HIIT Ameliorates Inflammation and Lipid Metabolism by Regulating Macrophage Polarization and Mitochondrial Dynamics in the Liver of Type 2 Diabetes Mellitus Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Type 2 Diabetes Mellitus Mouse Model
2.3. High-Intensity Interval Training Protocol
2.4. Fasting Blood Glucose, Intraperitoneal Glucose Tolerance Test, and Insulin Tolerance Test
2.5. Body Composition
2.6. Tissue Collection and Handling Procedures
2.7. Hematoxylin and Eosin Staining
2.8. Oil Red O Staining
2.9. Immunofluorescence
2.10. Western Blot
2.11. Quantitative Real-Time PCR (qPCR) Analysis
2.12. Statistical Analysis
3. Results
3.1. HIIT Improves Body Weight, Fat Mass, and Blood Glucose Control in T2DM Mice
3.2. HIIT Improves Hepatic Steatosis and Fat Content in T2DM Mice
3.3. HIIT Improves Liver Insulin Resistance in T2DM Mice
3.4. HIIT Improves Liver Inflammation in T2DM Mice
3.5. HIIT Decreases the Pro-Inflammatory Polarization of Liver Macrophages in T2DM Mice
3.6. HIIT Increases the Anti-Inflammatory Polarization of Liver Macrophages in T2DM Mice
3.7. HIIT Improves Liver Lipid Metabolism in T2DM Mice
3.8. HIIT Improves Liver Mitochondrial Biosynthesis and Dynamics in T2DM Mice
4. Discussion
4.1. HIIT Improves Insulin Resistance in T2DM Mice
4.2. HIIT Improves Liver Inflammation and Regulates Macrophage M1/M2 Polarization of the Liver in T2DM Mice
4.3. HIIT Improves Liver Lipid Metabolism Disorder and Liver Mitochondrial Dynamics in T2DM Mice
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Diabetes Federation (IDF) DIABETES ATLAS, 10th ed.; 2021; Available online: https://diabetesatlas.org/data/en/world/ (accessed on 8 November 2021).
- Lauterbach, M.A.; Wunderlich, F.T. Macrophage function in obesity-induced inflammation and insulin resistance. Pflug. Arch. 2017, 469, 385–396. [Google Scholar] [CrossRef] [Green Version]
- Lanthier, N.; Molendi-Coste, O.; Horsmans, Y.; van Rooijen, N.; Cani, P.D.; Leclercq, I.A. Kupffer cell activation is a causal factor for hepatic insulin resistance. Am. J. Physiol. Gastrointest Liver Physiol. 2010, 298, G107–G116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, P.Z.; Li, J.Z.; Li, M.; Gong, J.P.; He, K. An efficient method to isolate and culture mouse Kupffer cells. Immunol. Lett. 2014, 158, 52–56. [Google Scholar] [CrossRef]
- Ni, Y.H.; Nagashimada, M.; Zhuge, F.; Zhan, L.; Nagata, N.; Tsutsui, A.; Nakanuma, Y.; Kaneko, S.; Ota, T. Astaxanthin prevents and reverses diet-induced insulin resistance and steatohepatitis in mice: A comparison with vitamin E. Sci. Rep. 2015, 5, 17192. [Google Scholar] [CrossRef] [Green Version]
- Zeng, T.S.; Liu, F.M.; Zhou, J.; Pan, S.X. Depletion of Kupffer cells attenuates systemic insulin resistance, inflammation and improves liver autophagy in high-fat diet fed mice. Endocr. J. 2015, 62, 615–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serviddio, G.; Bellanti, F.; Vendemiale, G.; Altomare, E. Mitochondrial dysfunction in nonalcoholic steatohepatitis. Expert Rev. Gastroenterol. Hepatol. 2011, 5, 233–244. [Google Scholar] [CrossRef]
- Mansouri, A.; Gattolliat, C.H.; Asselah, T. Mitochondrial Dysfunction and Signaling in Chronic Liver Diseases. Gastroenterology 2018, 155, 629–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mollica, M.P.; Raso, G.M.; Cavaliere, G.; Trinchese, G. Butyrate regulates liver mitochondrial function, efficiency, and dynamic, in insulin resistant obese mice. Diabetes 2017, 66, 1405–1418. [Google Scholar]
