67–75. [Google Scholar] [CrossRef]
- Quintero, M.; Stanisic, D.; Cruz, G.; Pontes, J.G.M.; Costa, T.B.B.C.; Tasic, L. Metabolomic Biomarkers in Mental Disorders: Bipolar Disorder and Schizophrenia. In Reviews on Biomarker Studies in Psychiatric and Neurodegenerative Disorders; Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2019; pp. 271–293. [Google Scholar]
- Pedrini, M.; Cao, B.; Nani, J.V.S.; Cerqueira, R.O.; Mansur, R.B.; Tasic, L.; Hayashi, M.A.F.; McIntyre, R.S.; Brietzke, E. Advances and challenges in development of precision psychiatry through clinical metabolomics on mood and psychotic disorders. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 93, 182–188. [Google Scholar] [CrossRef]
- Pontes, J.G.M.; Brasil, A.J.M.; Cruz, G.C.F.; de Souza, R.N.; Tasic, L. NMR-based metabolomics strategies: Plants, animals and humans. Anal. Methods 2017, 9, 1078–1096. [Google Scholar] [CrossRef]
- Yang, J.; Chen, T.; Sun, L.; Zhao, Z.; Qi, X.; Zhou, K.; Cao, Y.; Wang, X.; Qiu, Y.; Su, M.; et al. Potential metabolite markers of schizophrenia. Mol. Psychiatry 2013, 18, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Babushkina, T.A.; Klimova, T.P.; Peregudov, A.S.; Gryzunov, Y.A.; Smolina, N.V.; Dobretsov, G.E.; Uzbekov, M.G. Study of High-Resolution H1 Nuclear Magnetic Resonance Spectra of the Serum and Its Albumin Fraction in Patients with the First Schizophrenia Episode. Bull. Exp. Biol. Med. 2012, 152, 748–751. [Google Scholar] [CrossRef]
- Kageyama, Y.; Kasahara, T.; Morishita, H.; Mataga, N.; Deguchi, Y.; Tani, M.; Kuroda, K.; Hattori, K.; Yoshida, S.; Inoue, K.; et al. Search for plasma biomarkers in drug-free patients with bipolar disorder and schizophrenia using metabolome analysis. Psychiatry Clin. Neurosci. 2017, 71, 115–123. [Google Scholar] [CrossRef]
- Song, Z.; Wang, H.; Yin, X.; Deng, P.; Jiang, W. Application of NMR metabolomics to search for human disease biomarkers in blood. Clin. Chem. Lab. Med. 2019, 57, 417–441. [Google Scholar] [CrossRef]
- Mednova, I.A.; Chernonosov, A.A.; Kasakin, M.F.; Kornetova, E.G.; Semke, A.V.; Bokhan, N.A.; Koval, V.V.; Ivanova, S.A. Amino Acid and Acylcarnitine Levels in Chronic Patients with Schizophrenia: A Preliminary Study. Metabolites 2021, 11, 34. [Google Scholar] [CrossRef]
- Mednova, I.A.; Boiko, A.S.; Kornetova, E.G.; Parshukova, D.A.; Semke, A.V.; Bokhan, N.A.; Loonen, A.J.M.; Ivanova, S.A. Adipocytokines and Metabolic Syndrome in Patients with Schizophrenia. Metabolites 2020, 10, 410. [Google Scholar] [CrossRef]
- Taniguchi, K.; Sawamura, H.; Ikeda, Y.; Tsuji, A.; Kitagishi, Y.; Matsuda, S. D-Amino Acids as a Biomarker in Schizophrenia. Diseases 2022, 10, 9. [Google Scholar] [CrossRef]
- Juchnowicz, D.; Dzikowski, M.; Rog, J.; Waszkiewicz, N.; Karakuła, K.H.; Zalewska, A.; Maciejczyk, M.; Karakula-Juchnowicz, H. Pro/Antioxidant State as a Potential Biomarker of Schizophrenia. J. Clin. Med. 2021, 10, 4156. [Google Scholar] [CrossRef]
- Barnett, B.R.; Fathi, F.; Falco Cobra, P.; Yi, S.Y.; Anderson, J.M.; Eghbalnia, H.R.; Markley, J.L.; Yu, J.-P.J. Metabolic Changes in Synaptosomes in an Animal Model of Schizophrenia Revealed by 1H and 1H,13C NMR Spectroscopy. Metabolites 2020, 10, 79. [Google Scholar] [CrossRef] [Green Version]
- Holmes, E.; Tsang, T.M.; Huang, J.T.-J.; Leweke, F.M.; Koethe, D.; Gerth, C.W.; Nolden, B.M.; Gross, S.; Schreiber, D.; Nicholson, J.K.; et al. Metabolic Profiling of CSF: Evidence That Early Intervention May Impact on Disease Progression and Outcome in Schizophrenia. PLoS Med. 2006, 3, e327. [Google Scholar] [CrossRef] [Green Version]
- Xuan, J.; Pan, G.; Qiu, Y.; Yang, L.; Su, M.; Liu, Y.; Chen, J.; Feng, G.; Fang, Y.; Jia, W.; et al. Metabolomic profiling to identify potential serum biomarkers for schizophrenia and risperidone action. J. Proteome Res. 2011, 10, 5433–5443. [Google Scholar] [CrossRef]
- World Health Organization. Mental Health Action Plan 2013–2020. Available online: https://www.who.int/publications/i/item/9789241506021 (accessed on 5 June 2022).
