Linoleate-Rich Safflower Oil Diet Increases Linoleate-Derived Bioactive Lipid Mediators in Plasma, and Brown and White Adipose Depots of Healthy Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dietary Oil Fatty Acid Analysis
2.2. Experimental Animals, Diets, and Study Design
2.3. Measurement of Fasting Blood Glucose
2.4. Plasma Adiponectin and High-Molecular-Weight (HMW) Adiponectin
2.5. EchoMRI for Body Composition
2.6. Targeted Lipidomic and Quantification of Adipose Tissue and Plasma Lipid Mediators
2.7. Statistical Analysis
3. Results
3.1. Effect of Palm-Oil-Rich and Linoleate-Rich Safflower Oil Low-Fat Diets on Physiological Parameters
3.2. Impact of POLF and SOLF Diets on Brown and White Adipose Tissue and Plasma Lipid Mediators
3.2.1. Univariate Analysis
3.2.2. Multivariate Analysis
3.3. Diet-Independent Changes in Lipid Mediators and Relationship to Physiological Measures
3.4. Diet-Dependent Differences in BAT and Plasma Lipid Mediator Levels Are Strongly Correlated
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gustafson, B.; Hedjazifar, S.; Gogg, S.; Hammarstedt, A.; Smith, U. Insulin resistance and impaired adipogenesis. Trends Endocrinol. Metab. 2015, 26, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Virtue, S.; Vidal-Puig, A. Adipose tissue expandability, lipotoxicity and the Metabolic Syndrome—An allostatic perspective. Biochim. Biophys. Acta 2010, 1801, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Lutsey, P.L.; Steffen, L.M.; Stevens, J. Dietary Intake and the Development of the Metabolic Syndrome. Circulation 2008, 117, 754–761. [Google Scholar] [CrossRef]
- Kersten, S.; Desvergne, B.; Wahli, W. Roles of PPARs in health and disease. Nature 2000, 405, 421–424. [Google Scholar] [CrossRef]
- Claypool, S.M.; Koehler, C.M. The complexity of cardiolipin in health and disease. Trends Biochem. Sci. 2012, 37, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Functional Roles of Fatty Acids and Their Effects on Human Health. JPEN J. Parenter. Enteral. Nutr. 2015, 39, 18s–32s. [Google Scholar] [CrossRef]
- Gabbs, M.; Leng, S.; Devassy, J.G.; Monirujjaman, M.; Aukema, H.M. Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs. Adv. Nutr. 2015, 6, 513–540. [Google Scholar] [CrossRef] [PubMed]
- Watkins, B.A. Diet, endocannabinoids, and health. Nutr. Res. 2019, 70, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Caligiuri, S.P.B.; Parikh, M.; Stamenkovic, A.; Pierce, G.N.; Aukema, H.M. Dietary modulation of oxylipins in cardiovascular disease and aging. Am. J. Physiol. Heart Circ. Physiol. 2017, 313, H903–H918. [Google Scholar] [CrossRef]
