The Mixture of Saccharomyces cerevisiae and Clostridium butyricum Could Promote Rumen Fermentation and Improve the Growth Performance of Goats in Hot Summer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goats and Management
2.2. Probiotics Feeding Experiments
2.3. Sample Collection and Measurement
2.4. Statistical Analysis
3. Results
3.1. Probiotics Did Not Affect the Physiological Parameters of Goats in Hot Summer
3.2. Probiotics Affected Blood Biochemistry
3.3. Probiotics Improve Rumen Fermentation
3.4. Probiotics Promoted Ruminal B Vitamins Production in Hot Summer
3.5. Probiotics Improved Growth Performance of Goats in Hot Summer
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, D.; Deng, B.; Wei, C.X.; Jia, L. Effects of urbanization process on the climate in Hefei city. J. Anhui Agri. Sci. 2008, 26, 11484–11487. [Google Scholar] [CrossRef]
- Marai, I.F.M.; EI-Darawany, A.A.; Fadie, A.; Abdel-Hafez, M.A.M. Physiological traits as affected by heat stress in sheep—A review. Small Rumin. Res. 2007, 71, 1–12. [Google Scholar] [CrossRef]
- Desnoyers, M.S.; Giger-Reverdin, G.; Bertin, G.; Duvaux-Pouter, D.; Sauvant, D. Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminant. J. Dairy Sci. 2009, 92, 1620–1632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahesh, M.S.; Mohanta, R.K.; Patra, A.K. Probiotics in Livestock and Poultry Nutrition and Health. In Advances in Probiotics for Sustainable Food and Medicine; Gunjan, G., Kumar, A., Eds.; Springer: Singapore, 2020; pp. 149–179. [Google Scholar] [CrossRef]
- Arowolo, M.A.; He, J.H. Use of probiotics and botanical extracts to improve ruminant production in the tropics: A review. Anim. Nutr. 2018, 3, 241–249. [Google Scholar] [CrossRef]
- Khan, R.U.; Shabana, N.; Kuldeep, D.; Karthik, K.; Ruchi, T.; Mutassim, M.A.; Alhidary, I.A.; Zahoor, A. Direct-fed beneficial applications, modes of action and prospects as a safe tool for enhancing production and safeguarding health. Int. J. Pharm. 2016, 12, 220–231. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.Y.; Su, X.D.; Pan, K.C. Biological characteristics of Clostridium butyricum and its application in animal production. In Proceedings of the 13th National Symposium on Animal Microecology, Beijing, China, 16–20 July 2018. [Google Scholar]
- Yang, C.M.; Cao, G.T.; Ferket, P.R.; Liu, T.T.; Zhou, L.; Zhang, L.; Xiao, Y.P.; Chen, A.G. Effects of probiotic, Clostridium butyricum, on growth performance, immune function, and cecal microflora in broiler chickens. Poul. Sci. 2012, 91, 2121–2129. [Google Scholar] [CrossRef]
- Liao, X.D.; Wu, R.J.; Ma, L.M.; Zhao, L.M.; Zheng, Z.J.; Zhang, R.J. Effects of Clostridium butyricum on antioxidant properties, meat quality and fatty acid composition of broiler birds. Lipids Health Dis. 2015, 14, 36. [Google Scholar] [CrossRef] [Green Version]
- Li, W.Q. Effects of Clostridium butyricum on Growth Performance, Blood Index and Rumen Fermentation in Calves and Bred Cattle. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2019. [Google Scholar]