- Cloarec, O.; Dumas, M.E.; Trygg, J.; Craig, A.; Barton, R.H.; Lindon, J.C.; Nicholson, J.K.; Holmes, E. Evaluation of the Orthogonal Projection on Latent Structure Model Limitations Caused by Chemical Shift Variability and Improved Visualization of Biomarker Changes in 1H NMR Spectroscopic Metabonomic Studies. Anal. Chem. 2005, 77, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Trygg, J.; Wold, S. Orthogonal projections to latent structures (O-PLS). J. Chemom. 2002, 16, 119–128. [Google Scholar] [CrossRef]
- Wiklund, S.; Johansson, E.; Sjöström, L.; Mellerowicz, E.J.; Edlund, U.; Shockcor, J.P.; Gottfries, J.; Moritz, T.; Trygg, J. Visualization of GC/TOF-MS-Based Metabolomics Data for Identification of Biochemically Interesting Compounds Using OPLS Class Models. Anal. Chem. 2008, 80, 115–122. [Google Scholar] [CrossRef]
- Cloarec, O.; Dumas, M.-E.; Craig, A.; Barton, R.H.; Trygg, J.; Hudson, J.; Blancher, C.; Gauguier, D.; Lindon, J.C.; Holmes, E.; et al. Statistical Total Correlation Spectroscopy: An Exploratory Approach for Latent Biomarker Identification from Metabolic 1H NMR Data Sets. Anal. Chem. 2005, 77, 1282–1289. [Google Scholar] [CrossRef] [PubMed]
- Eigenvector Research Incorporated. Available online: http://www.eigenvector.com (accessed on 23 March 2022).
- Pérez, N.F.; Ferré, J.; Boqué, R. Calculation of the reliability of classification in discriminant partial least-squares binary classification. Chemom. Intell. Lab. Syst. 2009, 95, 122–128. [Google Scholar] [CrossRef]
- Eriksson, L.; Byrne, T.; Johansson, E.; Trygg, J.; Vikström, C. Multi- and Megavariate Data Analysis Basic Principles and Applications, 1st ed.; Umetrics Academy: Malmö, Sweden, 2013. [Google Scholar]
- Brereton, R.G.; Lloyd, G.R. Partial least squares discriminant analysis: Taking the magic away. J. Chemom. 2014, 28, 213–225. [Google Scholar] [CrossRef]
- Mehmood, T.; Liland, K.H.; Snipen, L.; Sæbø, S. A review of variable selection methods in Partial Least Squares Regression. Chemom. Intell. Lab. Syst. 2012, 118, 62–69. [Google Scholar] [CrossRef]
- Galindo-Prieto, B.; Eriksson, L.; Trygg, J. Variable influence on projection (VIP) for orthogonal projections to latent structures (OPLS). J. Chemom. 2014, 28, 623–632. [Google Scholar] [CrossRef]
- Rajalahti, T.; Arneberg, R.; Berven, F.S.; Myhr, K.-M.; Ulvik, R.J.; Kvalheim, O.M. Biomarker discovery in mass spectral profiles by means of selectivity ratio plot. Chemom. Intell. Lab. Syst. 2009, 95, 35–48. [Google Scholar] [CrossRef]
- Li, X.; Xu, Z.; Lu, X.; Yang, X.; Yin, P.; Kong, H.; Yu, Y.; Xu, G. Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for metabonomics: Biomarker discovery for diabetes mellitus. Anal. Chim. Acta 2009, 633, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Sun, L.; Zhao, A.; Hu, X.; Qing, Y.; Jiang, J.; Yang, C.; Xu, T.; Wang, P.; Liu, J.; et al. Serum fatty acid patterns in patients with schizophrenia: A targeted metabolomics study. Transl. Psychiatry 2017, 7, 1176–1181. [Google Scholar] [CrossRef]
- MathWorks. MathWorks Announces Release 2019a of MATLAB and Simulink. MATLAB, The MathWorks Inc. 2019. Available online: https://www.mathworks.com/products/statistics.html (accessed on 22 March 2022).
