Common Strategies and Factors Affecting Off-Line Breath Sampling and Volatile Organic Compounds Analysis Using Thermal Desorption-Gas Chromatography-Mass Spectrometry (TD-GC-MS)
Abstract
:1. Introduction
2. Patient-Related Presampling Recommendations
2.1. Diet
2.2. Breathing Manners
2.3. Age
2.4. External Fragrances and Smoking
- (i)
- Patient-related factors, i.e., their physiological conditions and clinical confounding factors such as medication;
- (ii)
- Environmental considerations, i.e., background air measurement, and determination of contaminant VOCs originating from sampling devices.
3. Off-Line Breath Sampling Devices
Tedlar Bags as Off-Line Sample Containers
4. Exhaled Breath Sampling Procedure
4.1. Breath Fractions in the Respiratory Track
4.2. Tedlar Bags for Exhaled Breath Sampling
5. Stability of VOCs in Tedlar Bags
5.1. Breath Sample Storage in Tedlar Bags
5.2. Water Vapor Alters Breath Composition during Storage
5.3. Compounds Emitted by Tedlar Bags
5.4. Temperature Affects the Levels of VOCs in Exhaled Breath
6. Sample Enrichment
6.1. Thermal Desorption Tubes as Sample Preconcentrators
6.2. TD Tubes Conditioning
6.3. Breath Sampling onto TD Tubes
6.4. Compounds Emitted by Tenax TA Tubes
6.5. Sample Storage and Stability of TD Tubes
7. Exhaled Breath Analysis Using Thermo-Desorption Gas Chromatography Mass Spectrometry (TD-GC-MS)
7.1. Thermal Desorption
7.2. Gas Chromatography Mass Spectrometry
7.3. Quality Assessment
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miekisch, W.; Schubert, J.K.; Noeldge-Schomburg, G.F.E. Diagnostic Potential of Breath Analysis—Focus on Volatile Organic Compounds. Clin. Chim. Acta 2004, 347, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Jahan, S.A.; Kabir, E. A Review of Breath Analysis for Diagnosis of Human Health. TrAC Trends Anal. Chem. 2012, 33, 1–8. [Google Scholar] [CrossRef]
- Smith, D.; Španěl, P. The Challenge of Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring. Analyst 2007, 132, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Schubert, J.K.; Miekisch, W.; Geiger, K.; Nöldge–Schomburg, G.F.E. Breath Analysis in Critically Ill Patients: Potential and Limitations. Expert Rev. Mol. Diagn. 2004, 4, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Pauling, L.; Robinson, A.B.; Teranishi, R.; Cary, P. Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition Chromatography. Proc. Natl. Acad. Sci. USA 1971, 68, 2374–2376. [Google Scholar] [CrossRef] [Green Version]
- Amann, A.; Poupart, G.; Telser, S.; Ledochowski, M.; Schmid, A.; Mechtcheriakov, S. Applications of Breath Gas Analysis in Medicine. Int. J. Mass Spectrom. 2004, 239, 227–233. [Google Scholar] [CrossRef]
- Dummer, J.; Storer, M.; Swanney, M.; McEwan, M.; Scott-Thomas, A.; Bhandari, S.; Chambers, S.; Dweik, R.; Epton, M. Analysis of Biogenic Volatile Organic Compounds in Human Health and Disease. TrAC Trends Anal. Chem. 2011, 30, 960–967. [Google Scholar] [CrossRef]
- Griffiths, W.J.; Koal, T.; Wang, Y.; Kohl, M.; Enot, D.P.; Deigner, H.-P. Targeted Metabolomics for Biomarker Discovery. Angew. Chem. Int. Ed. 2010, 49, 5426–5445. [Google Scholar] [CrossRef]
