A Micro-Scale Analytical Method for Determining Glycogen Turnover by NMR and FTMS
Abstract
:1. Introduction
2. Materials and Methods
2.1. 13C6-Glucose Treatments of Cell Cultures
2.1.1. BEAS-2B Cells
2.1.2. Human Peripheral Blood Monocytes (PBMC)-Derived Macrophages
2.2. Liquid Diet Feeding of [13C6]-Glucose in Mice
2.3. Multi-Tracer Treatments of Ex Vivo Organotypic Cultures (OTC) of Human Lung Tissues
2.4. Metabolic Quenching and Extraction of Metabolites
2.5. Acid Hydrolysis
2.6. NMR Spectroscopy
2.7. UHR-FTMS Analysis
2.8. Glycogen Calculation
2.9. Statistical Analyses
3. Results
3.1. Optimization of Glycogen Hydrolysis
3.2. Glycogen Analysis in Human Cells
3.3. Glycogen Analysis in Mouse Tissues
3.4. Glycogen Analysis in Human Ex Vivo Tissue Slices
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ipata, P.L.; Balestri, F. Glycogen as a fuel: Metabolic interaction between glycogen and ATP catabolism in oxygen-independent muscle contraction. Metabolomics 2012, 8, 736–741. [Google Scholar] [CrossRef]
- Favaro, E.; Bensaad, K.; Chong, M.G.; Tennant, D.A.; Ferguson, D.J.; Snell, C.; Steers, G.; Turley, H.; Li, J.L.; Gunther, U.L.; et al. Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells. Cell Metab. 2012, 16, 751–764. [Google Scholar] [CrossRef] [PubMed]
- Hicks, J.; Wartchow, E.; Mierau, G. Glycogen storage diseases: A brief review and update on clinical features, genetic abnormalities, pathologic features, and treatment. Ultrastruct. Pathol. 2011, 35, 183–196. [Google Scholar] [CrossRef]
- Rousset, M.; Zweibaum, A.; Fogh, J. Presence of Glycogen and Growth-related Variations in 58 Cultured Human Tumor Cell Lines of Various Tissue Origins. Cancer Res. 1981, 41, 1165–1170. [Google Scholar] [PubMed]
- Zois, C.E.; Harris, A.L. Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy. J. Mol. Med. 2016, 94, 137–154. [Google Scholar] [CrossRef] [PubMed]
- Adeva-Andany, M.M.; Gonzalez-Lucan, M.; Donapetry-Garcia, C.; Fernandez-Fernandez, C.; Ameneiros-Rodriguez, E. Glycogen metabolism in humans. BBA Clin. 2016, 5, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Whelan, W.J. The initiation of glycogen synthesis. Bioessays 1986, 5, 136–140. [Google Scholar] [CrossRef]
- Lomako, J.; Lomako, W.M.; Whelan, W.J. Glycogenin: The primer for mammalian and yeast glycogen synthesis. Biochim. Biophys. Acta 2004, 1673, 45–55. [Google Scholar] [CrossRef]
- Radziuk, J.; Pye, S. Hepatic glucose uptake, gluconeogenesis and the regulation of glycogen synthesis. Diabetes Metab. Res. Rev. 2001, 17, 250–272. [Google Scholar] [CrossRef]
- Bouskila, M.; Hunter, R.W.; Ibrahim, A.F.; Delattre, L.; Peggie, M.; van Diepen, J.A.; Voshol, P.J.; Jensen, J.; Sakamoto, K. Allosteric regulation of glycogen synthase controls glycogen synthesis in muscle. Cell Metab. 2010, 12, 456–466. [Google Scholar] [CrossRef]
- Mathieu, C.; Bui, L.C.; Petit, E.; Haddad, I.; Agbulut, O.; Vinh, J.; Dupret, J.M.; Rodrigues-Lima, F. Molecular Mechanisms of Allosteric Inhibition of Brain Glycogen Phosphorylase by Neurotoxic Dithiocarbamate Chemicals. J. Biol. Chem. 2017, 292, 1603–1612. [Google Scholar] [CrossRef] [PubMed]
