Updates and Original Case Studies Focused on the NMR-Linked Metabolomics Analysis of Human Oral Fluids Part II: Applications to the Diagnosis and Prognostic Monitoring of Oral and Systemic Cancers
Abstract
:1. Introduction
1.1. Appraisal of Benefits Offered by the 1H NMR Analysis of Human Saliva
Assignment Number/Code | Chemical Shift (δ/ppm) | Multiplicity | Assignment |
---|---|---|---|
1 | 0.92 | t | n-Butyrate-CH3 |
2 | 0.94 | broad | Protein BCAA side-chain-CH3 |
3 | 0.96 | t | Leucine-CH3 |
4 | 0.97 | d | Valine-CH3 |
5 | 1.02 | d | Valine-CH3 |
6 | 1.06 | t | Propioniate-CH3 |
7 | 1.20 | t | Ethanol-CH3 |
8 | 1.13 | d | iso-Butyrate-CH3 |
9 | 1.33 | d | Lactate-CH3 |
10 | 1.48 | d | Alanine-CH3 |
11 | 1.57 | tq | n-Butyrate-β-CH2 |
12 | 1.65 | m | 5-Aminovalerate-CH2′s |
13 | 1.80, 2.028 | 2 x s | Acetate-CH3 13C satellites |
14 | 1.87 | s | Thymine-CH3 |
15 | 1.92 | s | Acetate-CH3 |
16 | 1.95–2.10 | broad/sharp s | Broad: Glycoprotein -NHCOCH3/Sharp: Free Aminosugar- and N-Acetyl-amino acid-NHCOCH3 |
GlycA | 2.040 | s | GlycA APP N-Acetylglucosamine residues |
Nan-CH3 | 2.06 | s | Free N-Acetylneuraminate |
Met | 2.13 | s | Methionine-S(CH3)3 |
17 | 2.17 | q | Propioniate-CH2/n-Butyrate-α-CH2 |
18 | 2.23 | t | 5-Aminovalerate-CH2-CO2− |
Glu | 2.36 | m | Glutamate--β-CH2 |
19 | 2.38 | s | Pyruvate-CH3 |
20 | 2.405 | s | Succinate-CH2′s |
21 | 2.39 | m | Isobutyrate-CH |
22 | 2.59 | s | Methylamine H2NCH3 |
23 | 2.75 | s/m | DimethylamineH2N(CH3) /Methionine-CH2 |
24 | 2.95 | s | Trimethylamine N(CH3)3 |
25 | 3.04 | t | 5-Aminovalerate-5-CH2/Lysine-ε-CH2 |
DS | 3.145 | s | Dimethylsulphone-OS(CH3)2 |
26 | 3.21 | s | Choline-N(CH3)3+ |
27 | 3.24 | s | Betaine-N(CH3)3 |
28 | 3.25 | t | Taurine-CH2NH3+ |
29 | 3.38 | s | Methanol-CH3 |
30 | 3.43 | t | Taurine-CH2SO3− |
31 | 3.46 | d | cis-Aconitate-CH2 |
32 | 3.54 | dd | Glycerol-CH2OH |
33 | 3.56 | s | Glycine-CH2 |
34 | 3.66 | q/m | Ethanol-CH2/Glutamate-α-CH |
35 | 3.72 | m | Leucine-α-CH |
Glyc | 3.92 | s | Glycolate-CH2 |
Cr | 3.95 | s | Creatine-N(CH3) |
Nan | 4.02 | m | N-Acetylneuraminate-C4H |
36 | 4.13 | q | Lactate-CH |
37 | 6.88 | d | Tyrosine-Aromatic ring protons |
2-HPA | 6.93 | m | 2-Hydroxyphenylacetate-Aromatic ring proton |
38 | 7.06 | s | Histidine-Imidazole ring protons |
39 | 7.20 | d | Tyrosine-Aromatic ring protons |
40 | 7.32 | m | Phenylalanine-Aromatic ring proton |
41 | 7.36 | m | Phenylalanine-Aromatic ring proton |
42 | 7.42 | m | Phenylalanine-Aromatic ring proton |
43 | 7.65 | s | Guanine-CH= |
44 | 7.78 | s | Histidine-Imidazole ring protons |
45 | 8.05 | broad | * Protein aromatic amino acid residue(s) |
46 | 8.45 | s | Formate-CH |
47 | 9.57 | ** s(t) | Unassigned saturated aldehyde-CHO function |
1.2. 19F NMR Analysis of Human Saliva, Oral Biopsies and Tap Water
1.3. Importance of Metabolomics Investigations in Clinical Epidemiology
2. Metabolic Pathways That Sustain Cancer Cell Survival and Proliferation
3. Overview of the Metabolomics Screening of Saliva Specimens for Differential Groups of Cancer Conditions, including Selected Systematic Reviews Conducted: Applications to Diagnosis, Prognostic Severity Monitoring and Metabolic Pathway Dysregulations
4. Oral Cancers
4.1. Oral Squamous Cell Carcinoma
5. Extra-Oral (Systemic) Cancers
5.1. Head and Neck Squamous Cell Carcinoma
5.2. Lung Cancer
5.3. Breast Cancer
5.4. Pancreatic Cancer
5.5. Prostate Cancer
5.6. Colon Cancer
6. Oral Mucositis as a Response to Radiation Therapy
7. Case Study: An 1H NMR Evaluation of Acute-Phase Glycoproteins in WMSS Samples and Their Possible Applications as Biomarkers for Cancers and Inflammatory Disorders: Potential Interferences from 13C Satellites, Low-Molecular-Mass Biomolecules and Salivary Hyaluronate
8. Clinical Implications of the 1H NMR-Based Metabolomics Analysis of Human Saliva for Cancer Detection and Monitoring
9. Routes to Therapeutic Options and Drug Discovery
9.1. Recognition of Drug Targets
9.2. Drug Discovery Programmes
9.3. Potential Facilitation of Decisions to Be Made on Drug Treatments in Oncology (Untargeted or Targeted) with Available Metabolomics Datasets
10. Limitations of NMR-Based Metabolomics Investigations of Human Saliva for Cancer Diagnosis and Its Prognostic Monitoring
11. Key Concluding Remarks and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grootveld, M.; Page, G.; Bhogadia, M.; Edgar, M. Updates and original case studies focused on the NMR-linked metabolomics analysis of human oral fluids Part I: Emerging platforms and perspectives. Appl. Sci. 2022, 12, 1235. [Google Scholar] [CrossRef]