- Markar, S.R.; Brodie, B.; Chin, S.-T.; Romano, A.; Spalding, D.; Hanna, G.B. Profile of Exhaled-Breath Volatile Organic Compounds to Diagnose Pancreatic Cancer. Br. J. Surg. 2018, 105, 1493–1500. [Google Scholar] [CrossRef] [Green Version]
- Stockley, R.A. Biomarkers in COPD: Time for a Deep Breath. Thorax 2007, 62, 657–660. [Google Scholar] [CrossRef]
- Mashir, A.; Dweik, R.A. Exhaled Breath Analysis: The New Interface between Medicine and Engineering. Adv. Powder Technol. 2009, 20, 420–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, M.; Cataneo, R.N.; Ditkoff, B.A.; Fisher, P.; Greenberg, J.; Gunawardena, R.; Kwon, C.S.; Rahbari-Oskoui, F.; Wong, C. Volatile Markers of Breast Cancer in the Breath. Breast J. 2003, 9, 184–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sylvester, K.P.; Patey, R.A.; Rafferty, G.F.; Rees, D.; Thein, S.L.; Greenough, A. Exhaled Carbon Monoxide Levels in Children with Sickle Cell Disease. Eur. J. Pediatr. 2005, 164, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Machado, R.F.; Laskowski, D.; Deffenderfer, O.; Burch, T.; Zheng, S.; Mazzone, P.J.; Mekhail, T.; Jennings, C.; Stoller, J.K.; Pyle, J.; et al. Detection of Lung Cancer by Sensor Array Analyses of Exhaled Breath. Am. J. Respir. Crit. Care Med. 2005, 171, 1286–1291. [Google Scholar] [CrossRef] [Green Version]
- Cikach, F.S.; Dweik, R.A. Cardiovascular Biomarkers in Exhaled Breath. Prog. Cardiovasc. Dis. 2012, 55, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Gould, O.; Ratcliffe, N.; Król, E.; de Lacy Costello, B. Breath Analysis for Detection of Viral Infection, the Current Position of the Field. J. Breath Res 2020, 14, 41001. [Google Scholar] [CrossRef]
- Buszewski, B.; Kęsy, M.; Ligor, T.; Amann, A. Human Exhaled Air Analytics: Biomarkers of Diseases. Biomed. Chromatogr. 2007, 21, 553–566. [Google Scholar] [CrossRef]
- Fens, N.; Zwinderman, A.H.; van der Schee, M.P.; de Nijs, S.B.; Dijkers, E.; Roldaan, A.C.; Cheung, D.; Bel, E.H.; Sterk, P.J. Exhaled Breath Profiling Enables Discrimination of Chronic Obstructive Pulmonary Disease and Asthma. Am. J. Respir. Crit. Care Med. 2009, 180, 1076–1082. [Google Scholar] [CrossRef]
- Doran, S.L.F.; Romano, A.; Hanna, G.B. Optimisation of Sampling Parameters for Standardised Exhaled Breath Sampling. J. Breath Res 2018, 12, 16007. [Google Scholar] [CrossRef]
- Smolinska, A.; Klaassen, E.M.M.; Dallinga, J.W.; van de Kant, K.D.G.; Jobsis, Q.; Moonen, E.J.C.; van Schayck, O.C.P.; Dompeling, E.; van Schooten, F.J. Profiling of Volatile Organic Compounds in Exhaled Breath As a Strategy to Find Early Predictive Signatures of Asthma in Children. PLoS ONE 2014, 9, e95668. [Google Scholar] [CrossRef]
- Guallar-Hoyas, C.; Turner, M.A.; Blackburn, G.J.; Wilson, I.D.; Thomas, C.L.P. A Workflow for the Metabolomic/Metabonomic Investigation of Exhaled Breath Using Thermal Desorption GC–MS. Bioanalysis 2012, 4, 2227–2237. [Google Scholar] [CrossRef]
- Van den Velde, S.; Nevens, F.; Van hee, P.; van Steenberghe, D.; Quirynen, M. GC–MS Analysis of Breath Odor Compounds in Liver Patients. J. Chromatogr. B 2008, 875, 344–348. [Google Scholar] [CrossRef]
- Basanta, M.; Koimtzis, T.; Singh, D.; Wilson, I.; Thomas, C.L.P. An Adaptive Breath Sampler for Use with Human Subjects with an Impaired Respiratory Function. Analyst 2007, 132, 153–163. [Google Scholar] [CrossRef]
