Postmortem Metabolomics of Insulin Intoxications and the Potential Application to Find Hypoglycemia-Related Deaths
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Test Population
2.3. Postmortem Blood Screening
2.4. Multivariate Modeling and Statistical Analyses
2.5. Metabolite Identification
2.6. Postmortem Metabolomics Screening Using a Class Prediction Model
3. Results
4. Discussion
4.1. Acylcarnitine Profile as a Potential Marker for the Glycemic Condition in Postmortem Cases
4.2. Other Metabolites Discriminant of the Insulin Intoxication Group
4.3. Strengths and Limitations of Postmortem Metabolomics and Metabolic Fingerprinting
4.4. Postmortem Metabolomic Screening as a Potential Tool for Aiding Cause of Death Investigation
4.5. Strengths and Limitations of the Postmortem Metabolomics Screening Method
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fiehn, O. Metabolomics—The Link between Genotypes and Phenotypes. Funct. Genom. 2002, 48, 155–171. [Google Scholar] [CrossRef]
- Pesko, B.K.; Weidt, S.; McLaughlin, M.; Wescott, D.J.; Torrance, H.; Burgess, K.; Burchmore, R. Postmortomics: The Potential of Untargeted Metabolomics to Highlight Markers for Time Since Death. OMICS 2020, 24, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Zelentsova, E.A.; Yanshole, L.V.; Melnikov, A.D.; Kudryavtsev, I.S.; Novoselov, V.P.; Tsentalovich, Y.P. Post-Mortem Changes in Metabolomic Profiles of Human Serum, Aqueous Humor and Vitreous Humor. Metabolomics 2020, 16, 80. [Google Scholar] [CrossRef] [PubMed]
- Szeremeta, M.; Pietrowska, K.; Niemcunowicz-Janica, A.; Kretowski, A.; Ciborowski, M. Applications of Metabolomics in Forensic Toxicology and Forensic Medicine. Int. J. Mol. Sci. 2021, 22, 3010. [Google Scholar] [CrossRef]
- Elmsjö, A.; Vikingsson, S.; Söderberg, C.; Kugelberg, F.C.; Green, H. Post-Mortem Metabolomics: A Novel Approach in Clinical Biomarker Discovery and a Potential Tool in Death Investigations. Chem. Res. Toxicol. 2021, 34, 1496–1502. [Google Scholar] [CrossRef]
- Elmsjö, A.; Söderberg, C.; Jakobsson, G.; Green, H.; Kronstrand, R. Postmortem Metabolomics Reveal Acylcarnitines as Potential Biomarkers for Fatal Oxycodone-Related Intoxication. Metabolites 2022, 12, 109. [Google Scholar] [CrossRef]
- Bohnert, S.; Reinert, C.; Trella, S.; Schmitz, W.; Ondruschka, B.; Bohnert, M. Metabolomics in Postmortem Cerebrospinal Fluid Diagnostics: A State-of-the-Art Method to Interpret Central Nervous System–Related Pathological Processes. Int. J. Legal Med. 2021, 135, 183–191. [Google Scholar] [CrossRef]
- Chighine, A.; Porcu, M.; Ferino, G.; Lenigno, N.; Trignano, C.; d’Aloja, E.; Locci, E. Infant Urinary Metabolomic Profile in a Fatal Acute Methadone Intoxication. Int. J. Legal. Med. 2022, 136, 569. [Google Scholar] [CrossRef]
