1H NMR Urinary Metabolomic Analysis in Older Adults after Hip Fracture Surgery May Provide Valuable Information for Patient Profiling—A Preliminary Investigation
Abstract
:1. Introduction
2. Results
2.1. Participant Description
2.2. Description of the Urine Bank Spectrum
2.2.1. Unsupervised Multivariate Analysis
2.2.2. Identification of Metabolites of Interest in Urine
2.3. Outcome Analyses
2.3.1. Frailty
2.3.2. Functional Independence Measure (FIM)
2.3.3. Short Physical Performance Battery (SPPB)
2.3.4. Mortality over 24 Months
2.4. Pathway Analysis
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Participants
4.3. Outcomes
4.4. Urine Sample Collection
4.5. Sample Preparation for NMR Analysis
4.6. Instrument Description
4.7. Spectrum Acquisition Parameters
4.8. Spectrum Processing Parameters
4.9. Statistical Analysis
4.9.1. Multivariate Analysis
4.9.2. Univariate Analysis
4.9.3. Pathway Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | Body Mass Index (weight/height2) |
COX | Cyclooxygenase |
FIM | Functional Independence Measure |
HMDB | Human Metabolome Database |
INOS | Inducible Nitric oxide synthase |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
NLRP3 | NLR Family Pyrin Domain Containing 3 |
NMR | Nuclear Magnetic Resonance |
PC | Principal Component |
PCA | Principal Component Analysis |
PLS-DA | Partial Least Square—Discriminant Analysis |
SPPB | Short Physical Performance Battery |
TMAO | Trimethylamine N-oxide |
TSP | 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid, sodium salt |
δ | Chemical shift |
References
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in Older Adults: Evidence for a Phenotype. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M146–M157. [Google Scholar] [CrossRef] [PubMed]
- Gobbens, R.J.J.; Luijkx, K.G.; Wijnen-Sponselee, M.T.; Schols, J.M.G.A. In Search of an Integral Conceptual Definition of Frailty: Opinions of Experts. J. Am. Med. Dir. Assoc. 2010, 11, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Kim, M.; Choi, J. Development and Validation of a Multidimensional Frailty Scale for Clinical Geriatric Assessment. J. Nutr. Health Aging 2021, 25, 938–943. [Google Scholar] [CrossRef]
- Bloch, F.; Jegou, D.; Dhainaut, J.-F.; Rigaud, A.-S.; Coste, J.; Lundy, J.-E.; Claessens, Y.-E. Can Metabolic Abnormalities after a Fall Predict Short Term Mortality in Elderly Patients? Eur. J. Epidemiol. 2009, 24, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Tasigchana, R.F.; León-Muñoz, L.M.; Lopez-Garcia, E.; Gutierrez-Fisac, J.L.; Laclaustra, M.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Metabolic Syndrome and Insulin Resistance Are Associated with Frailty in Older Adults: A Prospective Cohort Study. Age Ageing 2017, 46, 807–812. [Google Scholar] [CrossRef]
- Veronese, N.; Maggi, S. Epidemiology and Social Costs of Hip Fracture. Injury 2018, 49, 1458–1460. [Google Scholar] [CrossRef]