- Raninen, K.J.; Lappi, J.E.; Mukkala, M.L.; Tuomainen, T.-P.; Mykkänen, H.M.; Poutanen, K.S.; Raatikainen, O.J. Fiber Content of Diet Affects Exhaled Breath Volatiles in Fasting and Postprandial State in a Pilot Crossover Study. Nutr. Res. 2016, 36, 612–619. [Google Scholar] [CrossRef]
- Baranska, A.; Tigchelaar, E.; Smolinska, A.; Dallinga, J.W.; Moonen, E.J.C.; Dekens, J.A.M.; Wijmenga, C.; Zhernakova, A.; Van Schooten, F.J. Profile of Volatile Organic Compounds in Exhaled Breath Changes as a Result of Gluten-Free Diet. J. Breath Res. 2013, 7, 37104–37114. [Google Scholar] [CrossRef]
- Smolinska, A.; Tedjo, D.I.; Blanchet, L.; Bodelier, A.; Pierik, M.J.; Masclee, A.A.M.; Dallinga, J.; Savelkoul, P.H.M.; Jonkers, D.M.A.E.; Penders, J.; et al. Volatile Metabolites in Breath Strongly Correlate with Gut Microbiome in CD Patients. Anal. Chim. Acta 2018, 1025, 1–11. [Google Scholar] [CrossRef]
- Jia, Z.; Patra, A.; Kutty, V.K.; Venkatesan, T. Critical Review of Volatile Organic Compound Analysis in Breath and In Vitro Cell Culture for Detection of Lung Cancer. Metabolites 2019, 9, 52. [Google Scholar] [CrossRef] [Green Version]
- Bikov, A.; Paschalaki, K.; Logan-Sinclair, R.; Horváth, I.; Kharitonov, S.A.; Barnes, P.J.; Usmani, O.S.; Paredi, P. Standardised Exhaled Breath Collection for the Measurement of Exhaled Volatile Organic Compounds by Proton Transfer Reaction Mass Spectrometry. BMC Pulm. Med. 2013, 13, 43. [Google Scholar] [CrossRef] [Green Version]
- Boshier, P.R.; Priest, O.H.; Hanna, G.B.; Marczin, N. Influence of Respiratory Variables on the On-Line Detection of Exhaled Trace Gases by PTR-MS. Thorax 2011, 66, 919–920. [Google Scholar] [CrossRef] [Green Version]
- Sukul, P.; Schubert, J.K.; Kamysek, S.; Trefz, P.; Miekisch, W. Applied Upper-Airway Resistance Instantly Affects Breath Components: A Unique Insight into Pulmonary Medicine. J. Breath Res. 2017, 11, 47108. [Google Scholar] [CrossRef]
- Španěl, P.; Dryahina, K.; Smith, D. Acetone, Ammonia and Hydrogen Cyanide in Exhaled Breath of Several Volunteers Aged 4-83 Years. J. Breath Res 2007, 1, 4. [Google Scholar] [CrossRef]
- Taucher, J.; Hansel, A.; Jordan, A.; Fall, R.; Futrell, J.H.; Lindinger, W. Detection of Isoprene in Expired Air from Human Subjects Using Proton-Transfer-Reaction. Mass Spectrom. 1997, 11, 1230–1234. [Google Scholar] [CrossRef]
- Kharitonov, S.A.; Barnes, P.J. Biomarkers of Some Pulmonary Diseases in Exhaled Breath. Biomarkers 2002, 7, 1–32. [Google Scholar] [CrossRef]
- Phillips, M.; Boehmer, J.P.; Cataneo, R.N.; Cheema, T.; Eisen, H.J.; Fallon, J.T.; Fisher, P.E.; Gass, A.; Greenberg, J.; Kobashigawa, J.; et al. Heart Allograft Rejection: Detection with Breath Alkanes in Low Levels (the HARDBALL Study). J. Heart Lung Transplant. 2004, 23, 701–708. [Google Scholar] [CrossRef]
- Blanchet, L.; Smolinska, A.; Baranska, A.; Tigchelaar, E.; Swertz, M.; Zhernakova, A.; Dallinga, J.W.; Wijmenga, C.; Van Schooten, F.J. Factors That Influence the Volatile Organic Compound Content in Human Breath. J. Breath Res. 2017, 11, 16013. [Google Scholar] [CrossRef]
- Buszewski, B.; Ulanowska, A.; Ligor, T.; Denderz, N.; Amann, A. Analysis of Exhaled Breath from Smokers, Passive Smokers and Non-Smokers by Solid-Phase Microextraction Gas Chromatography/Mass Spectrometry. Biomed. Chromatogr. 2009, 23, 551–556. [Google Scholar] [CrossRef]