- Borkowski, K.; Pedersen, T.L.; Seyfried, N.T.; Lah, J.J.; Levey, A.I.; Hales, C.M.; Dammer, E.B.; Blach, C.; Louie, G.; Kaddurah-Daouk, R.; et al. Association of plasma and CSF cytochrome P450, soluble epoxide hydrolase, and ethanolamide metabolism with Alzheimer’s disease. Alzheimer’s Res. Ther. 2021, 13, 149. [Google Scholar] [CrossRef] [PubMed]
- Kershaw, E.E.; Flier, J.S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 2004, 89, 2548–2556. [Google Scholar] [CrossRef]
- Stanford, K.I.; Lynes, M.D.; Takahashi, H.; Baer, L.A.; Arts, P.J.; May, F.J.; Lehnig, A.C.; Middelbeek, R.J.W.; Richard, J.J.; So, K.; et al. 12,13-diHOME: An Exercise-Induced Lipokine that Increases Skeletal Muscle Fatty Acid Uptake. Cell Metab. 2018, 27, 1111–1120.e3. [Google Scholar] [CrossRef] [PubMed]
- Pinckard, K.M.; Shettigar, V.K.; Wright, K.R.; Abay, E.; Baer, L.A.; Vidal, P.; Dewal, R.S.; Das, D.; Duarte-Sanmiguel, S.; Hernández-Saavedra, D.; et al. A Novel Endocrine Role for the BAT-Released Lipokine 12,13-diHOME to Mediate Cardiac Function. Circulation 2021, 143, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Barquissau, V.; Ghandour, R.A.; Ailhaud, G.; Klingenspor, M.; Langin, D.; Amri, E.Z.; Pisani, D.F. Control of adipogenesis by oxylipins, GPCRs and PPARs. Biochimie 2017, 136, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L.; Martin, N.; Abdelhamid, A.; Davey Smith, G. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst. Rev. 2015, CD011737. [Google Scholar] [CrossRef] [PubMed]
- Julibert, A.; Bibiloni, M.D.M.; Tur, J.A. Dietary fat intake and metabolic syndrome in adults: A systematic review. Nutr. Metab. Cardiovasc. Dis 2019, 29, 887–905. [Google Scholar] [CrossRef] [PubMed]
- Cardel, M.; Lemas, D.J.; Jackson, K.H.; Friedman, J.E.; Fernandez, J.R. Higher Intake of PUFAs Is Associated with Lower Total and Visceral Adiposity and Higher Lean Mass in a Racially Diverse Sample of Children. J. Nutr. 2015, 145, 2146–2152. [Google Scholar] [CrossRef] [PubMed]
- Barcelos, E.; Rios Sde, A.; Cunha, R.N.; Lopes, R.; Motoike, S.Y.; Babiychuk, E.; Skirycz, A.; Kushnir, S. Oil palm natural diversity and the potential for yield improvement. Front. Plant Sci 2015, 6, 190. [Google Scholar] [CrossRef] [PubMed]
- Carter, C.; Finley, W.; Fry, J.; Jackson, D.; Willis, L. Palm oil markets and future supply. Eur. J. Lipid Sci. Technol. 2007, 109, 307–314. [Google Scholar] [CrossRef]