- Pisani, P.; Renna, M.D.; Conversano, F.; Casciaro, E.; Di Paola, M.; Quarta, E.; Muratore, M.; Casciaro, S. Major Osteoporotic Fragility Fractures: Risk Factor Updates and Societal Impact. World J. Orthop. 2016, 7, 171. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, W.; Liu, J.; Song, Y.; Liu, T.; Li, Z.; Wang, X.; Yang, N.; Li, Y.; Han, D.; et al. Metabolomic and Lipidomic Profiling of Preoperative CSF in Elderly Hip Fracture Patients With Postoperative Delirium. Front. Aging Neurosci. 2020, 12, 570210. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Y.; Jia, P.; Wang, W.; Zhou, Q.; Sun, L.; Zhao, A.; Zhang, X.; Wang, X.; Li, Y.; et al. Preoperative Serum Metabolites Are Associated With Postoperative Delirium in Elderly Hip-Fracture Patients. J. Gerontol. Ser. A 2017, 72, 1689–1696. [Google Scholar] [CrossRef]
- Schultz, R.J.; Whitfield, G.F.; LaMURA, J.J.; Raciti, A.; Krishnamurthy, S. The Role of Physiologic Monitoring in Patients with Fractures of the Hip. J. Trauma 1985, 25, 309–316. [Google Scholar] [CrossRef]
- Bürkle, A.; Moreno-Villanueva, M.; Bernhard, J.; Blasco, M.; Zondag, G.; Hoeijmakers, J.H.J.; Toussaint, O.; Grubeck-Loebenstein, B.; Mocchegiani, E.; Collino, S.; et al. MARK-AGE Biomarkers of Ageing. Mech. Ageing Dev. 2015, 151, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Kameda, M.; Teruya, T.; Yanagida, M.; Kondoh, H. Frailty Markers Comprise Blood Metabolites Involved in Antioxidation, Cognition, and Mobility. Proc. Natl. Acad. Sci. USA 2020, 117, 9483–9489. [Google Scholar] [CrossRef] [PubMed]
- Teruya, T.; Goga, H.; Yanagida, M. Aging Markers in Human Urine: A Comprehensive, Non-targeted LC-MS Study. FASEB BioAdv. 2020, 2, 720–733. [Google Scholar] [CrossRef] [PubMed]
- Picca, A.; Coelho-Junior, H.J.; Cesari, M.; Marini, F.; Miccheli, A.; Gervasoni, J.; Bossola, M.; Landi, F.; Bernabei, R.; Marzetti, E.; et al. The Metabolomics Side of Frailty: Toward Personalized Medicine for the Aged. Exp. Gerontol. 2019, 126, 110692. [Google Scholar] [CrossRef]
- Nik Mohd Fakhruddin, N.N.I.; Shahar, S.; Ismail, I.S.; Ahmad Azam, A.; Rajab, N.F. Urine Untargeted Metabolomic Profiling Is Associated with the Dietary Pattern of Successful Aging among Malaysian Elderly. Nutrients 2020, 12, 2900. [Google Scholar] [CrossRef]
- Bollard, M.E.; Stanley, E.G.; Lindon, J.C.; Nicholson, J.K.; Holmes, E. NMR-Based Metabonomic Approaches for Evaluating Physiological Influences on Biofluid Composition: Metabonomic characterization of physiological variation. NMR Biomed. 2005, 18, 143–162. [Google Scholar] [CrossRef]
- Soukkio, P.; Suikkanen, S.; Kääriä, S.; Kautiainen, H.; Sipilä, S.; Kukkonen-Harjula, K.; Hupli, M. Effects of 12-Month Home-Based Physiotherapy on Duration of Living at Home and Functional Capacity among Older Persons with Signs of Frailty or with a Recent Hip Fracture - Protocol of a Randomized Controlled Trial (HIPFRA Study). BMC Geriatr. 2018, 18, 232. [Google Scholar] [CrossRef]