- Jordan, A.; Hansel, A.; Holzinger, R.; Lindinger, W. Acetonitrile and Benzene in the Breath of Smokers and Non-Smokers Investigated by Proton Transfer Reaction Mass Spectrometry (PTR-MS). Int. J. Mass Spectrom. Ion Process. 1995, 148, L1–L3. [Google Scholar] [CrossRef]
- Beauchamp, J. Inhaled Today, Not Gone Tomorrow: Pharmacokinetics and Environmental Exposure of Volatiles in Exhaled Breath You May Also Like. J. Breath Res. 2011, 5, 037103. [Google Scholar] [CrossRef]
- Hanna, G.B.; Boshier, P.R.; Markar, S.R.; Romano, A. Accuracy and Methodologic Challenges of Volatile Organic Compound–Based Exhaled Breath Tests for Cancer Diagnosis: A Systematic Review and Meta-Analysis. JAMA Oncol. 2019, 5, e182815. [Google Scholar] [CrossRef] [Green Version]
- Steeghs, M.M.L.; Cristescu, S.M.; Harren, F.J.M. The Suitability of Tedlar Bags for Breath Sampling in Medical Diagnostic Research. Physiol. Meas. 2007, 28, 73–84. [Google Scholar] [CrossRef]
- Pennazza, G.; Santonico, M. Breath Analysis; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Kwak, J.; Fan, M.; Harshman, S.W.; Garrison, C.E.; Dershem, V.L.; Phillips, J.B.; Grigsby, C.C.; Ott, D.K. Evaluation of Bio-VOC Sampler for Analysis of Volatile Organic Compounds in Exhaled Breath. Metabolites 2014, 4, 879–888. [Google Scholar] [CrossRef] [Green Version]
- Davis, M.D.; Fowler, S.J.; Montpetit, A.J. Exhaled Breath Testing–A Tool for the Clinician and Researcher. Paediatr. Respir. Rev. 2019, 29, 37–41. [Google Scholar] [CrossRef]
- Righettoni, M.; Ragnoni, A.; Güntner, A.T.; Loccioni, C.; Pratsinis, S.E.; Risby, T.H. Monitoring Breath Markers under Controlled Conditions. J. Breath Res. 2015, 9, 047101. [Google Scholar] [CrossRef]
- Harshman, S.W.; Pitsch, R.L.; Davidson, C.N.; Scott, A.M.; Hill, E.M.; Smith, Z.K.; Strayer, K.E.; Schaeublin, N.M.; Wiens, T.L.; Brothers, M.C.; et al. Characterization of Standardized Breath Sampling for Off-Line Field Use. J. Breath Res. 2020, 14, 016009. [Google Scholar] [CrossRef] [Green Version]
- Lawal, O.; Ahmed, W.M.; Nijsen, T.M.E.; Goodacre, R.; Fowler, S.J. Exhaled Breath Analysis: A Review of ‘Breath-Taking’ Methods for off-Line Analysis. Metabolomics 2017, 13, 110. [Google Scholar] [CrossRef]
- Amann, A.; Miekisch, W.; Pleil, J.D.; Risby, T.; Schubert, J.K. 2010 European Respiratory Society Monograph; Horvath, I., de Jongste, J.C., Eds.; Maney Publishing: Leeds, UK, 2010. [Google Scholar]
- Beauchamp, J.; Herbig, J.; Gutmann, R.; Hansel, A. On the Use of Tedlar® Bags for Breath-Gas Sampling and Analysis. J. Breath Res. 2008, 2, 046001. [Google Scholar] [CrossRef]
- Grabowska-Polanowska, B.; Faber, J.; Skowron, M.; Miarka, P.; Pietrzycka, A.; Śliwka, I.; Amann, A. Detection of Potential Chronic Kidney Disease Markers in Breath Using Gas Chromatography with Mass-Spectral Detection Coupled with Thermal Desorption Method. J. Chromatogr. A 2013, 1301, 179–189. [Google Scholar] [CrossRef]
- Mochalski, P.; King, J.; Unterkofler, K.; Amann, A. Stability of Selected Volatile Breath Constituents in Tedlar, Kynar and Flexfilm Sampling Bags. Analyst 2013, 138, 1405–1418. [Google Scholar] [CrossRef] [Green Version]