- Brockbals, L.; Staeheli, S.N.; Kraemer, T.; Steuer, A.E. Postmortem Metabolomics: Correlating Time-Dependent Concentration Changes of Xenobiotic and Endogenous Compounds. Drug Test Anal. 2020, 12, 1171–1182. [Google Scholar] [CrossRef]
- Bottinelli, C.; Cartiser, N.; Bévalot, F.; Fanton, L.; Guitton, J. Is Insulin Intoxication Still the Perfect Crime? Analysis and Interpretation of Postmortem Insulin: Review and Perspectives in Forensic Toxicology. Crit. Rev. Toxicol. 2020, 50, 324–347. [Google Scholar] [CrossRef]
- Wunder, C.; Kauert, G.F.; Toennes, S.W. Factors Leading to the Degradation/Loss of Insulin in Postmortem Blood Samples. Forensic. Sci. Int. 2014, 241, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Sunderland, N.; Wong, S.; Lee, C.K. Fatal Insulin Overdoses: Case Report and Update on Testing Methodology. J. Forensic. Sci. 2016, 61, S281–S284. [Google Scholar] [CrossRef] [PubMed]
- Pallares-Méndez, R.; Aguilar-Salinas, C.A.; Cruz-Bautista, I.; del Bosque-Plata, L. Metabolomics in Diabetes, a Review. Ann. Med. 2016, 48, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.H.; Qiu, S.; Xu, H.-y.; Sun, H.; Wang, X.-j. Metabolomics in Diabetes. Clin. Chim. Acta 2014, 429, 106–110. [Google Scholar] [CrossRef]
- Friedrich, N. Metabolomics in Diabetes Research. J. Endocrinol. 2012, 215, 29–42. [Google Scholar] [CrossRef]
- Uemura, K.; Shintani-Ishida, K.; Saka, K.; Nakajima, M.; Ikegaya, H.; Kikuchi, Y.; Yoshida, K. ichi Biochemical Blood Markers and Sampling Sites in Forensic Autopsy. J. Forensic. Leg. 2008, 15, 312–317. [Google Scholar] [CrossRef]
- Di Candia, D.; Giordano, G.; Boracchi, M.; Zoja, R. Postmortem Forensic Toxicology Cases: A Retrospective Review from Milan, Italy. J. Forensic. Sci. 2022, 67, 1640–1650. [Google Scholar] [CrossRef]
- Zilg, B.; Alkass, K.; Berg, S.; Druid, H. Postmortem Identification of Hyperglycemia. Forensic. Sci. Int. 2009, 185, 89–95. [Google Scholar] [CrossRef]
- Roman, M.; Ström, L.; Tell, H.; Josefsson, M. Liquid Chromatography/Time-of-Flight Mass Spectrometry Analysis of Postmortem Blood Samples for Targeted Toxicological Screening. Anal. Bioanal. Chem. 2013, 405, 4107–4125. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed Minimum Reporting Standards for Chemical Analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211. [Google Scholar] [CrossRef]
- Dambrova, M.; Makrecka-Kuka, M.; Kuka, J.; Vilskersts, R.; Nordberg, D.; Attwood, M.M.; Smesny, S.; Sen, Z.D.; Guo, A.C.; Oler, E.; et al. Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol. Rev. 2022, 74, 506–551. [Google Scholar] [CrossRef] [PubMed]