- Wynne, H.A.; Cope, L.H.; Herd, B.; Rawlins, M.D.; James, O.F.W.; Woodhouse, K.W. The Association of Age and Frailty with Paracetamol Conjugation in Man. Age Ageing 1990, 19, 419–424. [Google Scholar] [CrossRef]
- Koponen, M.P.H.; Bell, J.S.; Karttunen, N.M.; Nykänen, I.A.; Desplenter, F.A.M.; Hartikainen, S.A. Analgesic Use and Frailty among Community-Dwelling Older People: A Population-Based Study. Drugs Aging 2013, 30, 129–136. [Google Scholar] [CrossRef]
- Chin, R.P.-H.; Ho, C.-H.; Cheung, L.P.-C. Scheduled Analgesic Regimen Improves Rehabilitation After Hip Fracture Surgery. Clin. Orthop. Relat. Res. 2013, 471, 2349–2360. [Google Scholar] [CrossRef]
- Dixon, J.; Ashton, F.; Baker, P.; Charlton, K.; Bates, C.; Eardley, W. Assessment and Early Management of Pain in Hip Fractures: The Impact of Paracetamol. Geriatr. Orthop. Surg. Rehabil. 2018, 9, 215145931880644. [Google Scholar] [CrossRef] [PubMed]
- Marttinen, M.K.; Kautiainen, H.; Haanpää, M.; Pohjankoski, H.; Hintikka, J.; Kauppi, M.J. Analgesic Purchases among Older Adults—A Population-Based Study. BMC Public Health 2021, 21, 256. [Google Scholar] [CrossRef] [PubMed]
- Sinatra, R.S.; Jahr, J.S.; Reynolds, L.W.; Viscusi, E.R.; Groudine, S.B.; Payen-Champenois, C. Efficacy and Safety of Single and Repeated Administration of 1 Gram Intravenous Acetaminophen Injection (Paracetamol) for Pain Management after Major Orthopedic Surgery. Anesthesiology 2005, 102, 822–831. [Google Scholar] [CrossRef]
- Lachiewicz, P.F. The Role of Intravenous Acetaminophen in Multimodal Pain Protocols for Perioperative Orthopedic Patients. Orthopedics 2013, 36, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, M.T. Hip Fracture−Related Pain Strongly Influences Functional Performance of Patients With an Intertrochanteric Fracture Upon Discharge From the Hospital. PM&R 2013, 5, 135–141. [Google Scholar] [CrossRef]
- Lees, H.J.; Swann, J.R.; Wilson, I.D.; Nicholson, J.K.; Holmes, E. Hippurate: The Natural History of a Mammalian–Microbial Cometabolite. J. Proteome Res. 2013, 12, 1527–1546. [Google Scholar] [CrossRef]
- De Simone, G.; Balducci, C.; Forloni, G.; Pastorelli, R.; Brunelli, L. Hippuric Acid: Could Became a Barometer for Frailty and Geriatric Syndromes? Ageing Res. Rev. 2021, 72, 101466. [Google Scholar] [CrossRef]
- Lawton, K.A.; Berger, A.; Mitchell, M.; Milgram, K.E.; Evans, A.M.; Guo, L.; Hanson, R.W.; Kalhan, S.C.; Ryals, J.A.; Milburn, M.V. Analysis of the Adult Human Plasma Metabolome. Pharmacogenomics 2008, 9, 383–397. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, J.; Teh, J.P.Y.; Cheon, B.K.; Yang, Y.; Schlundt, J.; Wang, Y.; Conway, P.L. Comparative Blood and Urine Metabolomics Analysis of Healthy Elderly and Young Male Singaporeans. J. Proteome Res. 2020, 19, 3264–3275. [Google Scholar] [CrossRef]
- Calvani, R.; Rodriguez-Mañas, L.; Picca, A.; Marini, F.; Biancolillo, A.; Laosa, O.; Pedraza, L.; Gervasoni, J.; Primiano, A.; Miccheli, A.; et al. The “Metabolic Biomarkers of Frailty in Older People with Type 2 Diabetes Mellitus” (MetaboFrail) Study: Rationale, Design and Methods. Exp. Gerontol. 2020, 129, 110782. [Google Scholar] [CrossRef]