- Castañar, L.; Poggetto, G.D.; Colbourne, A.A.; Morris, G.A.; Nilsson, M. The GNAT: A new tool for processing NMR data. Magn. Reson. Chem. 2018, 56, 546–558. [Google Scholar] [CrossRef] [Green Version]
- Van Beek, J.D. matNMR: A flexible toolbox for processing, analyzing and visualizing magnetic resonance data in Matlab®. J. Magn. Reson. 2007, 187, 19–26. [Google Scholar] [CrossRef]
- Savorani, F.; Tomasi, G.; Engelsen, S.B. icoshift: A versatile tool for the rapid alignment of 1D NMR spectra. J. Magn. Reson. 2010, 202, 190–202. [Google Scholar] [CrossRef]
- Euceda, L.R.; Giskeødegård, G.F.; Bathen, T.F. Preprocessing of NMR metabolomics data. Scand. J. Clin. Lab. Investig. 2015, 75, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Sousa, S.A.A.; Magalhães, A.; Ferreira, M.M.C. Optimized bucketing for NMR spectra: Three case studies. Chemom. Intell. Lab. Syst. 2013, 122, 93–102. [Google Scholar] [CrossRef]
- Worley, B.; Powers, R. Generalized adaptive intelligent binning of multiway data. Chemom. Intell. Lab. Syst. 2015, 146, 42–46. [Google Scholar] [CrossRef] [Green Version]
- Dieterle, F.; Ross, A.; Schlotterbeck, G.; Senn, H. Probabilistic Quotient Normalization as Robust Method to Account for Dilution of Complex Biological Mixtures. Application in 1H NMR Metabonomics. Anal. Chem. 2006, 78, 4281–4290. [Google Scholar] [CrossRef]
Actual Class | ||
---|---|---|
Schizophrenia | Control | |
Predicted as Schizophrenia | 30 | 0 |
Predicted as Control | 2 | 39 |
Predicted as Unassigned | 0 | 0 |
No | Metabolites/Biomarkers | TOCSY Correlations (δH, ppm) | 2DJ ((δH (ppm), Multiplicity, J (Hz)) | HSQC (δH/δc (ppm)) |
---|---|---|---|---|
1 | Lactate/lactic acid | 4.10; 1.31 | CH3: 1.31, d, 6.98; CH: 4.10 q, 7.0 | 1.32/22.79, 4.098/71.25 |
2 | Threonine | 1.31; 3.56; 4.24 | CH3: 1.32, d, overlapped with lactate; CH: 3.56 d, 5.0; CH2: 4.23 dd, 4.9, 6.6, overlapped with acylglycerol | 1.34/22.54, 3.55/63.42, 4.24 |
3 | Leucine | 0.95; 1.71; 3.71 | CH3: 0.94, d, 6.24; CH3: 0.95, d, 6.24 | 0.94/23.41, 0.95/24.72, 1.71/42.70, 3.71 |
4 | Valine | 0.98; 1.03; 2.27; 3.62 | CH3: 0.97, d, 7.00; CH3: 1.03, d, 7.00; CH: 3.59 d, 4.39 | 0.97/19.26, 1.02/20.6, 2.27, 3.59/63.27 |
5 | Glutamine | 2.12; 2.44; 3.74 | CH2: 2.12 m; CH2: 2.44 m | 2.12/29.27, 2.43/33.61, 3.74/57.11 |
6 | Glutamate/glutamic acid | 2.05; 2.35; 3.75 | CH2: 2.04, m and 2.11 m | 2.0/29.68, 2.34/36.28, 3.74/57.11 |
7 | Citrate/citric acid | 2.51; 2.68 | CH2: 2.51 d, 16.0; CH2: 2.68 d, 16.0 | - |
8 | Aspartate/aspartic acid | 2.68; 2.80; 3.88 | CH2: 2.66, dd, 8.8, 17.5 and 2.80, dd 3.8, 17.4 | 3.80/54.56 |
9 | Asparagine | 2.83; 2.92; 3.96 | CH2: 2.82 ABX, m, 4.2, 17.0 and 2.93 ABX, m, 7.8, 16.6 | - |
10 | Alanine | 1.46; 3.77 | CH3: 1.46, d, 7.26 | 3.76/53.21 |