- Rizza, S.; Copetti, M.; Rossi, C.; Cianfarani, M.A.; Zucchelli, M.; Luzi, A.; Pecchioli, C.; Porzio, O.; di Cola, G.; Urbani, A.; et al. Metabolomics Signature Improves the Prediction of Cardiovascular Events in Elderly Subjects. Atherosclerosis 2014, 232, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Aitken-Buck, H.M.; Krause, J.; Zeller, T.; Jones, P.P.; Lamberts, R.R. Long-Chain Acylcarnitines and Cardiac Excitation-Contraction Coupling: Links to Arrhythmias. Front. Physiol. 2020, 11, 577856. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Zheng, Y.; Ruiz-Canela, M.; Hruby, A.; Martínez-González, M.A.; Clish, C.B.; Corella, D.; Estruch, R.; Ros, E.; Fitó, M.; et al. Plasma Acylcarnitines and Risk of Cardiovascular Disease: Effect of Mediterranean Diet Interventions. Am. J. Clin. Nutr. 2016, 103, 1408. [Google Scholar] [CrossRef]
- Hosseinkhani, S.; Arjmand, B.; Dilmaghani-Marand, A.; Fateh, S.M.; Dehghanbanadaki, H.; Najjar, N.; Alavi-Moghadam, S.; Ghodssi-Ghassemabadi, R.; Nasli-Esfahani, E.; Farzadfar, F.; et al. Targeted Metabolomics Analysis of Amino Acids and Acylcarnitines as Risk Markers for Diabetes by LC-MS/MS Technique. Sci. Rep. 2022, 12, 8418. [Google Scholar] [CrossRef]
- Arjmand, B.; Fana, S.E.; Ghasemi, E.; Kazemi, A.; Ghodssi-Ghassemabadi, R.; Dehghanbanadaki, H.; Najjar, N.; Kakaii, A.; Forouzanfar, K.; Nasli-Esfahani, E.; et al. Metabolic Signatures of Insulin Resistance in Non-Diabetic Individuals. BMC Endocr. Disord. 2022, 22, 212. [Google Scholar] [CrossRef]
- Aguer, C.; McCoin, C.S.; Knotts, T.A.; Thrush, A.B.; Ono-Moore, K.; McPherson, R.; Dent, R.; Hwang, D.H.; Adams, S.H.; Harper, M.E. Acylcarnitines: Potential Implications for Skeletal Muscle Insulin Resistance. FASEB J. 2015, 29, 336–345. [Google Scholar] [CrossRef]
- Adams, S.H.; Hoppel, C.L.; Lok, K.H.; Zhao, L.; Wong, S.W.; Minkler, P.E.; Hwang, D.H.; Newman, J.W.; Garvey, W.T. Plasma Acylcarnitine Profiles Suggest Incomplete Long-Chain Fatty Acid Beta-Oxidation and Altered Tricarboxylic Acid Cycle Activity in Type 2 Diabetic African-American Women. J. Nutr. 2009, 139, 1073–1081. [Google Scholar] [CrossRef]
- Schooneman, M.G.; Vaz, F.M.; Houten, S.M.; Soeters, M.R. Acylcarnitines: Reflecting or Inflicting Insulin Resistance? Diabetes 2013, 62, 1. [Google Scholar] [CrossRef]
- Makrecka, M.; Kuka, J.; Volska, K.; Antone, U.; Sevostjanovs, E.; Cirule, H.; Grinberga, S.; Pugovics, O.; Dambrova, M.; Liepinsh, E. Long-Chain Acylcarnitine Content Determines the Pattern of Energy Metabolism in Cardiac Mitochondria. Mol. Cell Biochem. 2014, 395, 1–10. [Google Scholar] [CrossRef]
- Li, W.; Yao, M.; Wang, R.; Shi, Y.; Hou, L.; Hou, Z.; Lian, K.; Zhang, N.; Wang, Y.; Li, W.; et al. Profile of Cardiac Lipid Metabolism in STZ-Induced Diabetic Mice. Lipids Health Dis. 2018, 17, 231. [Google Scholar] [CrossRef] [PubMed]
- Makrecka-Kuka, M.; Sevostjanovs, E.; Vilks, K.; Volska, K.; Antone, U.; Kuka, J.; Makarova, E.; Pugovics, O.; Dambrova, M.; Liepinsh, E. Plasma Acylcarnitine Concentrations Reflect the Acylcarnitine Profile in Cardiac Tissues. Sci. Rep. 2017, 7, 17528. [Google Scholar] [CrossRef] [PubMed]