- Laffel, L. Ketone Bodies: A Review of Physiology, Pathophysiology and Application of Monitoring to Diabetes. Diabetes Metab. Res. Rev. 1999, 15, 412–426. [Google Scholar] [CrossRef]
- Jain, S.K.; McVie, R.; Jackson, R.; Levine, S.N.; Lim, G. Effect of Hyperketonemia on Plasma Lipid Peroxidation Levels in Diabetic Patients. Diabetes Care 1999, 22, 1171–1175. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.K.; Kannan, K.; Lim, G. Ketosis (Acetoacetate) Can Generate Oxygen Radicals and Cause Increased Lipid Peroxidation and Growth Inhibition in Human Endothelial Cells. Free Radic. Biol. Med. 1998, 25, 1083–1088. [Google Scholar] [CrossRef]
- Gimeno-Mallench, L.; Sanchez-Morate, E.; Parejo-Pedrajas, S.; Mas-Bargues, C.; Inglés, M.; Sanz-Ros, J.; Román-Domínguez, A.; Olaso, G.; Stromsnes, K.; Gambini, J. The Relationship between Diet and Frailty in Aging. Endocr. Metab. Immune Disord. Drug Targets 2020, 20, 1373–1382. [Google Scholar] [CrossRef] [PubMed]
- Bales, C.W.; Ritchie, C.S. Sarcopenia, weight loss, and nutritional frailty in the elderly. Annu. Rev. Nutr. 2002, 22, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Enea, C.; Seguin, F.; Petitpas-Mulliez, J.; Boildieu, N.; Boisseau, N.; Delpech, N.; Diaz, V.; Eugène, M.; Dugué, B. 1H NMR-Based Metabolomics Approach for Exploring Urinary Metabolome Modifications after Acute and Chronic Physical Exercise. Anal. Bioanal. Chem. 2010, 396, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Lessiani, G.; Santilli, F.; Boccatonda, A.; Iodice, P.; Liani, R.; Tripaldi, R.; Saggini, R.; Davì, G. Arterial Stiffness and Sedentary Lifestyle: Role of Oxidative Stress. Vasc. Pharmacol. 2016, 79, 1–5. [Google Scholar] [CrossRef]
- Tsikas, D. Urinary Dimethylamine (DMA) and Its Precursor Asymmetric Dimethylarginine (ADMA) in Clinical Medicine, in the Context of Nitric Oxide (NO) and Beyond. J. Clin. Med. 2020, 9, 1843. [Google Scholar] [CrossRef] [PubMed]
- Gejyo, F.; Baba, S.; Watanabe, Y.; Kishore, B.K.; Suzuki, Y.; Arakawa, M. Possibility of a Common Metabolic Pathway for the Production of Methylguanidine and Dimethylamine in Chronic Renal Failure. In Guanidines; Mori, A., Cohen, B.D., Lowenthal, A., Eds.; Springer US: Boston, MA, USA, 1985; pp. 295–308. ISBN 978-1-4757-0754-0. [Google Scholar]
- Zwaag, J.; ter Horst, R.; Blaženović, I.; Stoessel, D.; Ratter, J.; Worseck, J.M.; Schauer, N.; Stienstra, R.; Netea, M.G.; Jahn, D.; et al. Involvement of Lactate and Pyruvate in the Anti-Inflammatory Effects Exerted by Voluntary Activation of the Sympathetic Nervous System. Metabolites 2020, 10, 148. [Google Scholar] [CrossRef] [PubMed]