- Kadandale, S.; Marten, R.; Smith, R. The palm oil industry and noncommunicable diseases. Bull. World Health Organ. 2019, 97, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.H.Y.; Marklund, M.; Imamura, F.; Tintle, N.; Ardisson Korat, A.V.; de Goede, J.; Zhou, X.; Yang, W.-S.; de Oliveira Otto, M.C.; Kröger, J.; et al. Omega-6 fatty acid biomarkers and incident type 2 diabetes: Pooled analysis of individual-level data for 39,740 adults from 20 prospective cohort studies. Lancet Diabetes Endocrinol. 2017, 5, 965–974. [Google Scholar] [CrossRef]
- Belury, M.A.; Cole, R.M.; Bailey, B.E.; Ke, J.Y.; Andridge, R.R.; Kiecolt-Glaser, J.K. Erythrocyte linoleic acid, but not oleic acid, is associated with improvements in body composition in men and women. Mol. Nutr. Food Res. 2016, 60, 1206–1212. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.M.; Lees, M.; Stanley, G.H.S. A simpe method for the isolation and puritfication of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Stoffel, W.; Chu, F.; Ahrens, E.H. Analysis of long-chain fatty acids by gas-liquid chromatography. Anal. Chem. 1959, 31, 307–308. [Google Scholar] [CrossRef]
- Pedersen, T.L.; Gray, I.J.; Newman, J.W. Plasma and serum oxylipin, endocannabinoid, bile acid, steroid, fatty acid and nonsteroidal anti-inflammatory drug quantification in a 96-well plate format. Anal. Chim. Acta 2021, 1143, 189–200. [Google Scholar] [CrossRef]
- Kadowaki, T.; Yamauchi, T.; Kubota, N.; Hara, K.; Ueki, K.; Tobe, K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Investig. 2006, 116, 1784–1792. [Google Scholar] [CrossRef]
- Kubota, N.; Terauchi, Y.; Kubota, T.; Moroi, M.; Matsui, J.; Eto, K.; Yamashita, T.; Kamon, J.; Satoh, H.; Yano, W.; et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J. Biol. Chem. 2002, 277, 25863–25866. [Google Scholar]
- Yamauchi, T.; Kamon, J.; Waki, H.; Terauchi, Y.; Kubota, N.; Hara, K.; Mori, Y.; Ide, T.; Murakami, K.; Tsuboyama-Kasaoka, N.; et al. The fat-derived hormone adiponectin reverses insulin resistance assoiated with both lipoatrophy and obesity. Nat. Med. 2001, 8, 941–946. [Google Scholar] [CrossRef]
- Wolf, A.M.; Wolf, D.; Rumpold, H.; Enrich, B.; Tilg, H. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem. Biophys. Res. Commun. 2004, 323, 630–635. [Google Scholar] [CrossRef]
- Brochu-Gaudreau, K.; Rehfeldt, C.; Blouin, R.; Bordignon, V.; Murphy, B.D.; Palin, M.F. Adiponectin action from head to toe. Endocrine 2010, 37, 11–32. [Google Scholar] [CrossRef]