- Zois, C.E.; Favaro, E.; Harris, A.L. Glycogen metabolism in cancer. Biochem. Pharm. 2014, 92, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.W.; Lane, A.N.; Higashi, R.M.; Farag, M.A.; Gao, H.; Bousamra, M.; Miller, D.M. Altered regulation of metabolic pathways in human lung cancer discerned by (13)C stable isotope-resolved metabolomics (SIRM). Mol. Cancer 2009, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Sellers, K.; Fox, M.P.; Bousamra, M., 2nd; Slone, S.P.; Higashi, R.M.; Miller, D.M.; Wang, Y.; Yan, J.; Yuneva, M.O.; Deshpande, R.; et al. Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J. Clin. Investig. 2015, 125, 687–698. [Google Scholar] [CrossRef]
- Winnike, J.; Pediaditakis, P.; Wolak, J.; McClelland, R.; Watkins, P.; Macdonald, J. Stable isotope resolved metabolomics of primary human hepatocytes reveals a stressed phenotype. Metabolomics 2012, 8, 34–49. [Google Scholar] [CrossRef]
- Sun, R.C.; Fan, T.W.; Deng, P.; Higashi, R.M.; Lane, A.N.; Le, A.T.; Scott, T.L.; Sun, Q.; Warmoes, M.O.; Yang, Y. Noninvasive liquid diet delivery of stable isotopes into mouse models for deep metabolic network tracing. Nat. Commun. 2017, 8, 1646. [Google Scholar] [CrossRef] [PubMed]
- Revel, J.P.; Napolitano, L.; Fawcett, D.W. Identification of glycogen in electron micrographs of thin tissue sections. J. Biophys. Biochem. Cytol. 1960, 8, 575–589. [Google Scholar] [CrossRef]
- Baba, O. Production of Monoclonal Antibody That Recognizes Glycogen and Its Application for Immunohistochemistry. J. Stomatol. Soc. 1993, 60, 264–287. [Google Scholar] [CrossRef]
- Cifuentes, D.; Martínez-Pons, C.; García-Rocha, M.; Galina, A.; De Pouplana, L.R.; Guinovart, J.J. Hepatic glycogen synthesis in the absence of glucokinase: The case of embryonic liver. J. Biol. Chem. 2008, 283, 5642–5649. [Google Scholar] [CrossRef]
- Puri, R.; Jain, N.; Ganesh, S. Increased glucose concentration results in reduced proteasomal activity and the formation of glycogen positive aggresomal structures. FEBS J. 2011, 278, 3688–3698. [Google Scholar] [CrossRef]
- Prats, C.; Gomez-Cabello, A.; Nordby, P.; Andersen, J.L.; Helge, J.W.; Dela, F.; Baba, O.; Ploug, T. An Optimized Histochemical Method to Assess Skeletal Muscle Glycogen and Lipid Stores Reveals Two Metabolically Distinct Populations of Type I Muscle Fibers. PLoS ONE 2013, 8, e77774. [Google Scholar] [CrossRef]
- Mc, M.J. Histological and histochemical uses of periodic acid. Stain Technol. 1948, 23, 99–108. [Google Scholar]
- Louzao, M.C.; Espina, B.; Vieytes, M.R.; Vega, F.V.; Rubiolo, J.A.; Baba, O.; Terashima, T.; Botana, L.M. “Fluorescent glycogen” formation with sensibility for in vivo and in vitro detection. Glycoconj. J. 2008, 25, 503–510. [Google Scholar] [CrossRef]
- Witney, T.H.; Carroll, L.; Alam, I.S.; Chandrashekran, A.; Nguyen, Q.-D.; Sala, R.; Harris, R.; DeBerardinis, R.J.; Agarwal, R.; Aboagye, E.O. A Novel Radiotracer to Image Glycogen Metabolism in Tumors by Positron Emission Tomography. Cancer Res. 2014, 74, 1319–1328. [Google Scholar] [CrossRef]