- Koves, T.R.; Ussher, J.R.; Noland, R.C.; Slentz, D.; Mosedale, M.; Ilkayeva, O.; Bain, J.; Stevens, R.; Dyck, J.R.B.; Newgard, C.B.; et al. Mitochondrial Overload and Incomplete Fatty Acid Oxidation Contribute to Skeletal Muscle Insulin Resistance. Cell Metab. 2008, 7, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Mihalik, S.J.; Goodpaster, B.H.; Kelley, D.E.; Chace, D.H.; Vockley, J.; Toledo, F.G.S.; Delany, J.P. Increased Levels of Plasma Acylcarnitines in Obesity and Type 2 Diabetes and Identification of a Marker of Glucolipotoxicity. Obes. (Silver Spring) 2010, 18, 1695. [Google Scholar] [CrossRef] [PubMed]
- Liepinsh, E.; Makrecka-Kuka, M.; Makarova, E.; Volska, K.; Vilks, K.; Sevostjanovs, E.; Antone, U.; Kuka, J.; Vilskersts, R.; Lola, D.; et al. Acute and Long-Term Administration of Palmitoylcarnitine Induces Muscle-Specific Insulin Resistance in Mice. Biofactors 2017, 43, 718–730. [Google Scholar] [CrossRef]
- Gunther, S.H.; Khoo, C.M.; Tai, E.S.; Sim, X.; Kovalik, J.P.; Ching, J.; Lee, J.J.; van Dam, R.M. Serum Acylcarnitines and Amino Acids and Risk of Type 2 Diabetes in a Multiethnic Asian Population. BMJ Open Diabetes Res. Care 2020, 8, e001315. [Google Scholar] [CrossRef]
- Zhao, S.; Feng, X.F.; Huang, T.; Luo, H.H.; Chen, J.X.; Zeng, J.; Gu, M.; Li, J.; Sun, X.Y.; Sun, D.; et al. The Association Between Acylcarnitine Metabolites and Cardiovascular Disease in Chinese Patients With Type 2 Diabetes Mellitus. Front. Endocrinol. 2020, 11, 212. [Google Scholar] [CrossRef]
- Nowak, C.; Hetty, S.; Salihovic, S.; Castillejo-Lopez, C.; Ganna, A.; Cook, N.L.; Broeckling, C.D.; Prenni, J.E.; Shen, X.; Giedraitis, V.; et al. Glucose Challenge Metabolomics Implicates Medium-Chain Acylcarnitines in Insulin Resistance. Sci. Rep. 2018, 8, 8691. [Google Scholar] [CrossRef]
- Soeters, M.R.; Serlie, M.J.; Sauerwein, H.P.; Duran, M.; Ruiter, J.P.; Kulik, W.; Ackermans, M.T.; Minkler, P.E.; Hoppel, C.L.; Wanders, R.J.A.; et al. Characterization of D-3-Hydroxybutyrylcarnitine (Ketocarnitine): An Identified Ketosis-Induced Metabolite. Metabolism 2012, 61, 966–973. [Google Scholar] [CrossRef]
- Xu, G.; Hansen, J.S.; Zhao, X.J.; Chen, S.; Hoene, M.; Wang, X.L.; Clemmesen, J.O.; Secher, N.H.; Häring, H.U.; Pedersen, B.K.; et al. Liver and Muscle Contribute Differently to the Plasma Acylcarnitine Pool During Fasting and Exercise in Humans. J. Clin. Endocrinol. Metab. 2016, 101, 5044–5052. [Google Scholar] [CrossRef]
- Ahlström, S.; Ahlner, J.; Jönsson, A.K.; Green, H. The Importance of BHB Testing on the Post-Mortem Diagnosis of Ketoacidosis. Biomolecules 2021, 12, 9. [Google Scholar] [CrossRef]
- Ottosson, F.; Smith, E.; Gallo, W.; Fernandez, C.; Melander, O. Purine Metabolites and Carnitine Biosynthesis Intermediates Are Biomarkers for Incident Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2019, 104, 4921–4930. [Google Scholar] [CrossRef] [PubMed]