- Herz, H.; Blake, D.R.; Grootveld, M. Multicomponent Investigations of the Hydrogen Peroxide- and Hydroxyl Radical-Scavenging Antioxidant Capacities of Biofluids: The Roles of Endogenous Pyruvate and Lactate. Relevance to Inflammatory Joint Diseases. Free Radic. Res. 1997, 26, 19–35. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, E.; Jin, H.J.; Lee, Y.; Choi, S.J.; Lee, G.W.; Chang, P.-S.; Paik, H.-D. Anti-Inflammatory and Anti-Genotoxic Activity of Branched Chain Amino Acids (BCAA) in Lipopolysaccharide (LPS) Stimulated RAW 264.7 Macrophages. Food Sci. Biotechnol. 2017, 26, 1371–1377. [Google Scholar] [CrossRef]
- Grosser, N.; Oberle, S.; Berndt, G.; Erdmann, K.; Hemmerle, A.; Schröder, H. Antioxidant Action of L-Alanine: Heme Oxygenase-1 and Ferritin as Possible Mediators. Biochem. Biophys. Res. Commun. 2004, 314, 351–355. [Google Scholar] [CrossRef]
- Sanada, F.; Taniyama, Y.; Muratsu, J.; Otsu, R.; Shimizu, H.; Rakugi, H.; Morishita, R. Source of Chronic Inflammation in Aging. Front. Cardiovasc. Med. 2018, 5, 12. [Google Scholar] [CrossRef]
- Singh, T.; Newman, A.B. Inflammatory Markers in Population Studies of Aging. Ageing Res. Rev. 2011, 10, 319–329. [Google Scholar] [CrossRef]
- Franceschi, C.; Campisi, J. Chronic Inflammation (Inflammaging) and Its Potential Contribution to Age-Associated Diseases. J. Gerontol.-Biol. Sci. Med. Sci. 2014, 69, S4–S9. [Google Scholar] [CrossRef]
- Chung, H.Y.; Cesari, M.; Anton, S.; Marzetti, E.; Giovannini, S.; Seo, A.Y.; Carter, C.; Yu, B.P.; Leeuwenburgh, C. Molecular Inflammation: Underpinnings of Aging and Age-Related Diseases. Ageing Res. Rev. 2009, 8, 18–30. [Google Scholar] [CrossRef]
- Cervellati, C.; Trentini, A.; Bosi, C.; Valacchi, G.; Morieri, M.L.; Zurlo, A.; Brombo, G.; Passaro, A.; Zuliani, G. Low-Grade Systemic Inflammation Is Associated with Functional Disability in Elderly People Affected by Dementia. GeroScience 2018, 40, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Custodero, C.; Anton, S.D.; Beavers, D.P.; Mankowski, R.T.; Lee, S.A.; McDermott, M.M.; Fielding, R.A.; Newman, A.B.; Tracy, R.P.; Kritchevsky, S.B.; et al. The Relationship between Interleukin-6 Levels and Physical Performance in Mobility-Limited Older Adults with Chronic Low-Grade Inflammation: The enrgise Pilot Study. Arch. Gerontol. Geriatr. 2020, 90, 104131. [Google Scholar] [CrossRef]
- del Favero, S.; Roschel, H.; Solis, M.Y.; Hayashi, A.P.; Artioli, G.G.; Otaduy, M.C.; Benatti, F.B.; Harris, R.C.; Wise, J.A.; Leite, C.C.; et al. Beta-Alanine (CarnosynTM) Supplementation in Elderly Subjects (60–80 Years): Effects on Muscle Carnosine Content and Physical Capacity. Amino Acids 2012, 43, 49–56. [Google Scholar] [CrossRef]
- Stout, J.R.; Graves, B.S.; Smith, A.E.; Hartman, M.J.; Cramer, J.T.; Beck, T.W.; Harris, R.C. The Effect of Beta-Alanine Supplementation on Neuromuscular Fatigue in Elderly (55–92 Years): A Double-Blind Randomized Study. J. Int. Soc. Sports Nutr. 2008, 5, 21. [Google Scholar] [CrossRef]
- Ikeda, T.; Aizawa, J.; Nagasawa, H.; Gomi, I.; Kugota, H.; Nanjo, K.; Jinno, T.; Masuda, T.; Morita, S. Effects and Feasibility of Exercise Therapy Combined with Branched-Chain Amino Acid Supplementation on Muscle Strengthening in Frail and Pre-Frail Elderly People Requiring Long-Term Care: A Crossover Trial. Appl. Physiol. Nutr. Metab. 2016, 41, 438–445. [Google Scholar] [CrossRef]
