The sFlt-1/PlGF Ratio in Patients Affected by Gestational Diabetes and SARS-CoV-2 Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Sample Collection
2.2. Statistical Analysis
3. Results
4. Discussion
4.1. Strengths and Limitations
4.2. Clinical and Research Implications of Our Findings
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Redman, C.W.G.; Staff, A.C.; Roberts, J.M. Syncytiotrophoblast stress in preeclampsia: The convergence point for multiple pathways. Am. J. Obstet. Gynecol. 2020, 226, S907–S927. [Google Scholar] [CrossRef] [PubMed]
- Silasi, M.; Cohen, B.; Karumanchi, S.A.; Rana, S. Abnormal placentation, angiogenic factors, and the pathogenesis of preeclampsia. Obstet. Gynecol. Clin. N. Am. 2010, 37, 239–253. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, A.M.; Giuffrida, D.; Moretti, L.; Re, P.; Grassi, G.; Menato, G.; Rolfo, A. Placental and maternal sFlt1/PlGF expression in gestational diabetes mellitus. Sci. Rep. 2021, 11, 2312. [Google Scholar] [CrossRef] [PubMed]
- Zen, M.; Padmanabhan, S.; Zhang, K.; Kirby, A.; Cheung, N.W.; Lee, V.W.; Alahakoon, T.I. Urinary and Serum Angiogenic Markers in Women with Preexisting Diabetes During Pregnancy and Their Role in Preeclampsia Prediction. Diabetes Care 2020, 43, 67–73. [Google Scholar] [CrossRef]
- Levine, R.J.; Maynard, S.E.; Qian, C.; Lim, K.H.; England, L.J.; Yu, K.F.; Schisterman, E.F.; Thadhani, R.; Sachs, B.P.; Epstein, F.H.; et al. Circulating angiogenic factors and the risk of preeclampsia. N. Engl. J. Med. 2004, 350, 672–683. [Google Scholar] [CrossRef] [Green Version]
- Verlohren, S.; Brennecke, S.P.; Galindo, A.; Karumanchi, S.A.; Mirkovic, L.B.; Schlembach, D.; Stepan, H.; Vatish, M.; Zeisler, H.; Rana, S. Clinical interpretation and implementation of the sFlt-1/PlGF ratio in the prediction, diagnosis and management of preeclampsia. Pregnancy Hypertens. 2022, 27, 42–50. [Google Scholar] [CrossRef]
- Verma, S.; Joshi, C.S.; Silverstein, R.B.; He, M.; Carter, E.B.; Mysorekar, I.U. SARS-CoV-2 colonization of maternal and fetal cells of the human placenta promotes alteration of local renin-angiotensin system. Med 2021, 2, 575–590. [Google Scholar] [CrossRef]
- Oltean, I.; Tran, J.; Lawrence, S.; Ruschkowski, B.A.; Zeng, N.; Bardwell, C.; Nasr, Y.; de Nanassy, J.; El Demellawy, D. Impact of SARS-CoV-2 on the clinical outcomes and placental pathology of pregnant women and their infants: A systematic review. Heliyon 2021, 7, e06393. [Google Scholar] [CrossRef]
- Yanai, H. Metabolic Syndrome and COVID-19. Cardiol. Res. 2020, 11, 360–365. [Google Scholar] [CrossRef]
- Di Martino, D.; Cappelletti, M.; Tondo, M.; Basello, K.; Garbin, C.; Speciani, A.; Ferrazzi, E. Glycation driven inflammation: COVID 19 severity in pregnant women and perinatal outcome. Nutrients 2022, 14, 4037. [Google Scholar] [CrossRef]
- Zhao, P.; Praissman, J.L.; Grant, O.C.; Cai, Y.; Xiao, T.; Rosenbalm, K.E.; Aoki, K.; Kellman, B.P.; Bridger, R.; Barouch, D.H.; et al. Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor. Cell Host Microbe 2020, 28, 586–601.e6. [Google Scholar] [CrossRef] [PubMed]
- Giardini, V.; Carrer, A.; Casati, M.; Contro, E.; Vergani, P.; Gambacorti-Passerini, C. Increased sFLT-1/PlGF ratio in COVID-19: A novel link to angiotensin II-mediated endothelial dysfunction. Am. J. Hematol. 2020, 95, E188–E191. [Google Scholar] [CrossRef] [PubMed]