- del Rocio Sevilla-Gonzalez, M.; Manning, A.K.; Westerman, K.E.; Aguilar-Salinas, C.A.; Deik, A.; Clish, C.B. Metabolomic Markers of Glucose Regulation after a Lifestyle Intervention in Prediabetes. BMJ Open Diabetes Res. Care 2022, 10, e003010. [Google Scholar] [CrossRef]
- Locci, E.; Chighine, A.; Noto, A.; Ferino, G.; Baldi, A.; Varvarousis, D.; Xanthos, T.; De-Giorgio, F.; Stocchero, M.; d’Aloja, E. Metabolomics Improves the Histopathological Diagnosis of Asphyxial Deaths: An Animal Proof-of-Concept Model. Sci. Rep. 2021, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Chighine, A.; Locci, E.; Nioi, M.; D’aloja, E. Looking for Post-Mortem Metabolomic Standardization: Waiting for Godot—The Importance of Post-Mortem Interval in Forensic Metabolomics. Chem. Res. Toxicol. 2021, 34, 32. [Google Scholar] [CrossRef] [PubMed]
- Graber, M.L. The Incidence of Diagnostic Error in Medicine. BMJ Qual. Saf. 2013, 22, ii21–ii27. [Google Scholar] [CrossRef]
Hypo (n = 19) | Hyper (n = 19) | Control (n = 38) | |
---|---|---|---|
Sex (male/female) | 11/8 | 11/8 | 22/16 |
Age (years) | 56 (36–70) | 59 (47–64) | 59 (37–71) |
BMI (kg/m2) | 24.7 (22.1–28.5) | 23.4 (22.3–28.7) | 24.3 (21.8–28.7) |
PMI (days) | 6 (4–10) | 6 (4–10) | 6 (4–9) |
* VH glucose (mmol/L) | 0.3 (0.1–0.5) † | 38.1 (19.4–47.7) | n/a |
Test Group (n = 776) | |
---|---|
Sex (male/female) | 390/386 |
Age (years) | 61 (45–71) |
BMI (kg/m2) | 25.0 (22.5–29.7) |
PMI (days) | 7 (5–11) |
Identifier | Metabolite | Chain Length * | Mean m/z | Exact m/z | Δ ppm | Hypo/Control | Hypo/Hyper | ||
---|---|---|---|---|---|---|---|---|---|
% | p-Value ** | % | p-Value ** | ||||||
Direct Parent: Acylcarnitines | |||||||||
M230T152 | Butenylcarnitine | C4:1 | 230.139 | 230.1387 | 1.3 | 0.77 | 0.381 | 0.07 | 0.003 |
M248T124 | Hydroxybutyrylcarnitine | C4-OH | 248.149 | 248.1492 | −0.8 | 0.34 | 0.151 | 0.08 | 0.014 |
M244T198 | Tiglylcarnitine | C5:1M | 244.154 | 244.1543 | −1.2 | 0.63 | 0.065 | 0.31 | 0.004 |
M275T335 | Heptanoylcarnitine | C7 | 274.200 | 274.2013 | −4.7 | 0.63 | 0.116 | 0.55 | 0.062 |
M305T224 | Hydroxyoctanoyl carnitine | C8-OH | 304.211 | 304.2118 | −2.6 | 0.79 | 0.394 | 0.21 | 0.005 |
M344T572 | Dodecanoylcarnitine | C12 | 344.279 | 344.2795 | −1.5 | 0.32 | 0.053 | 0.34 | 0.024 |
M360T500 | Hydroxydodecanoyl carnitine | C12-OH | 360.274 | 360.2744 | −1.1 | 0.62 | 0.158 | 0.35 | 0.015 |
M388T570 | Hydroxytetradecanoylcarnitine | C14-OH | 388.305 | 388.3057 | −1.8 | 0.69 | 0.152 | 0.38 | 0.003 |
M386T556 | Hydroxytetradecenoylcarnitine | C14:1-OH | 386.290 | 386.2901 | −0.3 | 0.73 | 0.345 | 0.27 | 0.010 |
M416T608 | Hydroxyhexadecanoylcarnitine | C16-OH | 416.337 | 416.3371 | −0.2 | 0.62 | 0.122 | 0.46 | 0.022 |