- Nakamura, S.; Takamura, T.; Matsuzawa-Nagata, N.; Takayama, H.; Misu, H.; Noda, H.; Nabemoto, S.; Kurita, S.; Ota, T.; Ando, H.; et al. Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria. J. Biol. Chem. 2009, 284, 14809–14818. [Google Scholar] [CrossRef] [Green Version]
- Perez-Carreras, M.; Del Hoyo, P.; Martin, M.A.; Rubio, J.C.; Martin, A.; Castellano, G.; Colina, F.; Arenas, J.; Solis-Herruzo, J.A. Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis. Hepatology 2003, 38, 999–1007. [Google Scholar] [CrossRef]
- Shou, J.; Chen, P.J.; Xiao, W.H. Mechanism of increased risk of insulin resistance in aging skeletal muscle. Diabetol. Metab. Syndr. 2020, 12, 14. [Google Scholar] [CrossRef] [PubMed]
- Martland, R.; Mondelli, V.; Gaughran, F.; Stubbs, B. Can high-intensity interval training improve physical and mental health outcomes? A meta-review of 33 systematic reviews across the lifespan. J. Sport. Sci. 2020, 38, 430–469. [Google Scholar] [CrossRef] [PubMed]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P.; American College of Sports, M. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sport. Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef] [PubMed]
- Jelleyman, C.; Yates, T.; O′Donovan, G.; Gray, L.J.; King, J.A.; Khunti, K.; Davies, M.J. The effects of high-intensity interval training on glucose regulation and insulin resistance: A meta-analysis. Obes Rev. 2015, 16, 942–961. [Google Scholar] [CrossRef] [Green Version]
- Linden, M.A.; Fletcher, J.A.; Morris, E.M.; Meers, G.M.; Laughlin, M.H.; Booth, F.W.; Sowers, J.R.; Ibdah, J.A.; Thyfault, J.P.; Rector, R.S. Treating NAFLD in OLETF rats with vigorous-intensity interval exercise training. Med. Sci. Sport. Exerc. 2015, 47, 556–567. [Google Scholar] [CrossRef] [Green Version]
- Obrosov, A.; Shevalye, H.; Coppey, L.J.; Yorek, M.A. Effect of tempol on peripheral neuropathy in diet-induced obese and high-fat fed/low-dose streptozotocin-treated C57Bl6/J mice. Free Radic. Res. 2017, 51, 360–367. [Google Scholar] [CrossRef] [Green Version]
- Yorek, M.S.; Obrosov, A.; Shevalye, H.; Coppey, L.J.; Kardon, R.H.; Yorek, M.A. Early vs. late intervention of high fat/low dose streptozotocin treated C57Bl/6J mice with enalapril, alpha-lipoic acid, menhaden oil or their combination: Effect on diabetic neuropathy related endpoints. Neuropharmacology 2017, 116, 122–131. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.N.; Liu, Y.; Ma, Y.N.; Wen, D. High-intensity interval versus moderate-intensity continuous training: Superior metabolic benefits in diet-induced obesity mice. Life Sci. 2017, 191, 122–131. [Google Scholar] [CrossRef]
- Sun, P.; Zeng, Q.; Cheng, D.Q.; Zhang, K.; Zheng, J.; Liu, Y.; Yuan, Y.F.; Tang, Y.D. Caspase Recruitment Domain Protein 6 Protects Against Hepatic Steatosis and Insulin Resistance by Suppressing Apoptosis Signal-Regulating Kinase 1. Hepatology 2018, 68, 2212–2229. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.F.; Rao, Z.J.; Guo, Y.F.; Chen, P.J.; Xiao, W.H. High-Intensity Interval Training Restores Glycolipid Metabolism and Mitochondrial Function in Skeletal Muscle of Mice With Type 2 Diabetes. Front. Endocrinol. 2020, 11, 561. [Google Scholar] [CrossRef]