- Cayer, L.G.J.; Mendonça, A.M.; Pauls, S.D.; Winter, T.; Leng, S.; Taylor, C.G.; Zahradka, P.; Aukema, H.M. Adipose tissue oxylipin profiles vary by anatomical site and are altered by dietary linoleic acid in rats. Prostaglandins Leukot. Essent. Fat. Acids 2019, 141, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Tyurina, Y.Y.; Poloyac, S.M.; Tyurin, V.A.; Kapralov, A.A.; Jiang, J.; Anthonymuthu, T.S.; Kapralova, V.I.; Vikulina, A.S.; Jung, M.Y.; Epperly, M.W.; et al. A mitochondrial pathway for biosynthesis of lipid mediators. Nat. Chem. 2014, 6, 542–552. [Google Scholar] [CrossRef] [PubMed]
- Iwase, H.; Sakurada, K.; Takatori, T.; Nagao, M.; Niijima, H.; Matsuda, Y.; Kobayashi, M. Calcium Ions Potentiate Lipoxygenase Activity of Cytochrome c at the Physiological pH. Biochem. Biophys. Res. Commun. 1998, 243, 485–491. [Google Scholar] [CrossRef]
- Fisk, H.L.; Childs, C.E.; Miles, E.A.; Ayres, R.; Noakes, P.S.; Paras-Chavez, C.; Kuda, O.; Kopecký, J.; Antoun, E.; Lillycrop, K.A.; et al. Modification of subcutaneous white adipose tissue inflammation by omega-3 fatty acids is limited in human obesity-a double blind, randomised clinical trial. eBioMedicine 2022, 77, 103909. [Google Scholar] [CrossRef]
- Madsen, L.; Pedersen, L.M.; Lillefosse, H.H.; Fjære, E.; Bronstad, I.; Hao, Q.; Petersen, R.K.; Hallenborg, P.; Ma, T.; De Matteis, R.; et al. UCP1 Induction during Recruitment of Brown Adipocytes in White Adipose Tissue Is Dependent on Cyclooxygenase Activity. PLoS ONE 2010, 5, e11391. [Google Scholar] [CrossRef]
- Vegiopoulos, A.; Müller-Decker, K.; Strzoda, D.; Schmitt, I.; Chichelnitskiy, E.; Ostertag, A.; Berriel Diaz, M.; Rozman, J.; Hrabe de Angelis, M.; Nüsing, R.M.; et al. Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science 2010, 328, 1158–1161. [Google Scholar] [CrossRef]
- Paschos, G.K.; Tang, S.Y.; Theken, K.N.; Li, X.; Verginadis, I.; Lekkas, D.; Herman, L.; Yan, W.; Lawson, J.; FitzGerald, G.A. Cold-Induced Browning of Inguinal White Adipose Tissue Is Independent of Adipose Tissue Cyclooxygenase-2. Cell Rep. 2018, 24, 809–814. [Google Scholar] [CrossRef]
- Zahradka, P.; Neumann, S.; Aukema, H.M.; Taylor, C.G. Adipocyte lipid storage and adipokine production are modulated by lipoxygenase-derived oxylipins generated from 18-carbon fatty acids. Int. J. Biochem. Cell Biol. 2017, 88, 23–30. [Google Scholar] [CrossRef]