- Silwood, C.J.; Lynch, E.; Claxson, A.W.D.; Grootveld, M.C. 1H and (13)C NMR spectroscopic analysis of human saliva. J. Dent. Res. 2002, 81, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Haywood, R.M.; Claxson, A.W.D.; Hawkes, G.E.; Richardson, D.P.; Naughton, D.P.; Coumbarides, G.; Hawkes, J.; Lynch, E.J.; Grootveld, M.C. Detection of aldehydes and their conjugated hydroperoxydiene precursors in thermally-stressed culinary oils and fats: Investigations using high resolution proton NMR Spectroscopy. Free. Rad. Res. 1995, 22, 441–482. [Google Scholar] [CrossRef] [PubMed]
- Naumova, E.A.; Kuehnl, P.; Hertenstein, P.; Markovic, L.; Jordan, R.A.; Gaengler, P.; Arnold, W.H. Fluoride bioavailability in saliva and plaque. BMC Oral. Health 2012, 12, 3. [Google Scholar] [CrossRef]
- Water Fluoridation Health monitoring report for England 2018. Available online: https://r.search.yahoo.com/_ylt=AwrIQdcwH9diC2EA1xR3Bwx.;_ylu=Y29sbwMEcG9zAzcEdnRpZAMEc2VjA3Ny/RV=2/RE=1658294193/RO=10/RU=https%3a%2f%2fassets.publishing.service.gov.uk%2fgovernment%2fuploads%2fsystem%2fuploads%2fattachment_data%2ffile%2f692754%2fWater_Fluoridation_Health_monitoring_report_for_England_2018_final.pdf/RK=2/RS=6t1u2yNZzGC.2MDxg8RKIxq90Ec- (accessed on 19 July 2022).
- Seitz, J.; Vineberg, J.G.; Zuniga, E.S.; Ojima, I. Fluorine-containing taxoid anticancer agents and their tumor-targeted drug delivery. J. Fluor. Chem. 2013, 152, 157–165. [Google Scholar] [CrossRef]
- Würtz, P.; Raiko, J.R.; Magnussen, C.; Soininen, P.; Kangas, A.; Tynkkynen, T.; Thomson, R.; Laatikainen, R.; Savolainen, M.J.; Laurikka, J.; et al. High-throughput quantification of circulating metabolites improves prediction of subclinical atherosclerosis. Eur. Hear. J. 2012, 33, 2307–2316. [Google Scholar] [CrossRef]
- Mahendran, Y.; Cederberg, H.; Vangipurapu, J.; Kangas, A.J.; Soininen, P.; Kuusisto, J.; Uusitupa, M.; Ala-Korpela, M.; Laakso, M. Glycerol and Fatty Acids in Serum Predict the Development of Hyperglycemia and Type 2 Diabetes in Finnish Men. Diabetes Care 2013, 36, 3732–3738. [Google Scholar] [CrossRef]
- Mäkinen, V.-P.; Soininen, P.; Kangas, A.J.; Forsblom, C.; Tolonen, N.; Thorn, L.; Viikari, J.; Raitakari, O.T.; Savolainen, M.; Groop, P.-H.; et al. Triglyceride-cholesterol imbalance across lipoprotein subclasses predicts diabetic kidney disease and mortality in type 1 diabetes: The FinnDiane Study. J. Intern. Med. 2013, 273, 383–395. [Google Scholar] [CrossRef]
- Al-Hussaini, A.; Tan, T.; Sehmi, J.; Elliott, P.; Ala-Korpela, M.; Kooner, J.S.; Chambers, J.C. Abstract P020: 1H NMR metabonomic profiling identifies novel biomarkers for cardiovascular mortality. Circulation 2012, 125, AP020. [Google Scholar] [CrossRef]
- Fischer, K.; Kettunen, J.; Würtz, P.; Haller, T.; Havulinna, A.S.; Kangas, A.; Soininen, P.; Esko, T.; Tammesoo, M.-L.; Mägi, R.; et al. Biomarker Profiling by Nuclear Magnetic Resonance Spectroscopy for the Prediction of All-Cause Mortality: An observational study of 17,345 persons. PLOS Med. 2014, 11, e1001606. [Google Scholar] [CrossRef]
- Chambers, J.C.; Zhang, W.; Sehmi, J.; Li, X.; Wass, M.N.; Van der Harst, P.; Holm, H.; Sanna, S.; Kavousi, M.; Baumeister, S.E.; et al. Alcohol Genome-wide Association (AlcGen) Consortium; Diabetes Genetics Replication and Meta-analyses (DIAGRAM+) Study; Genetic Investigation of Anthropometric Traits (GIANT) Consortium; Global Lipids Genetics Consortium; Genetics of Liver Disease (GOLD) Consortium; International Consortium for Blood Pressure (ICBP-GWAS); Meta-analyses of Glucose and Insulin-Related Traits Consortium (MAGIC). Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nat. Genet. 2011, 43, 1131–1138. [Google Scholar] [CrossRef] [PubMed]
- Inouye, M.; Kettunen, J.; Soininen, P.; Silander, K.; Ripatti, S.; Kumpula, L.S.; Hämäläinen, E.; Jousilahti, P.; Kangas, A.J.; Männistö, S.; et al. Metabonomic, transcriptomic, and genomic variation of a population cohort. Mol. Syst. Biol. 2010, 6, 441. [Google Scholar] [CrossRef] [PubMed]
- Vernieri, C.; Casola, S.; Foiani, M.; Pietrantonio, F.; de Braud, F.; Longo, V. Targeting cancer metabolism: Dietary and pharmacologic interventions. Cancer Discov. 2016, 6, 1315–1333. [Google Scholar] [CrossRef] [PubMed]
- Day, S.E.; Kettunen, M.I.; Gallagher, F.A.; Hu, D.E.; Lerche, M.; Wolber, J.; Golman, K.; Ardenkjaer-Larsen, J.H.; Brindle, K.M. Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat. Med. 2007, 13, 1382–1387. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, T.B.; Serrao, E.M.; Kennedy, B.W.; Hu, D.E.; Kettunen, M.I.; Brindle, K.M. Magnetic resonance imaging of tumor glycolysis using hyperpolarized 13C–labeled glucose. Nat. Med. 2014, 20, 93–97. [Google Scholar] [CrossRef]
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef]
- Sullivan, L.B.; Gui, D.Y.; Hosios, A.M.; Bush, L.N.; Freinkman, E.; Vander Heiden, M.G. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 2015, 162, 552–563. [Google Scholar] [CrossRef]