- Gilio, A.D.; Palmisani, J.; Ventrella, G.; Facchini, L.; Catino, A.; Varesano, N.; Pizzutilo, P.; Galetta, D.; Borelli, M.; Barbieri, P.; et al. Breath Analysis: Comparison among Methodological Approaches for Breath Sampling. Molecules 2020, 25, 5823. [Google Scholar] [CrossRef]
- McGarvey, L.J.; Shorten, C.V. The Effects of Adsorption on the Reusability of Tedlar® Air Sampling Bags. Am. Ind. Hyg. Assoc. J. 2000, 61, 375–380. [Google Scholar] [CrossRef]
- Ghimenti, S.; Lomonaco, T.; Bellagambi, F.G.; Tabucchi, S.; Onor, M.; Trivella, M.G.; Ceccarini, A.; Fuoco, R.; Di Francesco, F. Comparison of Sampling Bags for the Analysis of Volatile Organic Compounds in Breath. J. Breath Res. 2015, 9, 047110. [Google Scholar] [CrossRef] [PubMed]
- Fowler, W.S. Lung Function Studies. II. The Respiratory Dead Space. Am. J. Phys. 1948, 154, 405–416. [Google Scholar] [CrossRef]
- Wagner, C.T.; Durante, W.; Christodoulides, N.; Hellums, J.D.; Schafer, A.I. Hemodynamic Forces Induce the Expression of Heme Oxygenase in Cultured Vascular Smooth Muscle Cells. J. Clin. Investig. 1997, 100, 589–596. [Google Scholar] [CrossRef]
- Di Francesco, F.; Loccioni, C.; Fioravanti, M.; Russo, A.; Pioggia, G.; Ferro, M.; Roehrer, I.; Tabucchi, S.; Onor, M. Implementation of Fowler’s Method for End-Tidal Air Sampling. J. Breath Res. 2008, 2, 10. [Google Scholar] [CrossRef]
- D’Amico, A.; Di Natale, C.; Paolesse, R.; Macagnano, A.; Martinelli, E.; Pennazza, G.; Santonico, M.; Bernabei, M.; Roscioni, C.; Galluccio, G.; et al. Olfactory Systems for Medical Applications. Sens. Actuators B Chem. 2008, 130, 458–465. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, D.; Yan, K. Breath Analysis for Medical Applications; Springer: Singapore, 2017. [Google Scholar]
- Malerba, M.; Montuschi, P. Non-Invasive Biomarkers of Lung Inflammation in Smoking Subjects. Curr. Med. Chem. 2012, 19, 187–196. [Google Scholar] [CrossRef]
- Hunt, J. Exhaled Breath Condensate: An Evolving Tool for Noninvasive Evaluation of Lung Disease. J. Allergy Clin. Immunol. 2002, 110, 28–34. [Google Scholar] [CrossRef]
- Maniscalco, M.; Fuschillo, S.; Paris, D.; Cutignano, A.; Sanduzzi, A.; Motta, A. Clinical Metabolomics of Exhaled Breath Condensate in Chronic Respiratory Diseases. In Advances in Clinical Chemistry; Makowski, G.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 88, pp. 121–149. ISBN 9780128171431. [Google Scholar]
- Boots, A.W.; van Berkel, J.J.B.N.; Dallinga, J.W.; Smolinska, A.; Wouters, E.F.; van Schooten, F.J. The Versatile Use of Exhaled Volatile Organic Compounds in Human Health and Disease. J. Breath Res. 2012, 6, 027108. [Google Scholar] [CrossRef]
- Smolinska, A.; Baranska, A.; Dallinga, J.W.; Mensink, R.P.; Baumgartner, S.; van de Heijning, B.J.M.; van Schooten, F.J. Comparing Patterns of Volatile Organic Compounds Exhaled in Breath after Consumption of Two Infant Formulae with a Different Lipid Structure: A Randomized Trial. Sci. Rep. 2019, 9, 554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranska, A.; Mujagic, Z.; Smolinska, A.; Dallinga, J.W.; Jonkers, D.M.A.E.; Tigchelaar, E.F.; Dekens, J.; Zhernakova, A.; Ludwig, T.; Masclee, A.A.M.; et al. Volatile Organic Compounds in Breath as Markers for Irritable Bowel Syndrome: A Metabolomic Approach. Aliment. Pharmacol. Ther. 2016, 44, 45–56. [Google Scholar] [CrossRef]