- Tsuchida, A.; Yamauchi, T.; Takekawa, S.; Hada, Y.; Ito, Y.; Maki, T.; Kadowaki, T. Peroxisome proliferator-activated receptor (PPAR)alpha activation increases adiponectin receptors and reduces obesity-related inflammation in adipose tissue: Comparison of activation of PPARalpha, PPARgamma, and their combination. Diabetes 2005, 54, 3358–3370. [Google Scholar] [CrossRef]
- Leonardini, A.; Laviola, L.; Perrini, S.; Natalicchio, A.; Giorgino, F. Cross-Talk between PPARgamma and Insulin Signaling and Modulation of Insulin Sensitivity. PPAR Res. 2009, 2009, 818945. [Google Scholar] [CrossRef]
- Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Dragicevic, M.; Ero, J.; Del Valle, A.E.; et al. Search for a heavy pseudoscalar boson decaying to a Z and a Higgs boson at √s=13TeV. Eur. Phys. J. C Part Fields 2019, 79, 564. [Google Scholar] [CrossRef] [PubMed]
- Cipolletta, D.; Feuerer, M.; Li, A.; Kamei, N.; Lee, J.; Shoelson, S.E.; Benoist, C.; Mathis, D. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 2012, 486, 549–553. [Google Scholar] [CrossRef] [PubMed]
Metabolite | Enzyme | BAT | WAT | Plasma | Average Fold Difference in SOLF vs. POLF | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
POLF Mean ± 95% CI (pmol/g) | SOLF Mean ± 95% CI (pmol/g) | t-Test p-Value | POLF Mean ± 95% CI (pmol/g) | SOLF Mean ± 95% CI (pmol/g) | t-Test p-Value | POLF Mean ± 95% CI (nM) | SOLF Mean ± 95% CI (nM) | t-Test p-Value | BAT | WAT | Plasma | ||||
PGs | 20:4n6 | 6-keto-PGF1a | COX1 | 15.4 ± 4.30 | 27.5 ± 8.45 | 0.01 | 13.7 ± 6.94 | 19.9 ± 6.91 | 0.01 | 2.84 ± 2.01 | 2.32 ± 1.79 | 0.64 | 1.76 | 1.46 | 0.81 |
PGE2 | COX2 | 21.7 ± 7.81 | 39.2 ± 15.3 | 0.03 | 21.8 ± 11.6 | 38.5 ± 14.7 | 0.15 | 0.85 ± 0.85 | 1.12 ± 0.66 | 0.18 | 1.81 | 1.81 | 1.31 | ||
PGF2a | COX2 | 6.42 ± 1.93 | 15.2 ± 5.41 | 0.006 | 5.36 ± 2.17 | 10.7 ± 2.80 | 0.02 | 0.97 ± 0.51 | 2.34 ± 2.06 | 0.82 | 2.37 | 1.99 | 1.38 | ||
Hydroxyls | 18:2n6 | 13-HODE | LOX | 415 ± 164 | 1801 ± 811 | <0.001 | 996 ± 401 | 3065 ± 755 | <0.001 | 16.3 ± 5.60 | 72.0 ± 36.0 | <0.001 | 4.34 | 3.08 | 4.43 |
9-HODE | LOX | 248 ± 76.9 | 1160 ± 525 | <0.001 | 587 ± 232 | 1762 ± 414 | <0.001 | 8.14 ± 3.45 | 28.9 ± 12.8 | <0.001 | 4.67 | 2.99 | 3.55 | ||
20:4n6 | 15-HETE | LOX | 32.9 ± 9.63 | 71.4 ± 17.4 | <0.001 | 49.1 ± 13.4 | 109.4 ± 41.3 | 0.009 | 8.92 ± 4.75 | 22.8 ± 20.2 | 0.21 | 2.17 | 2.23 | 2.55 | |
12-HETE | LOX | 94.1 ± 37.4 | 235 ± 90.5 | 0.002 | 136 ± 65.8 | 276 ± 132 | 0.059 | 584 ± 276 | 1834 ± 1505 | 0.16 | 2.5 | 2.03 | 3.13 | ||