- Koendjbiharie, J.G.; van Kranenburg, R.; Kengen, S.W.M. The PEP-pyruvate-oxaloacetate node: Variation at the heart of metabolism. FEMS Microbiol. Rev. 2021, 45, fuaa061. [Google Scholar] [CrossRef]
- Assad, D.X.; Mascarenhas, E.C.P.; de Lima, C.L.; de Toledo, I.P.; Chardin, H.; Combes, A.; Acevedo, A.C.; Guerra, E.N.S. Salivary metabolites to detect patients with cancer: A systematic review. Int. J. Clin. Oncol. 2020, 25, 1016–1036. [Google Scholar] [CrossRef]
- Sugimoto, M.; Wong, D.T.; Hirayama, A.; Soga, T.; Tomita, M. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics 2010, 6, 78–95. [Google Scholar] [CrossRef]
- Fang, F.; He, X.; Deng, H.; Chen, O.; Lu, J.; Spraul, M.; Yu, Y.B. Discrimination of metabolic profiles of pancreatic cancer from chronic pancreatitis by high-resolution magic angle spinning 1H nuclear magnetic resonance and principal components analysis. Cancer Sci. 2007, 98, 1678–1682. [Google Scholar] [CrossRef] [PubMed]
- Mann, G.E.; Yudilevich, D.L. Regulation of amino acid influx and efflux at the basolateral plasma membrane of the salivary gland epithelium: Effects of parasympathetic nerve stimulation. J. Dent. Res. 1987, 66, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Melvin, J.E. Chloride channels and salivary gland function. Crit. Rev. Oral Biol. Med. 1999, 10, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, Y.; Ishida, H. Aquaporin water channel in salivary glands. Jap. J. Pharmacol. 2000, 83, 95–101. [Google Scholar] [CrossRef]
- Yang, C.; Richardson, A.D.; Smith, J.W.; Osterman, A. Comparative metabolomics of breast cancer. Pac. Symp. Biocomput. 2007, 12, 181–192. [Google Scholar]
- Warnakulasuriya, S. Global epidemiology of oral and oropharyngeal cancer. Oral. Oncol. 2009, 45, 309–316. [Google Scholar] [CrossRef]
- Gupta, P.C.; Warnakulasuriya, S. Global epidemiology of areca nut usage. Addict. Biol. 2002, 7, 77–83. [Google Scholar] [CrossRef]
- Patil, D.J.; More, C.B. Salivary metabolomics—A diagnostic and biologic signature for oral cancer. J. Oral. Maxillofac. Surg Med. Pathol. 2021, 33, 546–554, ISSN 2212-5558. [Google Scholar] [CrossRef]
- Chen, X.; Yu, D. Metabolomics study of oral cancers. Metabolomics 2019, 15, 22. [Google Scholar] [CrossRef]
- Kouznetsova, V.; Li, J.; Romm, E.; Tsigelny, I. Finding distinctions between oral cancer and periodontitis using saliva metabolites and machine learning. Oral. Dis. 2020, 27, 484–493. [Google Scholar] [CrossRef]
- Supawat, B.; TheNu Aye, K.; Ritpanja, J.; Nueangwong, W.; Kothan, S.; Pan, J.; Tungjai, M. Differences in spectroscopic properties of saliva taken from normal subjects and oral cancer patients: Comparison studies. J. Fluoresc. 2021, 31, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Lohavanichbutr, P.; Zhang, Y.; Wang, P.; Gu, H.; Nagana Gowda, G.A.; Djukovic, D.; Buas, M.F.; Raftery, D.; Chen, C. Salivary metabolite profiling distinguishes patients with oral cavity squamous cell carcinoma from normal controls. PLoS ONE 2018, 13, e0204249. [Google Scholar] [CrossRef] [PubMed]
- Alves, M.; Rodrigues, N.; Bandeira, C.; Chagas, J.; Pascoal, M.; Nepomuceno, G.; Martinho, H.; Alves, M.; Mendes, M.; Dias, M.; et al. Identification of possible salivary metabolic biomarkers and altered metabolic pathways in South American patients diagnosed with oral squamous cell carcinoma. Metabolites 2021, 11, 650. [Google Scholar] [CrossRef] [PubMed]
- Costa, N.; Alves, M.; Rodriguesl, N.; Bandeira, C.; Alves, M.; Mendes, M.; Alves, L.; Almeida, J.; Barbosa, R. Finding the combination of multiple biomarkers to diagnose oral squamous cell carcinoma—A data mining approach. Comput. Biol. Med. 2022, 143, 105296. [Google Scholar] [CrossRef]
- Carmona, C.J.; Ruiz-Rodado, V.; del Jesus, M.J.; Weber, A.; Grootveld, M.; González, P.; Elizondo, D. FuGePSD: Fuzzy genetic programming-based for subgroup discovery. A case study: Pathogenesis of acute sore throat conditions in humans. Inf. Sci. 2015, 298, 180–197. [Google Scholar] [CrossRef]
- Mikkonen, J.J.W.; Singh, S.P.; Herrala, M.; Lappalainen, R.; Myllymaa, S.; Kullaa, A.M. Salivary metabolomics in the diagnosis of oral cancer and periodontal diseases. J. Periodont. Res. 2016, 51, 431–437. [Google Scholar] [CrossRef]
- Ishikawa, S.; Sugimoto, M.; Kitabatake, K.; Tu, M.; Sugano, A.; Yamamori, I.; Iba, A.; Yusa, K.; Kaneko, M.; Ota, S.; et al. Effect of timing of collection of salivary metabolomic biomarkers on oral cancer detection. Amino Acids. 2017, 49, 761–770. [Google Scholar] [CrossRef]
- Gardner, A.; Parkes, H.G.; Carpenter, G.H.; So, P.-W. Developing and standardizing a protocol for quantitative proton nuclear magnetic resonance (1H NMR) spectroscopy of saliva. J. Proteome Res. 2018, 17, 1521–1531. [Google Scholar] [CrossRef]
- Panneerselvam, K.; Ishikawa, S.; Krishnan, R.; Sugimoto, M. Salivary Metabolomics for Oral Cancer Detection: A Narrative Review. Metabolites 2022, 12, 436. [Google Scholar] [CrossRef]