- Bai, G.-H.; Tsai, M.-C.; Tsai, H.-W.; Chang, C.-C.; Hou, W.-H. Effects of Branched-Chain Amino Acid-Rich Supplementation on EWGSOP2 Criteria for Sarcopenia in Older Adults: A Systematic Review and Meta-Analysis. Eur. J. Nutr. 2021, 61, 637–651. [Google Scholar] [CrossRef]
- Trøseid, M.; Ueland, T.; Hov, J.R.; Svardal, A.; Gregersen, I.; Dahl, C.P.; Aakhus, S.; Gude, E.; Bjørndal, B.; Halvorsen, B.; et al. Microbiota-Dependent Metabolite Trimethylamine-N-Oxide Is Associated with Disease Severity and Survival of Patients with Chronic Heart Failure. J. Intern. Med. 2015, 277, 717–726. [Google Scholar] [CrossRef]
- Macpherson, M.E.; Hov, J.R.; Ueland, T.; Dahl, T.B.; Kummen, M.; Otterdal, K.; Holm, K.; Berge, R.K.; Mollnes, T.E.; Trøseid, M.; et al. Gut Microbiota-Dependent Trimethylamine N-Oxide Associates With Inflammation in Common Variable Immunodeficiency. Front. Immunol. 2020, 11, 574500. [Google Scholar] [CrossRef]
- Sun, X.; Jiao, X.; Ma, Y.; Liu, Y.; Zhang, L.; He, Y.; Chen, Y. Trimethylamine N-Oxide Induces Inflammation and Endothelial Dysfunction in Human Umbilical Vein Endothelial Cells via Activating ROS-TXNIP-NLRP3 Inflammasome. Biochem. Biophys. Res. Commun. 2016, 481, 63–70. [Google Scholar] [CrossRef]
- Chen, M.; Zhu, X.; Ran, L.; Lang, H.; Yi, L.; Mi, M. Trimethylamine-N-Oxide Induces Vascular Inflammation by Activating the NLRP3 Inflammasome Through the SIRT3-SOD2-mtROS Signaling Pathway. J. Am. Heart Assoc. 2017, 6, e006347. [Google Scholar] [CrossRef] [PubMed]
- Störk, S.; Feelders, R.A.; van den Beld, A.W.; Steyerberg, E.W.; Savelkoul, H.F.J.; Lamberts, S.W.J.; Grobbee, D.E.; Bots, M.L. Prediction of Mortality Risk in the Elderly. Am. J. Med. 2006, 119, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Gào, X.; Zhang, Y.; Holleczek, B.; Schöttker, B.; Brenner, H. Oxidative Stress and Epigenetic Mortality Risk Score: Associations with All-Cause Mortality among Elderly People. Eur. J. Epidemiol. 2019, 34, 451–462. [Google Scholar] [CrossRef]
- Hallan, S.I.; Matsushita, K.; Sang, Y.; Mahmoodi, B.K.; Black, C.; Ishani, A.; Kleefstra, N.; Naimark, D.; Roderick, P.; Tonelli, M.; et al. Age and Association of Kidney Measures With Mortality and End-Stage Renal Disease. JAMA 2012, 308, 2349. [Google Scholar] [CrossRef]
- Kamijo, Y.; Kanda, E.; Ishibashi, Y.; Yoshida, M. Sarcopenia and Frailty in PD: Impact on Mortality, Malnutrition, and Inflammation. Perit. Dial. Int. 2018, 38, 447–454. [Google Scholar] [CrossRef]
- Soukkio, P.K.; Suikkanen, S.A.; Aartolahti, E.M.; Kautiainen, H.; Kääriä, S.M.; Hupli, M.T.; Pitkälä, K.H.; Sipilä, S.; Kukkonen-Harjula, K.T. Effects of Home-Based Physical Exercise on Days at Home, Health Care Utilization, and Functional Independence Among Patients With Hip Fractures: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2021, 102, 1692–1699. [Google Scholar] [CrossRef]