- Cai, L.Y.; Yu, J.K.; Hartanto, R.; Qi, D.S. Dietary supplementation with Saccharomyces cerevisiae, Clostridium butyricum and their combination ameliorate rumen fermentation and growth performance of heat-stressed goats. Animals 2021, 11, 2116. [Google Scholar] [CrossRef]
- Xia, Z.F.; Cai, L.Y.; He, Y.Y.; Yu, J.H. Xylitol poisoning of dogs is associated with increased glycogenolysis, coagulopathy, and oxidative stress. Toxicol. Environ. Chem. 2013, 2, 337–343. [Google Scholar] [CrossRef]
- Maitisaiyidi, T.; Yibureyimu, A.; Yang, K. Determination of ammonia-nitrogen in ruminal fluid treated with methanol by alkaline hypochlorite-phenol spectrophotometry. Xinjiang Agr. Sci. 2012, 3, 565–570. [Google Scholar] [CrossRef]
- Yang, W.Z.; Beauchemin, K.A.; Rode, L.M. Effects of grain processing, forage to concentrate ratio, and feed particle size on rumen pH and digestion by dairy cows. J. Dairy Sci. 2001, 2, 203–216. [Google Scholar] [CrossRef]
- Ciulu, M.; Solinas, S.; Floris, I.; Panzanelli, P.; Pilo, M.; Piu, P.C.; Spano, N.; Sanna, G. RP-HPLC determination of water-soluble vitamins in honey. Talanta 2011, 83, 924–929. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.P.; Wang, W.J. Research Progress on the factors influencing the amount of methane emission of ruminants. Chin. Anim. Husb. Vet. Med. 2013, 2, 225–227. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; AOAC Int.: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analysis (Apparatus, Reagents, Procedures and Some Applications); USDA Agricultural Handbook: Washington, DC, USA, 1970; p. 379. [Google Scholar]
- Tajima, K.; Nonaka, I.; Higuchi, K.; Takusari, N.; Kurihara, M.; Takenaka, A.; Mitsumori, M.; Kajikawa, H.; Aminov, R.I. Influence of high temperature and humidity on rumen bacterial diversity in Holstein heifers. Anaerobe 2007, 2, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.G.; Li, M.; Zheng, N.; Wang, J.Q. Effect of Heat Stress on Bacterial Composition and Metabolism in the Rumen of Lactating Dairy Cows. Animals 2019, 9, 925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Wei, Y.; Hua, H.W.; Jing, X.Q.; Zhu, H.L.; Xiao, K.; Zhao, J.C.; Liu, Y.L. polyphenols sourced from ilex latifolia thunb. relieve intestinal injury via modulating ferroptosis in weanling piglets under oxidative stress. Antioxidants 2022, 11, 966. [Google Scholar] [CrossRef]
- Liu, C.J.; Sun, M.J.; Sun, J.Y.; Lv, W.L.; Liu, W.; Shan, A.S. Dietary compound probiotics on rumen fermentation and cellulase activity in dairy cows. Chin. J. Anim. Nutr. 2011, 5, 821–827. [Google Scholar] [CrossRef]
- Bach, A.; Iglesias, C.; Devant, M. Daily ruminal pH pattern of loose-housed dairy cattle as affected by feeding pattern and live yeast supplementation. Anim. Feed Sci. Tech. 2007, 1, 146–153. [Google Scholar] [CrossRef]
- Thrune, M.; Bach, A.; Ruiz-Moreno, M.; Stern, M.D.; Linn, J.G. Effects of Saccharomyces cerevisiae on ruminal pH and microbial fermentation in dairy cows: Yeast supplementation on rumen fermentation. Livest. Sci. 2009, 124, 261–265. [Google Scholar] [CrossRef]