- Morikawa, T.; Shibahara, T.; Takano, M.; Iwamoto, M.; Takaki, T.; Kasahara, K.; Nomura, T.; Takano, N.; Katakura, A. countermeasure and opportunistic screening systems for oral cancer. Oral. Oncol. 2021, 112, 105047. [Google Scholar] [CrossRef]
- Walsh, T.; Warnakulasuriya, S.; Lingen, M.W.; Kerr, A.R.; Ogden, G.R.; Glenny, A.M.; Macey, R. Clinical assessment for the detection of oral cavity cancer and potentially malignant disorders in apparently healthy adults. Cochrane Database Syst. Rev. 2021, 12, Cd010173. [Google Scholar] [PubMed]
- Ren, R.; Luo, H.; Su, C.; Yao, Y.; Liao, W. Machine Learning in dental, oral and craniofacial imaging: A review of recent progress. PeerJ 2021, 9, e11451. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.; Roy, N.; Dhandhukia, P. Algorithm mediated early detection of oral cancer from image analysis. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. 2022, 133, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Emekli-Alturfan, E.; Demir, G.; Kasikci, E.S.; Tunali-Akbay, T.; Pişiriciler, R.; Caliskan, E.; Yarat, A. Altered biochemical parameters in the saliva of patients with breast cancer. Tohoku J. Exp. Med. 2008, 214, 89–96. [Google Scholar] [CrossRef]
- Gao, K.; Zhou, H.; Zhang, L.; Lee, J.W.; Zhou, Q.; Hu, S.; Wolinsky, L.E.; Farrell, J.; Eibl, G.; Wong, D.T. Systemic disease-induced salivary biomarker profiles in mouse models of melanoma and non-small cell lung cancer. PLoS ONE 2009, 4, e5875. [Google Scholar] [CrossRef]
- Harrison, T.; Bigler, L.; Tucci, M.; Pratt, L.; Malamud, F.; Thigpen, J.T.; Streckfus, C.; Younger, H. Salivary sIgA concentrations and stimulated whole saliva flow rates among women undergoing chemotherapy for breast cancer: An exploratory study. Spec. Care Dent. 1998, 18, 109–112. [Google Scholar] [CrossRef]
- Streckfus, C.F.; Bigler, L.R.; Zwick, M. The use of surface-enhanced laser desorption/ionization time-of-flight mass spectrometry to detect putative breast cancer markers in saliva: A feasibility study. J. Oral. Pathol. Med. 2006, 35, 292–300. [Google Scholar] [CrossRef]
- Streckfus, C.F.; Mayorga-Wark, O.; Arreola, D.; Edwards, C.; Bigler, L.; Dubinsky, W.P. Breast cancer related proteins are present in saliva and are modulated secondary to ductal carcinoma in situ of the breast. Cancer Investig. 2008, 26, 159–167. [Google Scholar] [CrossRef]
- Hirayama, A.; Kami, K.; Sugimoto, M.; Sugawara, M.; Toki, N.; Onozuka, H.; Kinoshita, T.; Saito, N.; Ochiai, A.; Tomita, M.; et al. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res. 2009, 69, 4918–4925. [Google Scholar] [CrossRef]
- Walenta, S.; Wetterling, M.; Lehrke, M.; Schwickert, G.; Sundfør, K.; Rofstad, E.K.; Mueller-Klieser, W. High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res. 2000, 60, 916–921. [Google Scholar]
- Vissers, Y.L.; Dejong, C.H.; Luiking, Y.C.; Fearon, K.C.H.; von Meyenfeldt, M.F.; Deutz, N.E.P. Plasma arginine concentrations are reduced in cancer patients: Evidence for arginine deficiency? Am. J. Clin. Nutr. 2005, 81, 1142–1146. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Gao, Y.; Cao, Y.; Zhang, Y.; Xu, M.; Wang, Y.; Jing, Y.; Guo, S.; Jing, F.; Hu, X.; et al. Association of plasma arginine with breast cancer molecular subtypes in women of Liaoning province. IUBMB Life 2016, 68, 980–984. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Elashoff, D.; Oh, M.; Sinha, U.; St John, M.A.R.; Abemayor, X.Z.-E.; Wong, D.T. Serum circulating human mRNA profiling and its utility for oral cancer detection. J. Clin. Oncol. 2006, 24, 1754–1760. [Google Scholar] [CrossRef]
- Pickering, V.; Jordan, R.C.; Schmidt, B.L. Elevated salivary endothelin levels in oral cancer patients—A pilot study. Oral. Oncol. 2007, 43, 37–41. [Google Scholar] [CrossRef]
- Tiziani, S.; Lopes, V.; Gunther, U.L. Early stage diagnosis of oral cancer using 1H NMR-based metabolomics. Neoplasia 2009, 11, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Xu, B.; Huang, J.; Xue, J.; Shi, X.; Xiao, L.; Li, W. 1H NMR-based metabonomic and pattern recognition analysis for detection of oral squamous cell carcinoma. Clin. Chim. Acta 2009, 401, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Mikkonen, J.J.W.; Singh, S.P.; Akhi, R.; Salo, T.; Lappalainen, R.; González-Arriagada, W.A.; Ajudarte Lopes, M.; Kullaa, A.M.; Myllymaa, S. Potential role of nuclear magnetic resonance spectroscopy to identify salivary metabolite alterations in patients with head and neck cancer. Oncol. Lett. 2018, 16, 6795–6800. [Google Scholar] [CrossRef]
- Navazesh, M. Methods for collecting saliva. Ann. N. Y. Acad. Sci. 1993, 694, 72–77. [Google Scholar] [CrossRef]