- Qin, T.; Liu, H.; Song, Q.; Song, G.; Wang, H.Z.; Pan, Y.Y.; Xiong, F.X.; Gu, K.S.; Sun, G.P.; Chen, Z.D. The Screening of Volatile Markers for Hepatocellular Carcinoma. Cancer Epidemiol. Biomarkers Prev. 2010, 19, 2247–2253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dallinga, J.W.; Robroeks, C.M.H.H.T.; Van Berkel, J.J.B.N.; Moonen, E.J.C.; Godschalk, R.W.L.; Jöbsis, Q.; Dompeling, E.; Wouters, E.F.M.; Van Schooten, F.J. Volatile Organic Compounds in Exhaled Breath as a Diagnostic Tool for Asthma in Children. Clin. Exp. Allergy 2010, 40, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Van Vliet, D.; Smolinska, A.; Jöbsis, Q.; Rosias, P.P.R.; Muris, J.W.M.; Dallinga, J.W.; Van Schooten, F.J.; Dompeling, E. Association between Exhaled Inflammatory Markers and Asthma Control in Children. J. Breath Res. 2016, 10, 016014. [Google Scholar] [CrossRef] [PubMed]
- Schleich, F.N.; Zanella, D.; Stefanuto, P.H.; Bessonov, K.; Smolinska, A.; Dallinga, J.W.; Henket, M.; Paulus, V.; Guissard, F.; Graff, S.; et al. Exhaled Volatile Organic Compounds Are Able to Discriminate between Neutrophilic and Eosinophilic Asthma. Am. J. Respir. Crit. Care Med. 2019, 200, 444–453. [Google Scholar] [CrossRef]
- Verdam, F.J.; Dallinga, J.W.; Driessen, A.; De Jonge, C.; Moonen, E.J.C.; Van Berkel, J.B.N.; Luijk, J.; Bouvy, N.D.; Buurman, W.A.; Rensen, S.S.; et al. Non-Alcoholic Steatohepatitis: A Non-Invasive Diagnosis by Analysis of Exhaled Breath. J. Hepatol. 2013, 58, 543–548. [Google Scholar] [CrossRef]
- Van Berkel, J.J.B.N.; Dallinga, J.W.; Möller, G.M.; Godschalk, R.W.L.; Moonen, E.; Wouters, E.F.M.; Van Schooten, F.J. Development of Accurate Classification Method Based on the Analysis of Volatile Organic Compounds from Human Exhaled Air. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 861, 101–107. [Google Scholar] [CrossRef]
- Fijten, R.R.R.; Smolinska, A.; Drent, M.; Dallinga, J.W.; Mostard, R.; Pachen, D.M.; Van Schooten, F.J.; Boots, A.W. The Necessity of External Validation in Exhaled Breath Research: A Case Study of Sarcoidosis. J. Breath Res. 2018, 12, 016004. [Google Scholar] [CrossRef]
- Schnabel, R.; Fijten, R.; Smolinska, A.; Dallinga, J.; Boumans, M.L.; Stobberingh, E.; Boots, A.; Roekaerts, P.; Bergmans, D.; Van Schooten, F.J. Analysis of Volatile Organic Compounds in Exhaled Breath to Diagnose Ventilator-Associated Pneumonia. Sci. Rep. 2015, 5, 17179. [Google Scholar] [CrossRef] [Green Version]
- Pijls, K.E.; Smolinska, A.; Jonkers, D.M.A.E.; Dallinga, J.W.; Masclee, A.A.M.; Koek, G.H.; Van Schooten, F.J. A Profile of Volatile Organic Compounds in Exhaled Air as a Potential Non-Invasive Biomarker for Liver Cirrhosis. Sci. Rep. 2016, 6, 19903. [Google Scholar] [CrossRef] [Green Version]
- Brinkman, P.; Ahmed, W.M.; Gómez, C.; Knobel, H.H.; Weda, H.; Vink, T.J.; Nijsen, T.M.; Wheelock, C.E.; Dahlen, S.E.; Montuschi, P.; et al. Exhaled Volatile Organic Compounds as Markers for Medication Use in Asthma. Eur. Respir. J. 2020, 55, 1900544. [Google Scholar] [CrossRef]