- Passonneau, J.V.; Lauderdale, V.R. A comparison of three methods of glycogen measurement in tissues. Anal. Biochem. 1974, 60, 405–412. [Google Scholar] [CrossRef]
- Sun, R.C.; Dukhande, V.V.; Zhou, Z.; Young, L.E.A.; Emanuelle, S.; Brainson, C.F.; Gentry, M.S. Nuclear Glycogenolysis Modulates Histone Acetylation in Human Non-Small Cell Lung Cancers. Cell Metab. 2019, 30, 903–916.e7. [Google Scholar] [CrossRef]
- Yang, Y.; Fan, T.W.; Lane, A.N.; Higashi, R.M. Chloroformate derivatization for tracing the fate of Amino acids in cells and tissues by multiple stable isotope resolved metabolomics (mSIRM). Anal. Chim. Acta 2017, 976, 63–73. [Google Scholar] [CrossRef]
- Lane, A.N.; Fan, T.W. NMR-based Stable Isotope Resolved Metabolomics in systems biochemistry. Arch. Biochem. Biophys. 2017, 628, 123–131. [Google Scholar] [CrossRef]
- Fan, T.W.; Lane, A.N. Applications of NMR spectroscopy to systems biochemistry. Prog. Nucl. Magn. Reson. Spectrosc. 2016, 92–93, 18–53. [Google Scholar] [CrossRef]
- Bruntz, R.C.; Lane, A.N.; Higashi, R.M.; Fan, T.W. Exploring cancer metabolism using stable isotope-resolved metabolomics (SIRM). J. Biol. Chem. 2017, 292, 11601–11609. [Google Scholar] [CrossRef]
- Fan, T.W.; Lane, A.N.; Higashi, R.M. Stable Isotope Resolved Metabolomics Studies in Ex Vivo TIssue Slices. Bio. Protoc. 2016, 6, e1730. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.W.; Lorkiewicz, P.K.; Sellers, K.; Moseley, H.N.; Higashi, R.M.; Lane, A.N. Stable isotope-resolved metabolomics and applications for drug development. Pharmacol. Ther. 2012, 133, 366–391. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.W.; Warmoes, M.O.; Sun, Q.; Song, H.; Turchan-Cholewo, J.; Martin, J.T.; Mahan, A.; Higashi, R.M.; Lane, A.N. Distinctly perturbed metabolic networks underlie differential tumor tissue damages induced by immune modulator beta-glucan in a two-case ex vivo non-small-cell lung cancer study. Cold Spring Harb. Mol. Case Stud. 2016, 2, a000893. [Google Scholar] [CrossRef] [PubMed]
- Zang, L.H.; Rothman, D.L.; Shulman, R.G. 1H NMR visibility of mammalian glycogen in solution. Proc. Natl. Acad. Sci. USA 1990, 87, 1678–1680. [Google Scholar] [CrossRef] [PubMed]
- Fan, T.W.; Lane, A.N. Assignment strategies for NMR resonances in metabolomics research. In Methodologies for Metabolomics; Lutz, N., Sweedler, J.V., Weevers, R.A., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Fan, T.W.M.; Lane, A.N. Structure-based profiling of metabolites and isotopomers by NMR. Prog. Nucl. Magn. Reson. Spectrosc. 2008, 52, 69–117. [Google Scholar] [CrossRef]
- Heinicke, K.; Dimitrov, I.E.; Romain, N.; Cheshkov, S.; Ren, J.; Malloy, C.R.; Haller, R.G. Reproducibility and absolute quantification of muscle glycogen in patients with glycogen storage disease by 13C NMR spectroscopy at 7 Tesla. PLoS ONE 2014, 9, e108706. [Google Scholar] [CrossRef]
- Passonneau, J.V.; Gatfield, P.D.; Schulz, D.W.; Lowry, O.H. An enzymic method for measurement of glycogen. Anal. Biochem. 1967, 19, 315–326. [Google Scholar] [CrossRef]