- Manjula, S.; Monteiro, F.; Aroor Rao, A.; Rao, S.; Annaswamy, R.; Rao, A. Assessment of serum L-fucose in brain tumor cases. Ann. Indian Acad. Neurol. 2010, 13, 33–36. [Google Scholar] [CrossRef]
- Listinsky, J.J.; Siegal, G.P.; Listinsky, C.M. The emerging importance of α-L-fucose in human breast cancer: A review. Am. J. Transl. Res. 2011, 3, 292–322. [Google Scholar]
- Hynne, H.; Sandås, E.; Elgstoen, K.; Rootwelt, H.; Utheim, T.; Galtung, H.; Jensen, J. Saliva metabolomics in dry mouth patients with head and neck cancer or Sjögren’s syndrome. Cells 2022, 11, 323. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Zhang, L.; Zhou, H.; Lee, J.M.; Garon, E.B.; Wong, D.T. Proteomic analysis of human saliva from lung cancer patients using two-dimensional difference gel electrophoresis and mass spectrometry. Mol. Cell Proteomics. 2012, 11, 012112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xiao, H.; Zhou, H.; Santiago, S.; Lee, J.M.; Garon, E.B.; Yang, J.; Brinkmann, O.; Yan, X.; Akin, D.; et al. Development of transcriptomic biomarker signature in human saliva to detect lung cancer. Cell Mol. Life Sci. 2012, 69, 3341–3350. [Google Scholar] [CrossRef]
- Li, X.; Yang, T.; Linb, J. Spectral analysis of human saliva for detection of lung cancer using surface-enhanced Raman spectroscopy. J. Biomed. Opt. 2012, 17, 037003. [Google Scholar] [CrossRef] [PubMed]
- Takamori, S.; Ishikawa, S.; Suzuki, J.; Oizumi, H.; Uchida, T.; Ueda, S.; Edamatsu, K.; Iino, M.; Sugimoto, M. Differential diagnosis of lung cancer and benign lung lesion using salivary metabolites: A preliminary study. Thorac. Cancer. 2021, 13, 10. [Google Scholar] [CrossRef]
- Ragusa, A.; Romano, P.; Lenucci, M.; Civino, E.; Vergara, D.; Pitotti, E.; Neglia, C.; Distante, A.; Romano, G.; Renzo, N.; et al. Differential glycosylation levels in saliva from patients with lung or breast cancer: A preliminary assessment for early diagnostic purposes. Metabolites 2021, 11, 566. [Google Scholar] [CrossRef]
- Porto-Mascarenhas, E.C.; Assad, D.Z.; Chardin, H.; Gozal, D.; De Luca Canto, G.; Acevedo, A.C.; Neves, E.; Guerra, S. Salivary biomarkers in the diagnosis of breast cancer: A review. Crit. Rev. Oncol./Hematol. 2017, 110, 62–73, ISSN 1040-8428. [Google Scholar] [CrossRef]
- Silwood, C.J.L.; Lynch, E.J.; Seddon, S.; Sheerin, A.; Claxson, A.W.D.; Grootveld, M.C. 1H-NMR analysis of microbial-derived organic acids in primary root carious lesions and saliva. NMR Biomed. 1999, 12, 345–356. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, H.; Karlan, S.; Zhou, H.; Gross, J.; Elashoff, D.; Akin, D.; Yan, X.; Chia, D.; Karlan, B.; et al. Discovery and preclinical validation of salivary transcriptomic and proteomic biomarkers for the non-invasive detection of breast cancer. PLoS ONE 2010, 5, e15573. [Google Scholar] [CrossRef]
- Streckfus, C.F. Salivary diagnostics: A new solution for an old problem breast cancer detection. Proc. SPIE. 2009, 7306, 730608. [Google Scholar]
- Bigler, L.R.; Streckfus, C.F.; Copeland, L.; Burns, R.; Dai, X.; Kuhn, M.; Martin, P.; Bigler, S.A. The potential use of saliva to detect recurrence of disease in women with breast carcinoma. J. Oral Pathol. Med. 2002, 31, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Brooks, M.N.; Wang, J.; Li, Y.; Zhang, R.; Elashoff, D.; Wong, D.T. Salivary protein factors are elevated in breast cancer patients. Mol. Med. Rep. 2008, 1, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Streckfus, C.; Dubinsky, W. Proteomic analysis of saliva for cancer diagnosis. Expert Rev. Proteom. 2007, 4, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Wang, Z.; Huang, Y.; Duan, Y.; Wang, X. Investigation of salivary free amino acid profile for early diagnosis of breast cancer with ultra performance liquid chromatography-mass spectrometry. Clin. Chim. Acta 2015, 447, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Cheng, F.; Lu, X.; Duan, Y.; Wang, X. Untargeted saliva metabonomics study of breast cancer based on ultra performance liquid chromatography coupled to mass spectrometry with HILIC and RPLC separations. Talanta 2016, 158, 351–360. [Google Scholar] [CrossRef]
- Koopaie, M.; Kolahdooz, S.; Fatahzadeh, M.; Manifar, S. Salivary biomarkers in breast cancer diagnosis: A systematic review and diagnostic meta-analysis. Cancer Med. 2022, 11, 2644–2661. [Google Scholar] [CrossRef]
- Lau, C.; Kim, Y.; Chia, D.; Spielmann, N.; Eibl, G.; Elashoff, D.; Wei, F.; Lin, Y.L.; Moro, A.; Grogan, T.; et al. Role of pancreatic cancer-derived exosomes in salivary biomarker development. J. Biol. Chem. 2013, 288, 26888–26897. [Google Scholar] [CrossRef]
- Yaman Agaoglu, F.; Kovancilar, M.; Dizdar, Y.; Darendeliler, E.; Holdenrieder, S.; Dalay, N.; Gezer, U. Investigation of miR-21, miR-141, and miR-221 in blood circulation of patients with prostate cancer. Tumor Biol. 2011, 32, 583–588. [Google Scholar] [CrossRef]