- Moallem, U.; Lehrer, H.; Livshitz, L.M.; Zachut, M.; Yakoby, S. The effects of live yeast supplementation to dairy cows during the hot season on production, feed efficiency, and digestibility. J. Dairy Sci. 2009, 92, 343–351. [Google Scholar] [CrossRef]
- Galip, N. Effect of supplemental yeast culture and sodium bicarbonate on ruminal fermentation and blood variables in rams. J. Anim. Physiol. Anim. Nutr. 2006, 90, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Qadis, A.Q.; Goya, S.; Ikuta, K.; Yatsu, M.; Kimura, A.; Nakanishi, S.; Sato, S. Effects of a bacteria-based probiotic on ruminal ph, volatile fatty acids and bacterial flora of holstein calves. J. Vet. Med. Sci. 2004, 76, 877–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiran, R.R.; Kumar, D.S. Influence of yeast culture supplementation on rumen fermentation of bulls fed complete rations. IJASVM 2013, 1, 8–15. [Google Scholar]
- Chaucheyras-Durand, F.; Walker, N.D.; Bach, A. Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Anim. Feed. Sci. Tech. 2008, 1, 5–26. [Google Scholar] [CrossRef]
- Oeztuerk, H. Effects of live and autoclaved yeast cultures on ruminal fermentation in vitro. J. Anim. Feed Sci. 2009, 18, 142–150. [Google Scholar] [CrossRef]
- Uyeno, Y.; Akiyama, K.; Hasunuma, T.; Yamamoto, H.; Yokokawa, H.; Kawashima, K.M.; Itoh, M.; Kushibiki, S.; Hirako, M. Effects of supplementing an active dry yeast product on rumen microbial community composition and on subsequent rumen fermentation of lactating cows in the mid-to-late lactation period. Anim. Sci. J. 2017, 88, 119–124. [Google Scholar] [CrossRef]
- Lila, Z.A.; Mohammed, N.; Yasui, T.; Kurokawa, Y.; Kanda, S.; Itabashi, H. Effects of a twin strain of Saccharomyces cerevisiae live cells on mixed ruminal microorganism fermentation in vitro. J. Anim. Sci. 2004, 82, 1847–1854. [Google Scholar] [CrossRef]
- Chaucheyras-Durand, F.; Fonty, G. Influence of a probiotic yeast (Saccharomyces cerevisiae CNCM I-1077) on microbial colonization and fermentations in the rumen of newborn lambs. Microbial. Eco. Heal. Dise. 2002, 1, 30–36. [Google Scholar] [CrossRef]
- Zhao, G.Y. Ruminant Nutrition; China Agricultural university press: Beijing, China, 2012. [Google Scholar]
- Russell, J.B.; Rychlik, J.L. Factors that alter rumen microbial ecology. Science 2001, 292, 1119–1122. [Google Scholar] [CrossRef]
- Li, N.; Li, M.Y.; Peng, Q.H. Research Progress of Vitamin B in Ruminant Nutrition. Chin. J. Anim. Nutr. 2021, 9, 4909–4919. [Google Scholar] [CrossRef]
- Pan, X.H.; Xue, F.G.; Nan, X.M.; Tang, Z.W.; Wang, K.; Yves, B.; Jiang, L.; Xiong, B. Illumina sequencing approach to characterize thiamine metabolism related bacteria and the impacts of thiamine supplementation on ruminal microbiota in dairy cows fed high-grain diets. Front. Microbio. 2017, 8, 18128. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.H.; Yang, L.; Beckers, Y.; Xue, F.G.; Tang, Z.W.; Jiang, L.S.; Xiong, B. Thiamine supplementation facilitates thiamine transporter expression in the rumen epithelium and attenuates high-grain-induced inflammation in low-yielding dairy cows. J. Dairy Sci. 2017, 100, 5329–5342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wrinkle, S.R.; Robinson, P.H.; Garrett, J.E. Niacin delivery to the intestinal absorptive site impacts heat stress and productivity responses of high producing dairy cows during hot conditions. Anim. Feed Sci. Technol. 2012, 175, 33–47. [Google Scholar] [CrossRef]