- Han, Y.H.; Kim, H.J.; Na, H.; Nam, M.W.; Kim, J.Y.; Kim, J.S.; Koo, S.H.; Lee, M.O. RORalpha Induces KLF4-Mediated M2 Polarization in the Liver Macrophages that Protect against Nonalcoholic Steatohepatitis. Cell Rep. 2017, 20, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Sigal, R.J.; Kenny, G.P.; Boulé, N.G.; Wells, G.A. Effects of Aerobic Training, Resistance Training, or Both on Glycemic Control in Type 2 Diabetes. Ann. Intern. Med. 2007, 147, 357–369. [Google Scholar] [CrossRef] [PubMed]
- Ibañez, J.; Izquierdo, M.; Argüelles, I.; Forga, L. Twice-Weekly Progressive Resistance Training Decreases Abdominal Fat and Improves Insulin Sensitivity in Older Men with Type 2 Diabetes. Diabetes Care 2005, 28, 662–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawley, J.A.; Lessard, S.J. Exercise training-induced improvements in insulin action. Acta Physiol. 2008, 192, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Cuff, D.J.; Meneilly, G.S.; Martin, A.; Iganszews, A. Effective Exercise Modality to Reduce Insulin Resistance in Women with Type 2 Diabetes. Diabetes Care 2003, 26, 2977–2982. [Google Scholar] [CrossRef] [Green Version]
- Sampath Kumar, A.; Maiya, A.G.; Shastry, B.A.; Vaishali, K.; Ravishankar, N.; Hazari, A.; Gundmi, S.; Jadhav, R. Exercise and insulin resistance in type 2 diabetes mellitus: A systematic review and meta-analysis. Ann. Phys. Rehabil. Med. 2019, 62, 98–103. [Google Scholar] [CrossRef]
- Gibala, M.J.; Little, J.P.; Macdonald, M.J.; Hawley, J.A. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J. Physiol. 2012, 590, 1077–1084. [Google Scholar] [CrossRef]
- Jimenez-Maldonado, A.; Garcia-Suarez, P.C.; Renteria, I.; Moncada-Jimenez, J.; Plaisance, E.P. Impact of high-intensity interval training and sprint interval training on peripheral markers of glycemic control in metabolic syndrome and type 2 diabetes. Biochim. Biophys Acta Mol. Basis Dis. 2020, 1866, 165820. [Google Scholar] [CrossRef]
- Fujii, H.; Kawada, N. The Role of Insulin Resistance and Diabetes in Nonalcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2020, 21, 3863. [Google Scholar] [CrossRef]
- Claudio, T.D.S.; Marisa, J.S.F.; Gabrielle, d.L.; Dennys, E.C.; Eduardo, R.R.; Jose, R.P.; L′ıcio, A.V. Acute exercise reduces hepatic glucose production through inhibition of the Foxo1/HNF-4alpha pathway in insulin resistant mice. J. Physiol. 2010, 588, 2239–2253. [Google Scholar] [CrossRef]
- Eckstein, S.S.; Weigert, C.; Lehmann, R. Divergent Roles of IRS (Insulin Receptor Substrate) 1 and 2 in Liver and Skeletal Muscle. Curr. Med. Chem. 2017, 24, 1827–1852. [Google Scholar] [CrossRef] [PubMed]
- LeRoith, D.; Gavrilova, O. Mouse models created to study the pathophysiology of Type 2 diabetes. Int. J. Biochem. Cell Biol. 2006, 38, 904–912. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.T.; Wang, C.Y.; Jin, Y.; Meng, Q.; Liu, Q.; Liu, Z.; Liu, K.; Sun, H. Catalpol ameliorates hepatic insulin resistance in type 2 diabetes through acting on AMPK/NOX4/PI3K/AKT pathway. Pharmacol. Res. 2018, 130, 466–480. [Google Scholar] [CrossRef] [PubMed]