- Hizir, M.S.; Balcioglu, M.; Rana, M.; Robertson, N.M.; Yigit, M.V. Simultaneous detection of circulating oncomiRs from body fluids for prostate cancer staging using nanographene oxide. ACS Appl. Mater. Interfaces 2014, 6, 14772–14778. [Google Scholar] [CrossRef]
- Rovera, A.; Hector, M.; Anderson, P. Parotid saliva 1H-NMR analysis for colon cancer metabolomics: A case report. Spec. Care Dentist. 2021, 42, 80–85. [Google Scholar] [CrossRef]
- Yatsuoka, W.; Ueno, T.; Miyano, K.; Enomoto, A.; Ota, S.; Sugimoto, M.; Uezono, Y. Time-course of salivary metabolomic profiles during radiation therapy for head and neck cancer. J. Clin. Med. 2021, 10, 2631. [Google Scholar] [CrossRef] [PubMed]
- Grootveld, M.C.; Herz, H.; Haywood, R.; Hawkes, G.E.; Naughton, D.; Perera, A.; Knappitt, J.; Blake, D.R.; Claxson, A.W.D. Multicomponent analysis of radiolytic products in human body fluids using high field proton nuclear magnetic resonance (NMR) spectroscopy. Radiat. Phys. Chem. 1994, 43, 445–453, ISSN 0969-806X. [Google Scholar] [CrossRef]
- Lee, L.Y.; Thaysen-Andersen, M.; Baker, M.S.; Packer, N.H.; Hancock, W.S.; Fanayan, S. Comprehensive N-glycome profiling of cultured human epithelial breast cells identifies unique secretome N-glycosylation signatures enabling tumorigenic subtype classification. J. Proteome Res. 2014, 13, 4783–4795. [Google Scholar] [CrossRef] [PubMed]
- Song, E.; Mayampurath, A.; Yu, C.Y.; Tang, H.; Mechref, Y. Glycoproteomics: Identifying the glycosylation of prostate specific antigen at normal and high isoelectric points by LC MS/MS. J. Proteome Res. 2014, 13, 5570–5580. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Gentry-Maharaj, A.; Burnell, M.; Steentoft, C.; Marcos-Silva, L.; Mandel, U.; Jacobs, I.; Dawnay, A.; Menon, U.; Blixt, O. Microarray glycoprofiling of CA125 improves differential diagnosis of ovarian cancer. J. Proteome Res. 2013, 12, 1408–1418. [Google Scholar] [CrossRef]
- Li, Q.K.; Gabrielson, E.; Askin, F.; Chan, D.W.; Zhang, H. Glycoproteomics using fluid based specimens in the discovery of lung cancer protein biomarkers: Promise and challenge. PROTEOMICS—Clin. Appl. 2013, 7, 55–69. [Google Scholar] [CrossRef]
- Hanaoka, T.; Sato, S.; Tobita, H.; Miyake, T.; Ishihara, S.; Akagi, S.; Amano, Y.; Kinoshita, Y. Clinical significance of the highly sensitive fucosylated fraction of α-fetoprotein in patients with chronic liver disease. J. Gastroenterol. Hepatol. 2011, 26, 739–744. [Google Scholar] [CrossRef]
- Caldwell, R.C.; Pigman, W. Changes in protein and glycoprotein concentrations in human submaxillary saliva under various stimulatory conditions. Arch. Oral Biol. 1966, 11, 437–450, ISSN 0003-9969. [Google Scholar] [CrossRef]
- Ramachandran, P.; Boontheung, P.; Pang, E.; Weihong, Y.; Wong, D.T.; Loo, J.A. Comparison of N-linked glycoproteins in human whole saliva, parotid, submandibular, and sublingual glandular secretions identified using hydrazide chemistry and mass spectrometry. Clin. Proteom. 2008, 4, 80–104. [Google Scholar] [CrossRef]
- Gabay, C.; Kushner, I. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 1999, 340, 448–454. [Google Scholar] [CrossRef]
- Silva, M.L.S. Cancer serum biomarkers based on aberrant post-translational modifications of glycoproteins: Clinical value and discovery strategies. Biochim. Biophys. Acta—Rev. Cancer. 2015, 1856, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Otvos, J.D.; Shalaurova, I.; Wolak-Dinsmore, J.; Connelly, M.A.; Mackey, R.H.; Stein, J.H.; Tracy, R.P. GlycA: A composite nuclear magnetic resonance biomarker of systemic inflammation. Clin. Chem. 2015, 61, 714–723. [Google Scholar] [CrossRef] [PubMed]
- Fuertes-Martín, R.; Correig, X.; Vallvé, J.C.; Amigó, N. Human serum/plasma glycoprotein analysis by 1H-NMR, an emerging method of inflammatory assessment. J. Clin. Med. 2020, 9, 354. [Google Scholar] [CrossRef]
- Fuertes-Martín, R.; Taverner, D.; Vallvé, J.-C.; Paredes, S.; Masana, L.; Correig Blanchar, X.; Amigó Grau, N. Characterization of 1H NMR plasma glycoproteins as a new strategy to identify inflammatory patterns in rheumatoid arthritis. J. Proteome Res. 2018, 17, 3730–3739. [Google Scholar] [CrossRef]
- Ritchie, S.C.; Würtz, P.; Nath, A.P.; Abraham, G.; Havulinna, A.S.; Fearnley, L.G.; Sarin, A.P.; Kangas, A.J.; Soininen, P.; Aalto, K.; et al. The biomarker GlycA is associated with chronic inflammation and predicts long-term risk of severe infection. Cell Syst. 2015, 1, 293–301. [Google Scholar] [CrossRef]