- Finlayson-Pitts, B.J.; Wingen, L.M.; Sumner, A.L.; Syomin, D.; Ramazan, K.A. The Heterogeneous Hydrolysis of NO2 in Laboratory Systems and in Outdoor and Indoor Atmospheres: An Integrated Mechanism. Phys. Chem. Chem. Phys. 2003, 5, 223–242. [Google Scholar] [CrossRef] [Green Version]
- Kasper, P.L.; Oxbøl, A.; Hansen, M.J.; Feilberg, A. Mechanisms of Loss of Agricultural Odorous Compounds in Sample Bags of Nalophan, Tedlar, and PTFE. J. Environ. Qual. 2018, 47, 246–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilchrist, F.J.; Razavi, C.; Webb, A.K.; Jones, A.M.; Španěl, P.; Smith, D.; Lenney, W. An Investigation of Suitable Bag Materials for the Collection and Storage of Breath Samples Containing Hydrogen Cyanide. J. Breath Res. 2012, 6, 036004. [Google Scholar] [CrossRef] [PubMed]
- Ammann, C.; Spirig, C.; Neftel, A.; Steinbacher, M.; Komenda, M.; Schaub, A. Application of PTR-MS for Measurements of Biogenic VOC in a Deciduous Forest. Int. J. Mass Spectrom. 2004, 239, 87–101. [Google Scholar] [CrossRef]
- Sulyok, M.; Haberhauer-Troyer, C.; Rosenberg, E.; Grasserbauer, M. Investigation of the Stability of Selected Volatile Sulfur Compounds in Different Sampling Containers. J. Chromatogr. A 2001, 917, 367–374. [Google Scholar] [CrossRef]
- Dallinga, J.W.; Smolinska, A.; van Schooten, F.J. Analysis of Volatile Organic Compounds in Exhaled Breath by Gas Chromatography-Mass Spectrometry Combined with Chemometric Analysis. In Methods in Molecular Biology; Raftery, D., Ed.; Springer: New York, NY, USA, 2014; Volume 1198, pp. 251–263. ISBN 978-1-4939-1258-2. [Google Scholar]
- Li, Q.; Xiaoan, F.; Xu, K.; He, H.; Jiang, N. A Stability Study of Carbonyl Compounds in Tedlar Bags by a Fabricated MEMS Microreactor Approach. Microchem. J. 2021, 160, 105611. [Google Scholar] [CrossRef]
- Töreyin, Z.N.; Ghosh, M.; Göksel, Ö.; Göksel, T.; Godderis, L. Exhaled Breath Analysis in Diagnosis of Malignant Pleural Mesothelioma: Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 1110. [Google Scholar] [CrossRef] [Green Version]
- Queiroz, M.E.C.; de Souza, I.D.; de Oliveira, I.G.; Grecco, C.F. In Vivo Solid Phase Microextraction for Bioanalysis. TrAC-Trends Anal. Chem. 2022, 153, 116656. [Google Scholar] [CrossRef]
- Monedeiro, F.; Monedeiro-Milanowski, M.; Ratiu, I.A.; Brożek, B.; Ligor, T.; Buszewski, B. Needle Trap Device-Gc-Ms for Characterization of Lung Diseases Based on Breath Voc Profiles. Molecules 2021, 26, 1789. [Google Scholar] [CrossRef]
- Ras, M.R.; Borrull, F.; Marcé, R.M. Sampling and Preconcentration Techniques for Determination of Volatile Organic Compounds in Air Samples. TrAC-Trends Anal. Chem. 2009, 28, 347–361. [Google Scholar] [CrossRef]
- Harshman, S.W.; Dershem, V.L.; Fan, M.; Watts, B.S.; Slusher, G.M.; Flory, L.E.; Grigsby, C.C.; Ott, D.K. The Stability of Tenax TA Thermal Desorption Tubes in Simulated Field Conditions on the HAPSITE® ER. Int. J. Environ. Anal. Chem. 2015, 95, 1014–1029. [Google Scholar] [CrossRef]
- Mochalski, P.; Wzorek, B.; Śliwka, I.; Amann, A. Improved Pre-Concentration and Detection Methods for Volatile Sulphur Breath Constituents. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 1856–1866. [Google Scholar] [CrossRef] [PubMed]