- Gabrielle, d.L.; Marisa, J.S.F.; Sabrina, d.S.; Marcelo, F.V.; Patricia, A.C.; Ricardo, A.d.P.; Jose′, R.P.; Adelino, S.R.S.; Dennys, E.C.; Eduardo, R.R.; et al. Endurance exercise training ameliorates insulin resistance and reticulum stress in adipose and hepatic tissue in obese rats. Eur. J. Appl. Physiol. 2011, 111, 2015–2023. [Google Scholar] [CrossRef]
- Park, S.; Hong, S.M.; Ahn, I.S. Exendin-4 and exercise improve hepatic glucose homeostasis by promoting insulin signaling in diabetic rats. Metabolism 2010, 59, 123–133. [Google Scholar] [CrossRef] [PubMed]
- De Taeye, B.M.; Novitskaya, T.; McGuinness, O.P.; Gleaves, L.; Medda, M.; Covington, J.W.; Vaughan, D.E. Macrophage TNF-alpha contributes to insulin resistance and hepatic steatosis in diet-induced obesity. Am. J. Physiol. Endocrinol. Metab. 2007, 293, E713–E725. [Google Scholar] [CrossRef] [PubMed]
- Olefsky, J.M.; Glass, C.K. Macrophages, Inflammation, and Insulin Resistance. Annu. Rev. Physiol. 2010, 72, 219–246. [Google Scholar] [CrossRef] [PubMed]
- Diniz, T.A.; de Lima Junior, E.A.; Teixeira, A.A.; Biondo, L.A.; da Rocha, L.A.F.; Valadão, I.C.; Silveira, L.S.; Cabral-Santos, C.; de Souza, C.O.; Rosa Neto, J.C. Aerobic training improves NAFLD markers and insulin resistance through AMPK-PPAR-α signaling in obese mice. Life Sci. 2021, 266, 118868. [Google Scholar] [CrossRef] [PubMed]
- Miura, K.; Yang, L.; van Rooijen, N.; Ohnishi, H.; Seki, E. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am. J. Physiol. Gastrointest Liver Physiol. 2012, 302, G1310–G1321. [Google Scholar] [CrossRef] [Green Version]
- Keane, K.N.; Calton, E.K.; Carlessi, R.; Hart, P.H.; Newsholme, P. The bioenergetics of inflammation: Insights into obesity and type 2 diabetes. Eur. J. Clin. Nutr. 2017, 71, 904–912. [Google Scholar] [CrossRef]
- Pereira, R.M.; da Cruz Rodrigues, K.C.; Sant′Ana, M.R.; Peruca, G.F.; Anaruma, C.P.; de Campos, T.D.P.; Dos Santos Canciglieri, R.; de Melo, D.G.; Simabuco, F.M.; da Silva, A.S.R.; et al. Short-term combined training reduces hepatic steatosis and improves hepatic insulin signaling. Life Sci. 2021, 287, 120124. [Google Scholar] [CrossRef] [PubMed]
- Bare, Y.; Marhendra, A.P.W.; Sasase, T.; Fatchiyah, F. Differential Expression of IL-10 Gene and Protein in Target Tissues of Rattus Norvegicus Strain Wistar Model Type 2 Diabetes Mellitus (T2DM). Acta Inform. Med. 2018, 26, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Oyenihi, A.B.; Chegou, N.N.; Oguntibeju, O.O.; Masola, B. Centella asiatica enhances hepatic antioxidant status and regulates hepatic inflammatory cytokines in type 2 diabetic rats. Pharm. Biol. 2017, 55, 1671–1678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ai, L.; Luo, W.; Yuan, P.; Liu, L.; Zhou, Y. Liver macrophages mediate effects of downhill running and caloric restriction on nonalcoholic fatty liver disease of high fat diet-fed mice. Life Sci. 2020, 256, 117978. [Google Scholar] [CrossRef]
- Li, Z.; Feng, P.P.; Zhao, Z.B.; Zhu, W.; Gong, J.P.; Du, H.M. Liraglutide protects against inflammatory stress in non-alcoholic fatty liver by modulating Kupffer cells M2 polarization via cAMP-PKA-STAT3 signaling pathway. Biochem. Biophys Res. Commun. 2019, 510, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Isabelle, H. Lipids and lysosomes. Curr. Drug Metab. 2012, 13, 1371–1387. [Google Scholar]