11-HETE | LOX | 14.4 ± 3.65 | 34.7 ± 10.7 | 0.002 | 16.3 ± 4.84 | 31.8 ± 4.57 | <0.001 | 7.35 ± 4.07 | 17.9 ± 15.4 | 0.25 | 2.41 | 1.95 | 2.43 | ||
9-HETE | Auto | 7.28 ± 1.86 | 15.3 ± 6.75 | 0.084 | 6.81 ± 2.58 | 13.7 ± 3.26 | 0.01 | 1.43 ± 0.95 | 0.79 ± 0.19 | 0.74 | 2.1 | 2.01 | 0.55 | ||
8-HETE | LOX | 15.6 ± 8.50 | 24.3 ± 7.35 | 0.098 | 15.8 ± 4.87 | 36.4 ± 12.09 | 0.004 | ND | ND | - | 2.09 | 2.31 | - | ||
5-HETE | LOX | 19.2 ± 5.03 | 35.6 ± 12.2 | 0.053 | 14.8 ± 3.82 | 32.9 ± 9.46 | 0.005 | 16.8 ± 13.7 | 13.1 ± 1.7 | 0.80 | 2.02 | 2.23 | 0.77 | ||
Diols | 20:4n6 | 6-trans-LTB4 | LOX | 0.55 ± 0.22 | 0.99 ± 0.41 | 0.11 | 0.72 ± 0.30 | 1.38 ± 0.27 | 0.006 | ND | ND | - | 1.78 | 1.91 | - |
20:5n3 | 8,15-DiHETE | LOX | 7.03 ± 1.60 | 14.0 ± 5.17 | 0.03 | 6.81 ± 2.45 | 15.2 ± 4.09 | 0.005 | ND | ND | - | 1.95 | 2.23 | - | |
Triol | 18:2n6 | 9,12,13-TriHOME (%) | Auto | 96.7 ± 33.9 | 283 ± 148 | 0.009 | 227 ± 150 | 294 ± 107 | 0.28 | ND | ND | - | 2.92 | 1.29 | - |
Epoxides | 18:2n6 | 12(13)-EpOME | CYP | 16.4 ± 4.71 | 56.8 ± 19.9 | <0.001 | 39.4 ± 17.1 | 97.4 ± 34.1 | 0.01 | 1.23 ± 0.33 | 5.31 ± 1.73 | <0.001 | 3.47 | 2.47 | 4.3 |
9(10)-EpOME | CYP | 18.7 ± 5.96 | 70.6 ± 28.2 | <0.001 | 42.4 ± 17.6 | 117 ± 46.1 | 0.007 | 0.57 ± 0.26 | 1.03 ± 0.45 | 0.25 | 3.77 | 2.76 | 1.81 | ||
9(10)-EpODE | CYP | 1.44 ± 0.44 | 5.03 ± 3.30 | 0.02 | 3.72 ± 1.64 | 20.0 ± 19.2 | 0.054 | ND | ND | - | 3.51 | 5.38 | - | ||
20:4n6 | 14(15)-EpETrE | CYP | 3.63 ± 0.77 | 6.29 ± 1.73 | 0.02 | 3.85 ± 0.86 | 5.31 ± 0.81 | 0.04 | 0.72 ± 0.25 | 1.17 ± 0.49 | 0.22 | 1.73 | 1.37 | 1.62 | |
11(12)-EpETrE | CYP | 2.07 ± 0.52 | 3.35 ± 1.00 | 0.04 | 1.88 ± 0.60 | 2.83 ± 0.49 | 0.04 | 0.37 ± 0.09 | 0.56 ± 0.15 | 0.084 | 1.62 | 1.5 | 1.49 | ||
Vicinal Diols | 18:2n6 | 12,13-DiHOME | sEH | 21.8 ± 4.36 | 83.0 ± 31.1 | <0.001 | 29.8 ± 9.88 | 108.9 ± 24.3 | <0.001 | 8.71 ± 1.84 | 34.1 ± 12.9 | <0.001 | 3.81 | 3.65 | 3.92 |
9,10-DiHOME | sEH | 11.1 ± 1.22 | 51.2 ± 14.2 | <0.001 | 16.4 ± 5.59 | 66.4 ± 8.56 | <0.001 | 3.68 ± 0.63 | 16.8 ± 4.56 | <0.001 | 4.6 | 4.05 | 4.58 | ||
18:3n3 | 15,16-DiHODE | sEH | 5.47 ± 2.03 | 7.10 ± 2.41 | 0.31 | 5.60 ± 2.31 | 10.79 ± 3.20 | 0.02 | 0.38 ± 0.13 | 0.51 ± 0.24 | 0.8 | 1.3 | 1.93 | 1.34 | |
9,10-DiHODE | sEH | 0.48 ± 0.07 | 0.73 ± 0.19 | 0.02 | 0.61 ± 0.16 | 1.09 ± 0.18 | 0.003 | 0.05 ± 0.02 | 0.07 ± 0.06 | 0.66 | 1.53 | 1.8 | 1.65 | ||