- Soukkio, P.K.; Suikkanen, S.A.; Kukkonen-Harjula, K.T.; Kautiainen, H.; Hupli, M.T.; Aartolahti, E.M.; Kääriä, S.M.; Pitkälä, K.H.; Sipilä, S. Effects of a 12-month Home-based Exercise Program on Functioning after Hip Fracture—Secondary Analyses of an RCT. J. Am. Geriatr. Soc. 2022. [Google Scholar] [CrossRef]
- Granger, C.V.; Hamilton, B.B.; Keith, R.A.; Zielezny, M.; Sherwin, F.S. Advances in Functional Assessment for Medical Rehabilitation. Top. Geriatr. Rehabil. 1986, 1, 59–74. [Google Scholar] [CrossRef]
- Beckonert, O.; Keun, H.C.; Ebbels, T.M.D.; Bundy, J.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Metabolic Profiling, Metabolomic and Metabonomic Procedures for NMR Spectroscopy of Urine, Plasma, Serum and Tissue Extracts. Nat. Protoc. 2007, 2, 2692–2703. [Google Scholar] [CrossRef]
- Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; et al. HMDB 4.0: The Human Metabolome Database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, P.; Vogel, T.; Malusek, A.; Lundquist, P.; Cohen, L.; Dahlqvist, O. MDL—The Magnetic Resonance Metabolomics Database (Mdl.Imv.Liu.Se). In Proceedings of the ESMRMB 2005 Congress, Basel, Switzerland, 15–18 September 2005. [Google Scholar]
- Fan, T.W.-M. Metabolite Profiling by One- and Two-Dimensional NMR Analysis of Complex Mixtures. Prog. Nucl. Magn. Reson. Spectrosc. 1996, 28, 161–219. [Google Scholar] [CrossRef]
- Bouatra, S.; Aziat, F.; Mandal, R.; Guo, A.C.; Wilson, M.R.; Knox, C.; Bjorndahl, T.C.; Krishnamurthy, R.; Saleem, F.; Liu, P.; et al. The Human Urine Metabolome. PLoS ONE 2013, 8, e73076. [Google Scholar] [CrossRef] [PubMed]
- Salek, R.M.; Steinbeck, C.; Viant, M.R.; Goodacre, R.; Dunn, W.B. The Role of Reporting Standards for Metabolite Annotation and Identification in Metabolomic Studies. Gigascience 2013, 2, 13. [Google Scholar] [CrossRef]
- Haug, K.; Cochrane, K.; Nainala, V.C.; Williams, M.; Chang, J.; Jayaseelan, K.V.; O’Donovan, C. MetaboLights: A Resource Evolving in Response to the Needs of Its Scientific Community. Nucleic Acids Res. 2019, gkz1019. [Google Scholar] [CrossRef]
- Schoenborn, N.L.; Van Pilsum Rasmussen, S.E.; Xue, Q.-L.; Walston, J.D.; McAdams-Demarco, M.A.; Segev, D.L.; Boyd, C.M. Older Adults’ Perceptions and Informational Needs Regarding Frailty. BMC Geriatr. 2018, 18, 46. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef] [PubMed]
Variables | ||||
---|---|---|---|---|
All Patients; n = 33 | Non-Frail; n = 5 | Pre-Frail; n = 18 | Frail; n = 10 | |
Age (years) | 80.0 ± 8.0 | 79.4 ± 8.3 | 79.5 ± 8.0 | 81.0 ± 7.0 |
BMI | 25.3 ± 3.7 | 25.2 ± 3.1 | 26.1 ± 3.7 | 23.8 ± 4.0 |
Frailty score | 2.0 ± 1.4 | 0.0 | 1.6 ± 0.5 * | 3.8 ± 0.8 †,* |
SPPB score | 3.7 ± 2.0 | 5.2 ± 2.8 | 3.8 ± 1.9 | 2.9 ± 1.1 |
Total FIM score | 101.4 ± 11.5 | 108.4 ± 8.9 | 103.1 ± 10.5 | 95.0 ± 12.3 |
Motor FIM score | 71.1 ± 8.8 | 76.0 ± 7.6 | 72.8 ± 6.8 | 65.6 ± 10.5 |
Cognitive FIM score | 30.3 ± 4.3 | 32.4 ± 3.0 | 30.2 ± 3.0 | 29.3 ± 3.5 |
Number | Metabolites | HMDB ID | δ 1H in ppm (Multiplicity) |