- Kianoush, S.; Bittencourt, M.S.; Lotufo, P.A.; Bensenor, I.M.; Jones, S.R.; DeFilippis, A.P.; Toth, P.P.; Otvos, J.D.; Tibuakuu, M.; Hall, M.E.; et al. Association between smoking and serum GlycA and high-sensitivity C-reactive protein levels: The Multi-Ethnic Study of Atherosclerosis (MESA) and Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). J. Am. Heart Assoc. 2017, 6, e006545. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, J.A.; Cassani, J.; Probert, F.; Palace, J.; Claridge, T.D.W.; Botana, A.; Kenwright, A.M. Reliable, high-quality suppression of NMR signals arising from water and macromolecules: Application to bio-fluid analysis. Analyst 2019, 144, 7270. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.; Parkes, H.G.; So, P.-W.; Carpenter, G.H. Determining bacterial and host contributions to the human salivary metabolome. J. Oral. Microbiol. 2019, 11, 1617014. [Google Scholar] [CrossRef]
- Ogg, R.J.; Kingsley, P.B.; Taylor, J.S. WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. J. Magn. Reson. B. 1994, 104, 1–10. [Google Scholar] [CrossRef]
- Wishart, D.S.; Guo, A.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, B.L.; et al. HMDB 5.0: The human metabolome database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. [Google Scholar] [CrossRef]
- Bell, J.D.; Brown, J.C.C.; Nicholson, J.K.; Sadler, P.J. Assignment of resonances for ‘acute-phase’ glycoproteins in high resolution proton NMR spectra of human blood plasma. FEBS Lett. 1987, 215, 311–315. [Google Scholar] [CrossRef]
- Toole, B.P. Hyaluronan and its binding proteins, the hyaladherins. Curr. Opin. Cell Biol. 1990, 2, 839–844. [Google Scholar] [CrossRef]
- Grootveld, M.; Henderson, E.B.; Farrell, A.; Blake, D.R.; Parkes, H.G.; Haycock, P. Oxidative damage to hyaluronate and glucose in synovial fluid during exercise of the inflamed rheumatoid joint. Detection of abnormal low-molecular-mass metabolites by proton-n.m.r. spectroscopy. Biochem. J. 1991, 273, 459–467. [Google Scholar] [CrossRef]
- Al-Khateeb, R.; Prpic, J. Hyaluronic acid: The reason for its variety of physiological and biochemical functional properties. Appl. Clin. Res. Clin. Trials Regul. Aff. 2019, 6, 112–159. [Google Scholar] [CrossRef]
- Pogrel, M.; Lowe, M.; Stern, R. Hyaluronan (hyaluronic acid) in human saliva. Arch. Oral Biol. 1996, 41, 667–671. [Google Scholar] [CrossRef]
- Grootveld, M.; Claxson, A.W.D.; Chander, C.L.; Haycock, P.; Blake, D.R.; Hawkes, G.E. High resolution proton NMR investigations of rat blood plasma. Assignment of resonances for the molecularly mobile carbohydrate side-chains of ‘acute-phase’ glycoproteins. FEBS Lett. 1993, 322, 266–276. [Google Scholar] [CrossRef]
- Engelke, U.F.H.; Sambeek Sambeek, M.L.F.L.; de Jong, J.G.N.; Leroy, J.G.; Morava, É.; Smeitink, J.A.M.; Wevers, R.A. N-acetylated metabolites in urine: Proton nuclear magnetic resonance spectroscopic study on patients with inborn errors of metabolism. Clin. Chem. 2004, 50, 58–66. [Google Scholar] [CrossRef]
- Ioannidis, J.P.; Khoury, M.J. Improving validation practices in ‘‘omics’’ research. Science 2011, 334, 1230–1232. [Google Scholar] [CrossRef]
- Tran, J.C.; Zamdborg, L.; Ahlf, D.R.; Lee, J.E.; Catherman, A.D. Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature 2011, 480, 254–258. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, A.; Yan, G.; Piao, C.; Li, W. Metabolomic analysis of key regulatory metabolites in hepatitis C virus-infected tree shrews. Mol. Cell Proteom. 2013, 12, 710–719. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, G.B.; Liu, P.; Song, J.H.; Liang, Y. Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 2008, 105, 4826–4831. [Google Scholar] [CrossRef] [PubMed]
- Kitano, H. Cancer robustness: Tumour tactics. Nature 2003, 426, 125. [Google Scholar] [CrossRef]
- Stratton, M.R. Exploring the genomes of cancer cells: Progress and promise. Science 2011, 331, 1553–1558. [Google Scholar] [CrossRef] [PubMed]
- Macconaill, L.E.; Garraway, L.A. Clinical implications of the cancer genome. J. Clin. Oncol. 2010, 28, 5219–5228. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.E.; Yem, Y.C.; Chen, S.R.; Chai, J.R.; Lu, J.X.; Zhoa, L.; Gu, L.J.; Wang, Z.Y. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 1988, 72, 567–572. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, S.G.; Guilhot, F.; Larson, R.A.; Gathmann, I.; Baccarani, M.; Cervantes, F.; Cornelissen, J.J.; Fischer, T.; Hochhaus, A.; Hughes, T.; et al. Investigators, I.R.I.S. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med. 2003, 348, 994–1004. [Google Scholar] [CrossRef]
- Druker, B.J.; Guilhot, F.; O’Brien, S.G.; Gathmann, I.; Kantarjian, H.; Gattermann, N.; Deininger, M.W.; Silver, R.T.; Goldman, J.M.; Stone, R.M.; et al. IRIS Investigators. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med. 2006, 355, 2408–2417. [Google Scholar] [CrossRef]
- Yap, T.A.; Workman, P. Exploiting the cancer genome: Strategies for the discovery and clinical development of targeted molecular therapeutics. Ann. Rev. Pharmacol. Toxicol. 2012, 52, 549–573. [Google Scholar] [CrossRef]