- Klis, F.M. Review: Cell wall assembly in yeast. Yeast 1994, 7, 851–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moukadiri, I.; Armero, J.; Abad, A.; Sentandreu, R.; Zueco, R. Dentification of a mannoprotein present in the inner layer of the cell wall of Saccharomyces cerevisiae. J. Bacteriol. 1997, 7, 2154–2162. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.S.; Wang, Q.S.; Liao, B.L.; Yan, X.H. Application of yeast feed in animal husbandry. Feed. Ind. 2008, 4, 4–6. [Google Scholar] [CrossRef]
- Yi, Z.H. Advances in research and application of probiotic Clostridium butyrate. Feed Res. 2012, 2, 4–17. [Google Scholar] [CrossRef]
- Zhang, S.T.; Shi, Y.; Zhang, S.L.; Wang, H.K. Progress on the studies and application of Clostridium butyricum. Biotechnol. Bull. 2013, 9, 28–33. [Google Scholar] [CrossRef]
Ingredient | Content | Nutrition Level | Amount |
---|---|---|---|
Alfalfa | 564 | Dry matter | 955 |
Ground corn | 261 | Organic matter | 852 |
Soybean meal | 80 | Crude protein | 177 |
Wheat barn | 78 | Neutral detergent fiber | 436 |
Ca2HPO4 | 7 | Acid detergent fiber | 262 |
Premix * | 10 | Ca | 5.9 |
P | 3.2 |
Biochemical Index | Methods |
---|---|
SOD, GSH-Px, vitamin C and E, and MDA | Spectrophotometry |
ALT, AST | Ultraviolet continuous monitoring |
BUN | Glutamate dehydrogenase |
CK | IFCC continuous monitoring |
Glucose | Glucose oxidase |
TP | Biuret method |
TG, CHOL | Enzyme reagent |
K+, Na+, Cl− | Mercury thiocyanate endpoint method |
Physiological Parameters | Control | P1 | P2 | P3 | P4 | SEM |
---|---|---|---|---|---|---|
Skin temperature (°C) | 36.70 | 36.42 | 36.33 | 36.51 | 36.62 | 0.47 |
Rectal temperature (°C) | 39.41 | 39.52 | 39.43 | 39.32 | 39.46 | 0.33 |
Pulse (beats/min) | 84.73 | 84.75 | 83.87 | 85.57 | 84.23 | 2.43 |
Respiratory rate (breaths/min) | 34.75 | 33.23 | 35.24 | 33.89 | 33.88 | 1.11 |
Parameters | Control | P1 | P2 | P3 | P4 | SEM |
---|---|---|---|---|---|---|
ALT (IU L−1) | 16.26 | 16.11 | 16.17 | 16.19 | 16.22 | 0.33 |
AST (IU L−1) | 81.37 | 75.71 | 71.65 | 74.73 | 72.17 | 3.21 |
CK (IU L−1) | 204.4 | 184.5 | 187.2 | 186.6 | 185.5 | 17.44 |
Glucose (mmol L−1) | 3.46 | 3.27 | 3.24 | 3.42 | 3.37 | 0.45 |
TP (g L−1) | 58.17 a | 71.79 b | 70.83 b | 76.14 b | 70.78 b | 10.33 |
TG (mmol L−1) | 0.38 | 0.41 | 0.40 | 0.43 | 0.39 | 0.06 |
BUN (mmol L−1) | 8.87 | 8.74 | 8.34 | 7.87 | 8.46 | 0.55 |
CHOL (mmol L−1) | 1.77 | 1.71 | 1.89 | 1.91 | 1.80 | 0.31 |
K+ (mmol L−1) | 4.43 | 4.52 | 4.36 | 4.67 | 4.56 | 0.23 |
Na+ (mmol L−1) | 142.1 | 144.4 | 144.8 | 146.8 | 144.6 | 17.34 |
Cl− (mmol L−1) | 102.5 | 102.7 | 102.7 | 103.4 | 102.0 | 7.21 |
SOD (IU mL−1) | 170.8 a | 267.1 b | 264.7 b | 290.4 b | 276.8 b | 21.33 |