---|---|---|---|
1 | L-Valine | HMDB0000883 | 0.99 (d) |
2 | L-Lactic acid | HMDB0000190 | 1.33 (d) |
3 | L-Alanine | HMDB0000161 | 1.48 (d) |
4 | Acetic acid | HMDB0000042 | 1.92 (s) |
5 | Paracetamol (Acetaminophen) | HMDB0001859 | 2.15 (s) |
6 | Acetaminophen glucuronide | HMDB0010316 | 2.17 (s) |
7 | Acetaminophen sulfate | HMDB0059911 | 2.18 (s) |
8 | Acetone | HMDB0001659 | 2.24 (s) |
9 | Citric acid | HMDB0000094 | 2.55 and 2.69 (syst AB) |
10 | Dimethylamine | HMDB0000087 | 2.72 (s) |
11 | Methylguanidine | HMDB0001522 | 2.83 (s) |
12 | Creatinine | HMDB0000562 | 3.05 (s) |
13 | Dimethyl sulfone | HMDB0004983 | 3.15 (s) |
14 | Trimethylamine N-oxide | HMDB0000925 | 3.27 (s) |
15 | Glycine | HMDB0000123 | 3.57 (s) |
16 | Urea | HMDB0000294 | 5.8 (broad) |
17 | Acetaminophen derivates | HMDB0001859 | 7.13 and 7.15 (syst AB) |
HMDB0010316 | |||
HMDB0059911 | |||
18 | Hippuric acid | HMDB0010316 | 7.65 (t) |
19 | Formic acid | HMDB0059911 | 8.46 (s) |
Metabolites | Pathway Analysis | |||
---|---|---|---|---|
Total Number | Detected | p-Value | Impact | |
Glycine, serine, and threonine metabolism | 33 | 1 | 0.861 | 0.25 |
Glyoxylate and dicarboxylate metabolism | 32 | 4 | 0.969 | 0.14 |
Citrate cycle (TCA cycle) | 20 | 1 | 0.669 | 0.09 |
Glutathione metabolism | 28 | 1 | 0.861 | 0.09 |
Pyruvate metabolism | 22 | 2 | 0.907 | 0.06 |
Glycolysis/Gluconeogenesis | 26 | 2 | 0.907 | 0.03 |
Primary bile acid biosynthesis | 46 | 1 | 0.861 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Douzi, W.; Bon, D.; Suikkanen, S.; Soukkio, P.; Boildieu, N.; Nenonen, A.; Hupli, M.; Kukkonen-Harjula, K.; Dugué, B. 1H NMR Urinary Metabolomic Analysis in Older Adults after Hip Fracture Surgery May Provide Valuable Information for Patient Profiling—A Preliminary Investigation. Metabolites 2022, 12, 744. https://doi.org/10.3390/metabo12080744
Douzi W, Bon D, Suikkanen S, Soukkio P, Boildieu N, Nenonen A, Hupli M, Kukkonen-Harjula K, Dugué B. 1H NMR Urinary Metabolomic Analysis in Older Adults after Hip Fracture Surgery May Provide Valuable Information for Patient Profiling—A Preliminary Investigation. Metabolites. 2022; 12(8):744. https://doi.org/10.3390/metabo12080744
Chicago/Turabian StyleDouzi, Wafa, Delphine Bon, Sara Suikkanen, Paula Soukkio, Nadège Boildieu, Arja Nenonen, Markku Hupli, Katriina Kukkonen-Harjula, and Benoit Dugué. 2022. "1H NMR Urinary Metabolomic Analysis in Older Adults after Hip Fracture Surgery May Provide Valuable Information for Patient Profiling—A Preliminary Investigation" Metabolites 12, no. 8: 744. https://doi.org/10.3390/metabo12080744
APA StyleDouzi, W., Bon, D., Suikkanen, S., Soukkio, P., Boildieu, N., Nenonen, A., Hupli, M., Kukkonen-Harjula, K., & Dugué, B. (2022). 1H NMR Urinary Metabolomic Analysis in Older Adults after Hip Fracture Surgery May Provide Valuable Information for Patient Profiling—A Preliminary Investigation. Metabolites, 12(8), 744. https://doi.org/10.3390/metabo12080744