11 | 3- Hydroxybutyric acid | 1.19; 2.34; 4.12 | CH3: 1.19 d, 6.4; CH2: 2.40, dd, 7.2, 14.4 and 2.29 dd, 6.4, 14.4 | - |
12 | Gamma-aminobutyric acid | 1.9; 3.03 | CH2: 3.04, t, 7.6 | - |
13 | Choline | 3.50; 4.05 | CH2: 4.05 m | 4.05/58.35 |
14 | Acylglycerols | 4.07; 4.27; 5.20 | CH2: 4.10 m, 4.23 m overlapped | 4.26 and 4.05/64.40; 5.19/71.58 |
15 | Glucose (α + β) | 3.40; 3.52; 3.7; 3.75; 5.10; 5.22 | CH-4: 3.40 m; CH-2: 3.52 dd, 3.7, 9.7; CH-3: 3.70 m (overlapped); CH2-6: 3.75 dd, 5.1, 12.0 and 3.83 m; CH-5: 3.82 m; CH-1: 5.22 d, 3.9 | - |
16 | Arginine | 4.07; 4.27; 5.20 | 3.23 t, 6.6; 1.70, m and 1.64, m | - |
17 | Lysine | 1.70; 1.89; 3.03; 3.74 | 1.91 m | - |
18 | 2-Hydroxybutyric acid | - | CH3: 0.88, t, 7.50; CH2: 1.70, m and 1.64, m or arginine | - |
19 | Isoleucine | - | CH3: 0.92, t, 7.4; CH3: 0.99, d, 7.0; 3.65 d, 4.04 | - |
20 | Serin | - | CH2: 3.97, dd, 3.8, 12.2 and 3.92, dd 5.7, 12.2; CH: 3.82 overlapped | 3.95/62.94, 3.81/59.2 |
21 | Mannose | - | CH: 3.55 t, 9.4; CH: 3.79 m; CH: 3.84 dd, 2.2, 4.0; CH: 3.95 m; CH: 5.17, d 1.4 | - |
22 | Glycine | - | CH2: 3.54 s | - |
23 | Glycerol | - | CH2: 3.64 and 3.55 m; CH: 3.70 m (overlapped) | 3.63 and 3.55/65.31 |
24 | Tyrosine | 6.88; 7.18 | CH: 3.96, dd, 5.0, 8.1 or phenylalanine; Ar: 6.88 and 7.18 | 3.95/58.78, Ar: 6.88/118.6, 7.18/133.4 |
25 | Phenylalanine | 7.30; 7.36; 7.42 | Ar: 7.30 m, 7.37 m, 7.41 m | Ar: 7.31/132.01, 7.40/131.80 |
26 | PABA | 6.93; 7.80 | - | - |
No | Metabolites/Biomarkers | Serbian Serum Samples | Brazilian Serum Samples | Chines Serum Samples | References |
---|---|---|---|---|---|
1 | Lactate/lactic acid | + | + | + | [9,10,12] |
2 | Threonine | + | + | + | [9,10] |
3 | Leucine | + | + | + | [10,12] |
4 | Valine | + | + | + | [9,10,11,12] |
5 | Glutamine | + | + | + | [9,10,12] |
6 | Glutamate/glutamic acid | + | + | − | [9] |
7 | Citrate/citric acid | + | − | + | [10] |
8 | Aspartate/aspartic acid | + | − | − | - |
9 | Asparagine | + | + | + | [9,10,11] |
10 | Alanine | + | + | + | [9,10,11,12] |
11 | 3-Hydroxybutyric acid | + | − | + | [10] |
12 | Gamma-aminobutyric acid | + | + | + | [9,11,12] |
13 | Choline | + | + | + | [10,12] |
14 | Acylglycerols | + | − | − | - |
15 | Glucose | + | + | + | [9,10,12] |
16 | Arginine | + | − | + | [10] |
17 | Lysine | + | − | − | - |
18 | 2-Hydroxybutyric acid | + | − | − | - |
19 | Isoleucine | + | + | + | [9,10,12] |
20 | Serin | + | + | − | [9] |
21 | Mannose | + | + | − | [9] |
22 | Glycine | + | + | + | [9,10,12] |
23 | Glycerol | + | − | + | [10,11] |
24 | Tyrosine | + | + | + | [10,12] |
25 | Phenylalanine | + | + | − | [9,12] |
26 | PABA | + | + | − | [9] |
27 | Acetylcholine | − | + | − | [12] |
28 | Mannitol | − | + | − | [9,12] |