GSH-Px (µmol L−1) | 249.7 a | 448.3 b | 469.8 b | 511.3 b | 469.3 b | 27.11 |
Vitamin C (µg mL−1) | 20.7 | 38.8 | 38.97 | 35.90 | 37.84 | 2.14 |
Vitamin E (µg mL−1) | 16.73 | 22.34 | 23.08 | 23.83 | 20.98 | 1.77 |
MDA (nmol mL−1) | 8.41 a | 5.71 b | 5.82 b | 5.24 b | 5.21 b | 0.72 |
Parameters | Control | P1 | P2 | P3 | P4 | SEM |
---|---|---|---|---|---|---|
pH | 6.60 a | 6.81 b | 6.85 b | 6.88 b | 6.80 b | 0.05 |
NH3-N (mg 100 mL−1) | 5.49 a | 8.34 b | 8.21 b | 9.43 b | 8.02 b | 0.41 |
VFAs (mmol L−1) | ||||||
TVFA | 30.16 a | 50.56 b | 52.54 b | 57.05 b | 50.50 b | 3.22 |
Acetic acid | 12.92 a | 25.14 b | 27.02 b | 28.82 b | 24.12 b | 1.54 |
Propionic acid | 10.38 a | 15.41 b | 15.65 b | 17.02 b | 16.33 b | 1.05 |
Butyric acid | 7.23 a | 10.11 b | 9.87 b | 11.21 b | 10.05 b | 0.23 |
A/P ratio | 1.29 a | 1.64 b | 1.73 b | 1.69 b | 1.48 b | 0.04 |
Avicelase | 1.31 a | 2.54 b | 2.44 b | 2.92 b | 2.34 b | 0.47 |
CMCaes | 1.36 a | 2.69 b | 2.47 b | 3.21 b | 2.39 b | 0.12 |
Cellobiase | 2.44 a | 4.77 b | 4.83 b | 5.24 b | 4.37 b | 0.43 |
Xylanase | 4.54 a | 6.51 b | 6.42 b | 7.41 b | 6.21 b | 0.51 |
Vitamins | Control | P1 | P2 | P3 | P4 | SEM |
---|---|---|---|---|---|---|
(μg/mL) B1 | 0.14 a | 0.28 b | 0.24 b | 0.38 c | 0.24 b | 0.04 |
B2 | 0.19 a | 0.39 b | 0.69 b | 0.92 c | 0.52 b | 0.10 |
B6 | 1.52 | 1.72 | 1.50 | 1.85 | 1.23 | 0.13 |
B12 | 2.79 | 2.66 | 2.57 | 2.77 | 2.74 | 0.34 |
Niacin | 8.12 a | 35.00 b | 33.51 b | 45.22 c | 39.43 b | 3.16 |
Parameters | Control | P1 | P2 | P3 | P4 | SEM |
---|---|---|---|---|---|---|
DMI (kg) | 0.80 a | 1.16 b | 1.20 b | 1.25 b | 1.21 b | 0.06 |
ADG (kg) | 0.08 a | 0.11 b | 0.13 b | 0.18 b | 0.14 b | 0.04 |
Digestibility | ||||||
DM (%) | 36.67 a | 52.34 b | 50.21 b | 56.32 b | 52.12 b | 2.54 |
NDF (%) | 30.17 a | 44.35 b | 45.43 b | 47.87 b | 43.21 b | 3.02 |
ADF (%) | 30.54 a | 43.21 b | 43.22 b | 45.21 b | 42.22 b | 2.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, L.; Li, M.; Zhou, S.; Xu, Q. The Mixture of Saccharomyces cerevisiae and Clostridium butyricum Could Promote Rumen Fermentation and Improve the Growth Performance of Goats in Hot Summer. Metabolites 2023, 13, 104. https://doi.org/10.3390/metabo13010104
Cai L, Li M, Zhou S, Xu Q. The Mixture of Saccharomyces cerevisiae and Clostridium butyricum Could Promote Rumen Fermentation and Improve the Growth Performance of Goats in Hot Summer. Metabolites. 2023; 13(1):104. https://doi.org/10.3390/metabo13010104
Chicago/Turabian StyleCai, Liyuan, Min Li, Shuyi Zhou, and Qingbiao Xu. 2023. "The Mixture of Saccharomyces cerevisiae and Clostridium butyricum Could Promote Rumen Fermentation and Improve the Growth Performance of Goats in Hot Summer" Metabolites 13, no. 1: 104. https://doi.org/10.3390/metabo13010104
APA StyleCai, L., Li, M., Zhou, S., & Xu, Q. (2023). The Mixture of Saccharomyces cerevisiae and Clostridium butyricum Could Promote Rumen Fermentation and Improve the Growth Performance of Goats in Hot Summer. Metabolites, 13(1), 104. https://doi.org/10.3390/metabo13010104