- Soldavini, C.M.; Di Martino, D.; Sabattini, E.; Ornaghi, S.; Sterpi, V.; Erra, R.; Invernizzi, F.; Tine, G.; Giardini, V.; Vergani, P.; et al. sFlt-1/PlGF ratio in hypertensive disorders of pregnancy in patients affected by COVID-19. Pregnancy Hypertens. 2022, 27, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Seethy, A.A.; Singh, S.; Mukherjee, I.; Pethusamy, K.; Purkayastha, K.; Sharma, J.B.; Sharma, R.S.; Dhar, R.; Karmakar, S. Potential SARS-CoV-2 interactions with proteins involved in trophoblast functions—An in-silico study. Placenta 2021, 103, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Villar, J.; Ariff, S.; Gunier, R.B.; Thiruvengadam, R.; Rauch, S.; Kholin, A.; Roggero, P.; Prefumo, F.; do Vale, M.S.; Cardona-Perez, J.A.; et al. Maternal and Neonatal Morbidity and Mortality Among Pregnant Women With and Without COVID-19 Infection: The INTERCOVID Multinational Cohort Study. JAMA Pediatr. 2021, 175, 817–826. [Google Scholar] [CrossRef]
- International Association of Diabetes and Pregnancy Study Groups Consensus Panel. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 2010, 33, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Italian Society of Human Nutrition. Reference Intake Levels of Nutrients and Energy for the Italian Population (LARN), 4th ed.; SICS: Rome, Italy, 2014. [Google Scholar]
- Rossi, G.; Somigliana, E.; Moschetta, M.; Bottani, B.; Barbieri, M.; Vignali, M. Adequate timing of fetal ultrasound to guide metabolic therapy in mild gestational diabetes mellitus. Results from a randomized study. Acta Obstet. Gynecol. Scand. 2000, 79, 649–654. [Google Scholar] [CrossRef]
- Bonomo, M.; Cetin, I.; Pisoni, M.P.; Faden, D.; Mion, E.; Taricco, E.; Nobile de Santis, M.; Radaelli, T.; Motta, G.; Costa, M.; et al. Flexible treatment of gestational diabetes modulated on ultrasound evaluation of intrauterine growth: A controlled randomized clinical trial. Diabetes Metab. 2004, 30, 237–244. [Google Scholar] [CrossRef]
- Brown, M.A.; Magee, L.A.; Kenny, L.C.; Karumanchi, S.A.; McCarthy, F.P.; Saito, S.; Hall, D.R.; Warren, C.E.; Adoyi, G.; Ishaku, S.; et al. Hypertensive Disorders of Pregnancy: ISSHP Classification, Diagnosis, and Management Recommendations for International Practice. Hypertension 2018, 72, 24–43. [Google Scholar] [CrossRef] [Green Version]
- Bertino, E.; Spada, E.; Occhi, L.; Coscia, A.; Giuliani, F.; Gagliardi, L.; Gilli, G.; Bona, G.; Fabris, C.; De Curtis, M.; et al. Neonatal Anthropometric Charts: The Italian neonatal study compared with other European studies. JPGN 2010, 51, 353–361. [Google Scholar] [CrossRef]
- Cribiù, F.M.; Erra, R.; Pugni, L.; Rubio-Perez, C.; Alonso, L.; Simonetti, S.; Croci, G.A.; Serna, G.; Ronchi, A.; Pietrasanta, C.; et al. Severe SARS-CoV-2 placenta infection can impact neonatal outcome in the absence of vertical transmission. J. Clin. Investig. 2021, 131, e145427. [Google Scholar] [CrossRef] [PubMed]
- Dubova, E.A.; Pavlov, K.A.; Borovkova, E.I.; Bayramova, M.A.; Makarov, I.O.; Shchegolev, A.I. Vascular endothelial growth factor and its receptors in the placenta of pregnant women with obesity. Bull. Exp. Biol. Med. 2011, 151, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Mordwinkin, N.M.; Ouzounian, J.G.; Yedigarova, L.; Montoro, M.N.; Louie, S.G.; Rodgers, K.E. Alteration of endothelial function markers in women with gestational diabetes and their fetuses. J. Matern. Fetal Neonatal Med. 2013, 26, 507–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lappas, M. Markers of endothelial cell dysfunction are increased in human omental adipose tissue from women with pre-existing maternal obesity and gestational diabetes. Metabolism 2014, 63, 860–873. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, D.; Chiaffarino, F.; Patanè, L.; Prefumo, F.; Vergani, P.; Ornaghi, S.; Savasi, V.; Spinillo, A.; Cromi, A.; D’Ambrosi, F.; et al. Assessing risk factors for severe forms of COVID-19 in a pregnant population: A clinical series from Lombardy, Italy. Int. J. Gynaecol. Obstet. 2021, 152, 275–277. [Google Scholar] [CrossRef]