M414T587 | Hydroxyhexadecenoylcarnitine | C16:1-OH | 414.321 | 414.3214 | −1.0 | 0.46 | 0.169 | 0.34 | 0.003 |
M412T567 | Hydroxyhexadecadienoylcarnitine | C16:2-OH | 412.305 | 412.3057 | −1.7 | 0.63 | 0.119 | 0.47 | 0.005 |
M442T619 | Hydroxyoctadecenoylcarnitine | C18:1-OH | 442.353 | 442.3527 | 0.7 | 0.69 | 0.280 | 0.42 | 0.022 |
Other | |||||||||
M166T126 | 7-Methylguanine | 166.073 | 166.0723 | 4.2 | 1.64 | 0.142 | 2.13 | 0.022 | |
M283T132 | 1-Methylinosine | 283.103 | 283.1037 | −2.5 | 1.67 | 0.175 | 1.78 | 0.089 | |
M303T133 | Histidylphenylalanine | 303.145 | 303.1452 | −0.7 | 0.73 | 0.545 | 0.25 | 0.092 | |
M209T138 | 5-Hydroxyindoleacetic acid | 192.066 | 192.0655 | 2.6 | 0.64 | 0.142 | 0.52 | 0.121 | |
M234T374 | 3,5-Dihydroxyphenylvaleric acid | 211.096 | 211.0965 | −2.4 | 1.05 | 0.831 | 1.92 | 0.004 | |
M382T599 | Sphinganine 1-phosphate | 382.273 | 382.2717 | 3.4 | 1.34 | 0.211 | 1.63 | 0.036 | |
M302T620 | Sphinganine | 302.305 | 302.3054 | −1.3 | 1.60 | 0.223 | 1.85 | 0.081 |
Hypo Prediction, n = 46 (5.9%) | |
---|---|
Cause of Death | Number |
Cardiovascular-related:
| 20 (2.6%) |
Pulmonary-related:
| 8 (1.0%) |
Substance overdose/poisoning:
| 6 (0.8%) |
Traumatic head injury | 2 (0.3%) |
Liver cirrhosis | 2 (0.3%) |
Acidosis | 1 (0.1%) |
Starvation | 1 (0.1%) |
Undetectable cause of death | 6 (0.8%) |
Hyper Prediction, n = 26 (3.5%) | |
---|---|
Cause of Death | Number |
Substance overdose/poisoning:
| 8 (1.0%) |
Diabetes mellitus-related:
| 7 (0.9%) |
Cardiovascular-related:
| 3 (0.4%) |
Hanging | 3 (0.4%) |
Multiple organ failure | 1 (0.1%) |
Burns and inhalation of smoke | 1 (0.1%) |
Ketoacidosis | 1 (0.1%) |
Undetectable cause of death | 2 (0.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ward, L.J.; Engvall, G.; Green, H.; Kugelberg, F.C.; Söderberg, C.; Elmsjö, A. Postmortem Metabolomics of Insulin Intoxications and the Potential Application to Find Hypoglycemia-Related Deaths. Metabolites 2023, 13, 5. https://doi.org/10.3390/metabo13010005
Ward LJ, Engvall G, Green H, Kugelberg FC, Söderberg C, Elmsjö A. Postmortem Metabolomics of Insulin Intoxications and the Potential Application to Find Hypoglycemia-Related Deaths. Metabolites. 2023; 13(1):5. https://doi.org/10.3390/metabo13010005
Chicago/Turabian StyleWard, Liam J., Gustav Engvall, Henrik Green, Fredrik C. Kugelberg, Carl Söderberg, and Albert Elmsjö. 2023. "Postmortem Metabolomics of Insulin Intoxications and the Potential Application to Find Hypoglycemia-Related Deaths" Metabolites 13, no. 1: 5. https://doi.org/10.3390/metabo13010005
APA StyleWard, L. J., Engvall, G., Green, H., Kugelberg, F. C., Söderberg, C., & Elmsjö, A. (2023). Postmortem Metabolomics of Insulin Intoxications and the Potential Application to Find Hypoglycemia-Related Deaths. Metabolites, 13(1), 5. https://doi.org/10.3390/metabo13010005