14,15-DiHETrE | sEH | 1.58 ± 0.54 | 2.68 ± 0.54 | 0.004 | 0.93 ± 0.15 | 2.23 ± 0.32 | <0.001 | 1.57 ± 0.14 | 3.26 ± 0.70 | <0.001 | 1.7 | 2.4 | 2.08 | ||
20:4n6 | 11,12-DiHETrE | sEH | 1.14 ± 0.36 | 1.64 ± 0.38 | 0.07 | 0.55 ± 0.11 | 1.28 ± 0.23 | <0.001 | 0.91 ± 0.12 | 1.80 ± 0.38 | <0.001 | 1.44 | 2.34 | 1.99 | |
8,9-DiHETrE | sEH | 1.83 ± 0.94 | 2.41 ± 0.58 | 0.11 | 1.02 ± 0.24 | 1.57 ± 0.40 | <0.001 | 2.68 ± 0.40 | 3.54 ± 0.60 | 0.03 | 1.31 | 1.54 | 1.32 | ||
5,6-DiHETrE | sEH | 0.41 ± 0.16 | 0.48 ± 0.16 | 0.57 | 0.19 ± 0.06 | 0.35 ± 0.10 | 0.02 | 1.51 ± 0.26 | 2.15 ± 0.45 | 0.04 | 1.16 | 1.83 | 1.42 | ||
22:6n3 | 19,20-DiHDoPA | sEH | 4.68 ± 2.34 | 4.08 ± 0.93 | 0.98 | 1.86 ± 0.48 | 2.67 ± 0.48 | 0.04 | 2.47 ± 0.36 | 2.08 ± 0.44 | 0.18 | 0.87 | 1.44 | 0.84 | |
BAT | WAT | Plasma | Average fold difference in SOLF vs. POLF | ||||||||||||
Metabolite | Enzyme | POLF Mean ± 95% CI (pmol/g) | SOLF Mean ± 95% CI (pmol/g) | t-Test p-Value | POLF Mean ± 95% CI (pmol/g) | SOLF Mean ± 95% CI (pmol/g) | t-Test p-Value | POLF Mean ± 95% CI (nM) | SOLF Mean ± 95% CI (nM) | t-Test p-Value | BAT | WAT | Plasma | ||
Ketones | 18:2n6 | 13-KODE | ADH | 68.2 ± 37.5 | 390 ± 288 | 0.01 | 262 ± 169 | 1898 ± 1961 | 0.03 | 1.14 ± 0.47 | 3.71 ± 1.74 | 0.02 | 5.73 | 7.25 | 3.25 |
9-KODE | ADH | 113 ± 71.1 | 727 ± 565 | 0.04 | 472 ± 322 | 2227 ± 1547 | 0.046 | 1.24 ± 0.44 | 6.97 ± 2.45 | 0.007 | 6.44 | 4.72 | 5.61 | ||
12(13)-Ep-9-KODE | ADH | 60.4 ± 16.3 | 163 ± 102 | 0.04 | 180 ± 110 | 493 ± 237 | 0.065 | ND | ND | - | 2.7 | 2.74 | - | ||
20:4n6 | 15-KETE | ADH | 4.24 ± 1.73 | 13.1 ± 4.91 | 0.008 | 5.96 ± 2.82 | 12.7 ± 4.11 | 0.04 | ND | ND | - | 3.08 | 2.13 | - | |
5-KETE | ADH | 6.97 ± 2.57 | 11.6 ± 4.79 | 0.25 | 5.57 ± 4.15 | 9.80 ± 2.18 | 0.02 | ND | ND | - | 1.67 | 1.78 | |||
N-Acylethanolamines | 16:00 | PEA | PLD | 331 ± 318 | 448 ± 219 | 0.29 | 189 ± 144 | 746 ± 375 | 0.007 | 10.5 ± 1.69 | 9.56 ± 2.10 | 0.44 | 1.35 | 3.94 | 0.91 |
18:1n9 | OEA | PLD | 559 ± 236 | 371 ± 109 | 0.2 | 287 ± 42.6 | 521 ± 206 | 0.08 | 22.9 ± 4.51 | 14.1 ± 3.78 | 0.03 | 0.66 | 1.82 | 0.62 | |
18:2n6 | LEA | PLD | 143 ± 61.3 | 322 ± 127 | 0.02 | 42.5 ± 4.86 | 127 ± 13.7 | 0 | 4.40 ± 0.66 | 9.87 ± 1.95 | <0.001 | 2.25 | 2.99 | 2.25 | |
20:3n6 | DGLEA | PLD | 2.66 ± 0.85 | 3.02 ± 0.54 | 0.31 | 1.77 ± 0.37 | 3.48 ± 0.93 | 0.005 | 0.14 ± 0.03 | 0.17 ± 0.06 | 0.76 | 1.13 | 1.97 | 1.15 | |
20:4n6 | AEA | PLD | 34.7 ± 18.3 | 36.1 ± 15.8 | 0.6 | 8.40 ± 1.23 | 11.1 ± 1.25 | 0.007 | 1.68 ±0.29 | 1.77 ± 0.44 | 0.89 | 1.04 | 1.32 | 1.05 | |