- Weinstein, I.B. Cancer. Addiction to oncogenes—The Achilles heal of cancer. Science 2002, 297, 63–64. [Google Scholar] [CrossRef]
- Weinstein, I.B.; Joe, A. Oncogene addiction. Cancer Res. 2008, 68, 3077–3080. [Google Scholar] [CrossRef]
- Makovec, T. Cisplatin and beyond: Molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiol. Oncol. 2019, 53, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Konieczna, I.; Zarnowiec, P.; Kwinkowski, M.; Kolesinska, B.; Fraczyk, J.; Kaminski, Z.; Kaca, W. Bacterial urease and its role in long-lasting human diseases. Curr. Protein Pept. Sci. 2012, 13, 789–806. [Google Scholar] [CrossRef] [PubMed]
- Aro, K.; Wei, F.; Wong, D.T.; Tu, M. Saliva liquid biopsy for point-of-care applications. Front. Public Health 2017, 5, 77. [Google Scholar] [CrossRef] [PubMed]
- Percival, B.C.; Latour, Y.L.; Tifft, C.J.; Grootveld, M. Rapid identification of new biomarkers for the classification of GM1 Type 2 gangliosidosis using an unbiased 1H NMR-linked metabolomics strategy. Cells 2021, 10, 572. [Google Scholar] [CrossRef]
- Hosseini, R.; Hassanpour, N.; Liu, L.-P.; Hassoun, S. Pathway-activity likelihood analysis and metabolite annotation for untargeted metabolomics using probabilistic modelling. Metabolites 2020, 10, 183. [Google Scholar] [CrossRef]
- Grootveld, M. Metabolic Profiling: Disease and Xenobiotics. Issues in Toxicology Series; Royal Society of Chemistry: Cambridge, UK, 2014; ISBN 1849731632. [Google Scholar]
- Lamster, I.B.; Ahlo, J.K. Analysis of gingival crevicular fluid as applied to the diagnosis of oral and systemic diseases. Ann. N Y Acad. Sci. 2007, 1098, 216–229. [Google Scholar] [CrossRef]
- Haeckel, R.; Hanecke, P. Application of saliva for drug monitoring. An in vivo model for transmembrane transport. Eur. J. Clin. Chem. Clin. Biochem. 1996, 34, 171–191. [Google Scholar]
- Pfaffe, T.; Cooper-White, J.; Beyerlein, P.; Kostner, K.; Punyadeera, C. Diagnostic potential of saliva: Current state and future applications. Clin. Chem. 2011, 57, 675–687. [Google Scholar] [CrossRef]
- Yoshizawa, J.M.; Schafer, C.A.; Schafer, J.J.; Farrell, J.J.; Paster, B.J.; Wong, D.T. Salivary biomarkers: Toward future clinical and diagnostic utilities. Clin. Microbiol. Rev. 2013, 26, 781–791. [Google Scholar] [CrossRef]
- Park, N.J.; Li, Y.; Yu, T.; Brinkman, B.M.; Wong, D.T. Characterization of RNA in saliva. Clin. Chem. 2006, 52, 988–994. [Google Scholar] [CrossRef]
- Schafer, C.A.; Schafer, J.J.; Yakob, M.; Lima, P.; Camargo, P.; Wong, D.T. Saliva diagnostics: Utilizing oral fluids to determine health status. Monogr. Oral. Sci. 2014, 24, 88–98. [Google Scholar] [PubMed]
- Frezza, C.; Gottlieb, E. Mitochondria in cancer: Not just innocent bystanders. Semin. Cancer Biol. 2009, 19, 13. [Google Scholar] [CrossRef] [PubMed]
Metabolite | Blood a | Saliva a |
---|---|---|
‘Free’ N-Acetylneuraminate | 0.6–2.0 μmol./L | 12.5–41.0 μmol./L |
Total N-Acetylneuraminate b | 1.25–2.50 mmol./L | n-av |
‘Free’ N-Acetylglucosamine | 108 ± 67 nmol./L | n-av |
Glutamate | 24–177 μmol./L | 12–14 μmol./L |
Glutamine | 390–905 μmol./L | 5–42 μmol./L |
Proline | 111–259 μmol./L | 6–158 μmol./L |
Hydroxyproline | 13–40 μmol./L | 0.4–1.5 μmol./L |
Lysine | 105–441 μmol./L | 2–59 μmol./L |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grootveld, M.; Percival, B.C.; Page, G.; Hunwin, K.; Bhogadia, M.; Chan, W.; Edgar, M. Updates and Original Case Studies Focused on the NMR-Linked Metabolomics Analysis of Human Oral Fluids Part II: Applications to the Diagnosis and Prognostic Monitoring of Oral and Systemic Cancers. Metabolites 2022, 12, 778. https://doi.org/10.3390/metabo12090778
Grootveld M, Percival BC, Page G, Hunwin K, Bhogadia M, Chan W, Edgar M. Updates and Original Case Studies Focused on the NMR-Linked Metabolomics Analysis of Human Oral Fluids Part II: Applications to the Diagnosis and Prognostic Monitoring of Oral and Systemic Cancers. Metabolites. 2022; 12(9):778. https://doi.org/10.3390/metabo12090778
Chicago/Turabian StyleGrootveld, Martin, Benita C. Percival, Georgina Page, Kayleigh Hunwin, Mohammed Bhogadia, Wyman Chan, and Mark Edgar. 2022. "Updates and Original Case Studies Focused on the NMR-Linked Metabolomics Analysis of Human Oral Fluids Part II: Applications to the Diagnosis and Prognostic Monitoring of Oral and Systemic Cancers" Metabolites 12, no. 9: 778. https://doi.org/10.3390/metabo12090778
APA StyleGrootveld, M., Percival, B. C., Page, G., Hunwin, K., Bhogadia, M., Chan, W., & Edgar, M. (2022). Updates and Original Case Studies Focused on the NMR-Linked Metabolomics Analysis of Human Oral Fluids Part II: Applications to the Diagnosis and Prognostic Monitoring of Oral and Systemic Cancers. Metabolites, 12(9), 778. https://doi.org/10.3390/metabo12090778