29 | Amygdalin | − | + | − | [9] |
30 | Lipoamide | − | + | − | [12] |
31 | Myo-inositol | − | + | + | [10,12] |
32 | Proline | − | − | + | [10] |
33 | Acetyl-glycoprotein | − | − | + | [10] |
34 | Pyruvate | − | − | + | [10,11] |
35 | Dimethylamine | − | − | + | [10,11] |
36 | Creatine | − | + | + | [10,12] |
37 | Taurine | − | − | + | [10,11] |
38 | 3-Methylhistidine | − | − | + | [10] |
39 | Hypotaurine | − | − | + | [11] |
40 | Malonate | − | − | + | [11] |
41 | Guanidinoacetic acid | − | − | + | [11] |
42 | Propylene glycol | − | − | + | [11] |
43 | Threitol | − | − | + | [11] |
44 | Acetoacetate | − | − | + | [11] |
45 | Methymalonic acid | − | − | + | [11] |
46 | Malic acid | − | − | + | [11] |
47 | N-Acetylglycine | − | − | + | [11] |
48 | Dimethylglycine | − | − | + | [11] |
49 | Betaine | − | − | + | [11] |
50 | Arabitol | − | − | + | [11] |
51 | Xylitol | − | − | + | [11] |
52 | Phosphocholine | − | + | − | [11,12] |
53 | 2-Methylglutaric acid | − | − | + | [11] |
54 | Fructose | − | − | + | [11] |
55 | D-Gluconic acid | − | − | + | [11] |
56 | Galactitol | − | − | + | [11] |
57 | Homovanillic acid | − | − | + | [11] |
58 | Methylamine | − | − | + | [11] |
59 | 6-Hydroxydopamine | − | + | − | [12] |
60 | Isovaleryl carnitine | − | + | − | [12] |
61 | Pantothenate | − | + | − | [9,12] |
62 | Guanine | − | + | − | [9] |
63 | 3-methyl-2-oxobutunoic acid | − | + | − | [9] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simić, K.; Todorović, N.; Trifunović, S.; Miladinović, Z.; Gavrilović, A.; Jovanović, S.; Avramović, N.; Gođevac, D.; Vujisić, L.; Tešević, V.; et al. NMR Metabolomics in Serum Fingerprinting of Schizophrenia Patients in a Serbian Cohort. Metabolites 2022, 12, 707. https://doi.org/10.3390/metabo12080707
Simić K, Todorović N, Trifunović S, Miladinović Z, Gavrilović A, Jovanović S, Avramović N, Gođevac D, Vujisić L, Tešević V, et al. NMR Metabolomics in Serum Fingerprinting of Schizophrenia Patients in a Serbian Cohort. Metabolites. 2022; 12(8):707. https://doi.org/10.3390/metabo12080707
Chicago/Turabian StyleSimić, Katarina, Nina Todorović, Snežana Trifunović, Zoran Miladinović, Aleksandra Gavrilović, Silvana Jovanović, Nataša Avramović, Dejan Gođevac, Ljubodrag Vujisić, Vele Tešević, and et al. 2022. "NMR Metabolomics in Serum Fingerprinting of Schizophrenia Patients in a Serbian Cohort" Metabolites 12, no. 8: 707. https://doi.org/10.3390/metabo12080707
APA StyleSimić, K., Todorović, N., Trifunović, S., Miladinović, Z., Gavrilović, A., Jovanović, S., Avramović, N., Gođevac, D., Vujisić, L., Tešević, V., Tasić, L., & Mandić, B. (2022). NMR Metabolomics in Serum Fingerprinting of Schizophrenia Patients in a Serbian Cohort. Metabolites, 12(8), 707. https://doi.org/10.3390/metabo12080707