- Ralston, J.C.; Lyons, C.L.; Kennedy, E.B.; Kirwan, A.M.; Roche, H.M. Fatty Acids and NLRP3 Inflammasome-Mediated Inflammation in Metabolic Tissues. Annu Rev. Nutr. 2017, 37, 77–102. [Google Scholar] [CrossRef]
- Sun, N.N.; Shen, C.P.; Zhang, L.; Wu, X.; Yu, Y.; Yang, X.; Yang, C.; Zhong, C.; Gao, Z.; Miao, W.; et al. Hepatic Kruppel-like factor 16 (KLF16) targets PPARalpha to improve steatohepatitis and insulin resistance. Gut 2021, 70, 2183–2195. [Google Scholar] [CrossRef]
- Pereira, R.M.; da Cruz Rodrigues, K.C.; Anaruma, C.P.; Sant′Ana, M.R.; de Campos, T.D.P.; Gaspar, R.S.; Canciglieri, R.D.S.; de Melo, D.G.; Mekary, R.A.; da Silva, A.S.R.; et al. Short-term strength training reduces gluconeogenesis and NAFLD in obese mice. J. Endocrinol. 2019, 241, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Bullon, P.; Marin-Aguilar, F.; Roman-Malo, L. AMPK/Mitochondria in Metabolic Diseases. Exp. Suppl. 2016, 107, 129–152. [Google Scholar] [CrossRef]
- Ventura-Clapier, R.; Garnier, A.; Veksler, V. Transcriptional control of mitochondrial biogenesis: The central role of PGC-1alpha. Cardiovasc Res. 2008, 79, 208–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heiat, F.; Heiat, M.; Shojaeifard, M. Changes in mitochondrial biogenesis and fatty liver indicators in rat following continuous and high intensity interval training. J. Sport. Med. Phys. Fit. 2021, 61, 1416–1422. [Google Scholar] [CrossRef] [PubMed]
- Santos-Alves, E.; Marques-Aleixo, I.; Rizo-Roca, D.; Torrella, J.R.; Oliveira, P.J.; Magalhaes, J.; Ascensao, A. Exercise modulates liver cellular and mitochondrial proteins related to quality control signaling. Life Sci. 2015, 135, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Alvarez, M.I.; Sebastian, D.; Vives, S.; Ivanova, S.; Bartoccioni, P.; Kakimoto, P.; Plana, N.; Veiga, S.R.; Hernandez, V.; Vasconcelos, N.; et al. Deficient Endoplasmic Reticulum-Mitochondrial Phosphatidylserine Transfer Causes Liver Disease. Cell 2019, 177, 881–895. [Google Scholar] [CrossRef] [PubMed]
- Gong, F.; Gao, L.; Ding, T. IDH2 protects against nonalcoholic steatohepatitis by alleviating dyslipidemia regulated by oxidative stress. Biochem. Biophys Res. Commun. 2019, 514, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, I.O.; Passos, E.; Diogo, C.V.; Rocha-Rodrigues, S. Exercise mitigates mitochondrial permeability transition pore and quality control mechanisms alterations in non-alcoholic steatohepatitis. Appl. Physiol. Nutr. Metab. 2016, 41, 298–306. [Google Scholar] [CrossRef]
- Pattanakuhar, S.; Sutham, W.; Sripetchwandee, J.; Minta, W.; Mantor, D.; Palee, S.; Pratchayasakul, W.; Chattipakorn, N.; Chattipakorn, S.C. Combined exercise and calorie restriction therapies restore contractile and mitochondrial functions in skeletal muscle of obese-insulin resistant rats. Nutrition 2019, 62, 74–84. [Google Scholar] [CrossRef]
- Galloway, C.A.; Lee, H.; Brookes, P.S.; Yoon, Y. Decreasing mitochondrial fission alleviates hepatic steatosis in a murine model of nonalcoholic fatty liver disease. Am. J. Physiol. Gastrointest Liver Physiol. 2014, 307, G632–G641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, W.H.; Lee, B.H.; Pan, T.M. Leptin-induced mitochondrial fusion mediates hepatic lipid accumulation. Int. J. Obes 2015, 39, 1750–1756. [Google Scholar] [CrossRef]