- Montgomery, R. Determination glycogen. Arch. Biochem. Biophys. 1957, 67, 378–386. [Google Scholar] [CrossRef]
- Hultman, E. Muscle glycogen in man determined in needle biopsy specimens: Method and normal values. Scand. J. Clin. Lab. Investig. 1967, 19, 209–217. [Google Scholar] [CrossRef]
- Fan, T.W.M.; Bruntz, R.C.; Yang, Y.; Song, H.; Chernyavskaya, Y.; Deng, P.; Zhang, Y.; Shah, P.P.; Beverly, L.J.; Qi, Z.; et al. De novo synthesis of serine and glycine fuels purine nucleotide biosynthesis in human lung cancer tissues. J. Biol. Chem. 2019, 294, 13464–13477. [Google Scholar] [CrossRef]
- Klein, M.; Pulidindi, I.N.; Perkas, N.; Meltzer-Mats, E.; Gruzman, A.; Gedanken, A. Direct production of glucose from glycogen under microwave irradiation. RSC Adv. 2012, 2, 7262–7267. [Google Scholar] [CrossRef]
- Shull, K.H.; Mayer, J. The turnover of liver glycogen in obese hyperglycemic mice. J. Biol. Chem. 1956, 218, 885–896. [Google Scholar] [CrossRef]
- Lane, A.N.; Fan, T.W.M. Quantification and identification of isotopomer distributions of metabolites in crude cell extracts using 1H TOCSY. Metabolomics 2007, 3, 79–86. [Google Scholar] [CrossRef]
- Gruetter, R.; Magnusson, I.; Rothman, D.L.; Avison, M.J.; Shulman, R.G.; Shulman, G.I. Validation of 13C NMR measurements of liver glycogen in vivo. Magn. Reson. Med. 1994, 31, 583–588. [Google Scholar] [CrossRef]
Compound | Average 2 n = 4 | FTMS n = 2 | NMR H1β 3 n = 2 | NMR H1α 3 n = 2 |
---|---|---|---|---|
Pre-Hydrolysis Glucose (nmol) 1 | 29.1 ± 2.4 | 29.1 ± 2.4 | <LoQ 4 | <LoQ |
Post-Hydrolysis Glucose (nmol) 1 | 121.1 ± 18.0 | 140.5 ± 25.5 | 105.0 ± 17.9 | 117.9 ± 21.7 |
Average Glycogen (µg) 1 | 16.9 ± 1.1 | 18.0 ± 3.7 | 15.9 ± 3.1 | 16.7 ± 4.5 |
Average Hydrolysis Efficiency (µg) | 90.8 ± 14.1 | 74.5 ± 9.8 | 97.8 ± 12.1 | 100 ± 16.3 |
Corrected Glycogen (µg) | 22.7 ± 1.4 | 24.2 ± 5.0 | 21.4 ± 4.1 | 22.4 ± 6.1 |
Glycogen per mg protein (µg/mg) | 37.5 ± 1.3 | 39.7 ± 6.7 | 34.7 ± 6.6 | 38.1 ± 3.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scott, T.L.; Zhu, J.; Cassel, T.A.; Vicente-Muñoz, S.; Lin, P.; Higashi, R.M.; Lane, A.N.; Fan, T.W.-M. A Micro-Scale Analytical Method for Determining Glycogen Turnover by NMR and FTMS. Metabolites 2022, 12, 760. https://doi.org/10.3390/metabo12080760
Scott TL, Zhu J, Cassel TA, Vicente-Muñoz S, Lin P, Higashi RM, Lane AN, Fan TW-M. A Micro-Scale Analytical Method for Determining Glycogen Turnover by NMR and FTMS. Metabolites. 2022; 12(8):760. https://doi.org/10.3390/metabo12080760
Chicago/Turabian StyleScott, Timothy L., Juan Zhu, Teresa A. Cassel, Sara Vicente-Muñoz, Penghui Lin, Richard M. Higashi, Andrew N. Lane, and Teresa W.-M. Fan. 2022. "A Micro-Scale Analytical Method for Determining Glycogen Turnover by NMR and FTMS" Metabolites 12, no. 8: 760. https://doi.org/10.3390/metabo12080760
APA StyleScott, T. L., Zhu, J., Cassel, T. A., Vicente-Muñoz, S., Lin, P., Higashi, R. M., Lane, A. N., & Fan, T. W. -M. (2022). A Micro-Scale Analytical Method for Determining Glycogen Turnover by NMR and FTMS. Metabolites, 12(8), 760. https://doi.org/10.3390/metabo12080760