Variable | COVID-19, GD (n = 14) | COVID-19, Non-GD (n = 12) | Non-COVID-19, GD (n = 11) | Controls (n = 25) | p-Value (*) | Post Hoc Test |
---|---|---|---|---|---|---|
Maternal age (years) | 34 (31–40) | 28 (22–35) | 33 (32–37) | 32 (31–35) | 0.06 | |
Pre-pregnancy BMI (kg/m2) | 25 (23–35) | 22 (22–25) | 23 (21–25) | 22 (19–26) | <0.02 | § # |
Gestationl age recruitment (weeks) | 36 (32–37) | 34 (29–38) | 35 (34–35) | 35 (35–36) | 0.64 | |
Medications for gestational diabetes | 9 (64%) | - | 1 (9%) | - | <0.03 | # |
HDP | 5 (35%) | 0 (0%) | 0 (0%) | 0 (0%) | <0.01 | § # † |
Admission to ICU | 1 (7%) | 1 (8%) | 0 (0%) | 0 (0%) | 0.35 | |
COVID-19 | ||||||
Asymptomatic | 5 (36%) | 6 (50%) | - | - | 0.69 | |
Mild-Moderate-Severe | 9 (64%) | 6 (50%) | - | - | 0.69 |
Variable | COVID-19, GD (n = 14) | COVID-19, Non-GD (n = 12) | Non-COVID-19, GD (n = 11) | Controls (n = 25) | p-Value (*) | Post Hoc Test |
---|---|---|---|---|---|---|
Gestational age at delivery (weeks) | 38 (37–39) | 39 (37–40) | 39 (38–39) | 39 (38–40) | 0.03 | † |
Cesarean sections rate | 8 (57%) | 5 (41%) | 4 (36%) | 6 (24%) | 0.22 | |
Neonatal weight (g) | 3022 (2376–3402) | 3175 (2837–3475) | 3010 (2860–3535) | 3280 (3140–3525) | 0.19 | |
Neonatal weight > 90° percentile [21] | 1 (7%) | 2 (16%) | 0 (0%) | 3 (12%) | 0.67 | |
Admission to NICU | 2 (14%) | 2 (16%) | 0 (0%) | 0 (0%) | 0.08 |
Value | COVID-19, GD (n = 14) | COVID-19, Non-GD (n = 12) | Non-COVID-19, GD (n = 11) | Controls (n = 25) | p-Value (*) | Post Hoc Test |
---|---|---|---|---|---|---|
sFlt-1 | 3721 (1601–6026) | 1683.5 (1219–2386) | 3544 (1479–4776) | 2081 (1569–2970) | 0.10 | |
PlGF | 174 (114–454) | 529 (149–953) | 358 (204–754) | 465 (282–618) | 0.10 | |
sFlt-1/PlGF Ratio | 26 (5–42.8) | 6 (1.9–18.4) | 8 (2.6–23.4) | 5 (3–10) | 0.047 | † |
Variable | COVID-19, GD, with Late HDP (n = 5) | COVID-19, GD, without Late HDP (n = 9) | p-Value (*) |
---|---|---|---|
sFlt-1 | 432 (2508–9670) | 350 (1569–5951) | 0.36 |
PlGF | 14 (97–465) | 20 (104–446) | 1.00 |
sFlt-1/PlGF Ratio | 26 (12–100) | 27 (5–44) | 0.90 |
sFlt-1/PlGF Ratio >38 | 1 (20%) | 3 (33%) | n.a. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Martino, D.D.; Soldavini, C.M.; Rossi, G.; Lonardoni, M.C.; Tinè, G.; Caneschi, A.; D’Ambrosi, F.; Ferrazzi, E. The sFlt-1/PlGF Ratio in Patients Affected by Gestational Diabetes and SARS-CoV-2 Infection. Metabolites 2023, 13, 54. https://doi.org/10.3390/metabo13010054
Di Martino DD, Soldavini CM, Rossi G, Lonardoni MC, Tinè G, Caneschi A, D’Ambrosi F, Ferrazzi E. The sFlt-1/PlGF Ratio in Patients Affected by Gestational Diabetes and SARS-CoV-2 Infection. Metabolites. 2023; 13(1):54. https://doi.org/10.3390/metabo13010054
Chicago/Turabian StyleDi Martino, Daniela Denis, Chiara Maria Soldavini, Gabriele Rossi, Maria Chiara Lonardoni, Gabriele Tinè, Agnese Caneschi, Francesco D’Ambrosi, and Enrico Ferrazzi. 2023. "The sFlt-1/PlGF Ratio in Patients Affected by Gestational Diabetes and SARS-CoV-2 Infection" Metabolites 13, no. 1: 54. https://doi.org/10.3390/metabo13010054
APA StyleDi Martino, D. D., Soldavini, C. M., Rossi, G., Lonardoni, M. C., Tinè, G., Caneschi, A., D’Ambrosi, F., & Ferrazzi, E. (2023). The sFlt-1/PlGF Ratio in Patients Affected by Gestational Diabetes and SARS-CoV-2 Infection. Metabolites, 13(1), 54. https://doi.org/10.3390/metabo13010054