Gene Name | Forward Primer Sequences | Reverse Primer Sequences |
---|---|---|
MCP-1 | 5′-GCTCAGCCAGATGCAGTTAAC-3′ | 5′-CTCTCTCTTGAGCTTGGTGAC-3′ |
PGC-1α | 5′-GAGTGTGCTGCTCTGGTTGG-3′ | 5′-AATATGTTCGCAGGCTCATTGTTG-3′ |
ACOX1 | 5′-CCAATGCTGGTATCGAAGAATG-3′ | 5′-CGACTGAACCTGGTCATAGATT-3′ |
PPARα | 5′-AGGGCCTCCCTCCTACGCTTG-3′ | 5′-GGGTGGCAGGAAGGGAACAGA-3′ |
AKT | 5′-GCCGCTACTATGCCATGAAGATCC-3′ | 5′-GCAGGACACGGTTCTCAGTAAGC-3′ |
IRS1 | 5′-CCAGCAGCAGTAGCAGCATCAG-3′ | 5′-GCTTACCGCCACCACTCTCAAC-3′ |
PI3K | 5′-CCTTGGAGTGGTTTGACCATTA-3′ | 5′-CATCCCAGCTTAATGCTGTATCTATC-3′ |
MFN1 | 5′-CCATCTTTCAGGTCCCTAGATC-3′ | 5′-GCTCCGTACATACTTAAGGTGA-3′ |
MFN2 | 5′-GCATTCTTGTGGTCGGAGGAGTG-3′ | 5′-TGGTCCAGGTCAGTCGCTCATAG-3′ |
DRP1 | 5′-ACTGATTCAATCCGTGATGAGT-3′ | 5′-GTAACCTATTCAGGGTCCTAGC-3′ |
IL-10 | 5′-CAAGGAGCATTTGAATTCCC-3′ | 5′-GGCCTTGTAGACACCTTGGTC-3′ |
CD68 | 5′-CAAAGCTTCTGCTGTGGAAAT-3′ | 5′-GACTGGTCACGGTTGCAAG-3′ |
CPT1α | 5′-AGCCAGACTCCTCAGCAGCAG-3′ | 5′-CACCATAGCCGTCATCAGCAAC-3′ |
IL-6 | 5′-CAGCCACTGCCTTCCCTACT-3′ | 5′-CAGTGCATCAT CGCTGTTCAT-3′ |
IL-1β | 5′-GAAATGCCACCTTTTGACAGTG-3′ | 5′-TGGATGCTCTCATCAGGACAG-3′ |
CD206 | 5′-CTCTGTTCAGCTATTGGACGC-3′ | 5′-CGGAATTTCTGGGATTCAGCTTC-3′ |
CD86 | 5′-GCCGTGCCCATTTACAAAGG-3′ | 5′-GTTCCTGTCAAAGCTCGTGC-3′ |
CD163 | 5′-GCAAAAACTGGCAGTGGG-3′ | 5′-GTCAAAATCACAGACGGAGC-3′ |
F4/80 | 5′-GAATCTTGGCCAAGAAGAGAC-3′ | 5′-GAATTCTCCTTGTATATCATCAGC-3′ |
PPARγ | 5′-CCAAGAATACCAAAGTGCGATC-3′ | 5′-TCACAAGCATGAACTCCATAGT-3′ |
RORα | 5′-CTTCTTCCCCTACTGTTCCTTC-3′ | 5′-TCTCTGCTTGTTCTGGTAGTTT-3′ |
KLF4 | 5′-ACCTCCTGGACCTAGACTTTAT-3′ | 5′-GAAGACGAGGATGAAGCTGAC-3′ |
TFAM | 5′-GGAATGTGGAGCGTGCTAAAA-3′ | 5′-TGCTGGAAAAACACTTCGGAATA-3′ |
NRF1 | 5′-GTTGCCCAAGTGAATTACTCTG-3′ | 5′-TCGTCTGGATGGTCATTTCAC-3′ |
IL-4 | 5′-TACCAGGAGCCATATCCACGGATG-3′ | 5′-TGTGGTGTTCTTCGTTGCTGTGAG-3′ |
CD36 | 5′-GCAGGTCTATCTACGCTGTGTTCG-3′ | 5′-TGTCTGGATTCTGGAGGGGTGATG-3′ |
TNF-α | 5′-CTTCTGTCTACTGAACTTCGGG-3′ | 5′-CACTTGGTGGTTTGCTACGAC-3′ |
GAPDH | 5′-ACTCCACTCACGGCAAATTC-3′ | 5′-TCTCCATGGTGGTGAAGACA-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Guo, Y.; Xu, Y.; Wang, W.; Zhuang, S.; Wang, R.; Xiao, W. HIIT Ameliorates Inflammation and Lipid Metabolism by Regulating Macrophage Polarization and Mitochondrial Dynamics in the Liver of Type 2 Diabetes Mellitus Mice. Metabolites 2023, 13, 14. https://doi.org/10.3390/metabo13010014
Wang Y, Guo Y, Xu Y, Wang W, Zhuang S, Wang R, Xiao W. HIIT Ameliorates Inflammation and Lipid Metabolism by Regulating Macrophage Polarization and Mitochondrial Dynamics in the Liver of Type 2 Diabetes Mellitus Mice. Metabolites. 2023; 13(1):14. https://doi.org/10.3390/metabo13010014
Chicago/Turabian StyleWang, Yin, Yifan Guo, Yingying Xu, Wenhong Wang, Shuzhao Zhuang, Ru Wang, and Weihua Xiao. 2023. "HIIT Ameliorates Inflammation and Lipid Metabolism by Regulating Macrophage Polarization and Mitochondrial Dynamics in the Liver of Type 2 Diabetes Mellitus Mice" Metabolites 13, no. 1: 14. https://doi.org/10.3390/metabo13010014
APA StyleWang, Y., Guo, Y., Xu, Y., Wang, W., Zhuang, S., Wang, R., & Xiao, W. (2023). HIIT Ameliorates Inflammation and Lipid Metabolism by Regulating Macrophage Polarization and Mitochondrial Dynamics in the Liver of Type 2 Diabetes Mellitus Mice. Metabolites, 13(1), 14. https://doi.org/10.3390/metabo13010014