22:5n6 | DEA | PLD | 1.38 ± 0.39 | 2.21 ± 0.51 | 0.02 | 1.11 ± 0.40 | 1.99 ± 0.31 | 0.006 | 0.21 ± 0.10 | 0.42 ± 0.14 | <0.001 | 1.6 | 1.78 | 2.03 | |
NEFA (rel abs) | 18:2n6 | LA | - | 4.88 ± 1.04 | 8.01 ± 1.70 | 0.005 | 5.69 ± 1.42 | 10.1 ± 2.74 | <0.001 | 0.032 + 0.007 | 0.070 + 0.014 | <0.001 | 1.64 | 1.78 | 2.18 |
20:4n6 | AA | - | 9.35 ± 2.14 | 12.4 ± 3.11 | 0.13 | 5.52 ± 1.19 | 9.57 ± 1.10 | <0.001 | 0.033 ± 0.007 | 0.065 ± 0.010 | <0.001 | 1.33 | 1.73 | 1.99 | |
MAG | 18:1n9 | 1/2-OG | - | 13,600 ± 6340 | 7120 ± 2260 | 0.18 | 5610 ± 2400 | 3900 ± 603 | 0.74 | 9905 ± 1670 | 4290 ± 608 | <0.001 | 0.56 | 0.7 | 0.43 |
18:2n6 | 1/2-LG | - | 4120 ± 1790 | 13,200 ± 2970 | <0.001 | 2640 ± 1,420 | 5310 ± 1760 | 0.02 | 1640 ± 305 | 5120 ± 1050 | <0.001 | 3.19 | 2.01 | 3.12 | |
20:4n6 | 1/2-AG | - | 1250 ± 307 | 1400 ± 408 | 0.57 | 7.08 ± 0.41 | 2540 ± 1993 | 0.38 | 118 ± 23.7 | 158 ± 24.2 | 0.046 | 1.12 | 1.93 | 1.34 | |
Gly | 18:1n9 | NO-Gly | - | 5.84 ± 2.42 | 4.71 ± 1.59 | 0.75 | 5.52 ± 2.53 | 5.99 ± 1.06 | 0.39 | 2.29 ± 0.48 | 1.45 ± 0.50 | 0.03 | 1.08 | 0.8 | 0.63 |
20:4n6 | NA-Gly | - | ND | ND | - | ND | ND | - | 0.23 ± 0.05 | 0.39 ± 0.11 | 0.02 | - | - | 1.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Snoke, D.B.; Angelotti, A.; Borkowski, K.; Cole, R.M.; Newman, J.W.; Belury, M.A. Linoleate-Rich Safflower Oil Diet Increases Linoleate-Derived Bioactive Lipid Mediators in Plasma, and Brown and White Adipose Depots of Healthy Mice. Metabolites 2022, 12, 743. https://doi.org/10.3390/metabo12080743
Snoke DB, Angelotti A, Borkowski K, Cole RM, Newman JW, Belury MA. Linoleate-Rich Safflower Oil Diet Increases Linoleate-Derived Bioactive Lipid Mediators in Plasma, and Brown and White Adipose Depots of Healthy Mice. Metabolites. 2022; 12(8):743. https://doi.org/10.3390/metabo12080743
Chicago/Turabian StyleSnoke, Deena B., Austin Angelotti, Kamil Borkowski, Rachel M. Cole, John W. Newman, and Martha A. Belury. 2022. "Linoleate-Rich Safflower Oil Diet Increases Linoleate-Derived Bioactive Lipid Mediators in Plasma, and Brown and White Adipose Depots of Healthy Mice" Metabolites 12, no. 8: 743. https://doi.org/10.3390/metabo12080743
APA StyleSnoke, D. B., Angelotti, A., Borkowski, K., Cole, R. M., Newman, J. W., & Belury, M. A. (2022). Linoleate-Rich Safflower Oil Diet Increases Linoleate-Derived Bioactive Lipid Mediators in Plasma, and Brown and White Adipose Depots of Healthy Mice. Metabolites, 12(8), 743. https://doi.org/10.3390/metabo12080743