- Matsiko, J.; Li, H.; Wang, P.; Sun, H.; Zheng, S.; Wang, D.; Zhang, W.; Hao, Y.; Zuo, P.; Li, Y.; et al. Multivariate Optimization of Tenax TA-Thermal Extraction for Determining Gaseous Phase Organophosphate Esters in Air Samples. Sci. Rep. 2019, 9, 3330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, V.M.; Crump, D.R.; Plant, N.T.; Pengelly, I. Evaluation of the Stability of a Mixture of Volatile Organic Compounds on Sorbents for the Determination of Emissions from Indoor Materials and Products Using Thermal Desorption/Gas Chromatography/Mass Spectrometry. J. Chromatogr. A 2014, 1350, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Franchina, F.A.; Zanella, D.; Dejong, T.; Focant, J.F. Impact of the Adsorbent Material on Volatile Metabolites during in Vitro and in Vivo Bio-Sampling. Talanta 2021, 222, 121569. [Google Scholar] [CrossRef] [PubMed]
- Harshman, S.W.; Geier, B.A.; Fan, M.; Rinehardt, S.; Watts, B.S.; Drummond, L.A.; Preti, G.; Phillips, J.B.; Ott, D.K.; Grigsby, C.C. The Identification of Hypoxia Biomarkers from Exhaled Breath under Normobaric Conditions. J. Breath Res. 2015, 9, 047103. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, W.M.; Brinkman, P.; Weda, H.; Knobel, H.H.; Xu, Y.; Nijsen, T.M.; Goodacre, R.; Rattray, N.; Vink, T.J.; Santonico, M.; et al. Methodological Considerations for Large-Scale Breath Analysis Studies: Lessons from the U-BIOPRED Severe Asthma Project. J. Breath Res. 2019, 13, 016001. [Google Scholar] [CrossRef] [Green Version]
- Maceira, A.; Vallecillos, L.; Borrull, F.; Marcé, R.M. New Approach to Resolve the Humidity Problem in VOC Determination in Outdoor Air Samples Using Solid Adsorbent Tubes Followed by TD-GC–MS. Sci. Total Environ. 2017, 599–600, 1718–1727. [Google Scholar] [CrossRef]
- Barash, O.; Zhang, W.; Halpern, J.M.; Hua, Q.L.; Pan, Y.Y.; Kayal, H.; Khoury, K.; Liu, H.; Davies, M.P.A.; Haick, H. Differentiation between Genetic Mutations of Breast Cancer by Breath Volatolomics. Oncotarget 2015, 6, 44864–44876. [Google Scholar] [CrossRef] [Green Version]
- Altomare, D.F.; Di Lena, M.; Porcelli, F.; Trizio, L.; Travaglio, E.; Tutino, M.; Dragonieri, S.; Memeo, V.; De Gennaro, G. Exhaled Volatile Organic Compounds Identify Patients with Colorectal Cancer. Br. J. Surg. 2013, 100, 144–150. [Google Scholar] [CrossRef]
- Alonso, M.; Sanchez, J.M. Analytical Challenges in Breath Analysis and Its Application to Exposure Monitoring. TrAC-Trends Anal. Chem. 2013, 44, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Baltussen, E.; Cramers, C.A.; Sandra, P.J.F. Sorptive Sample Preparation—A Review. Anal. Bioanal. Chem. 2002, 373, 3–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandendriessche, S.; Griepink, B.; Hollander, J.C.T.; Gielen, J.W.J.; Langelaan, F.G.G.M.; Saunders, K.J.; Brown, R.H. Certification of a Reference Material for Aromatic Hydrocarbons in Tenax Samplers. Analyst 1991, 116, 437–441. [Google Scholar] [CrossRef]
- Ho, S.S.H.; Chow, J.C.; Watson, J.G.; Wang, L.; Qu, L.; Dai, W.; Huang, Y.; Cao, J. Influences of Relative Humidities and Temperatures on the Collection of C2-C5 Aliphatic Hydrocarbons with Multi-Bed (Tenax TA, Carbograph 1TD, Carboxen 1003) Sorbent Tube Method. Atmos. Environ. 2017, 151, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Woolfenden, E. Optimising Analytical Performance and Extending the Application Range of Thermal Desorption for Indoor Air Monitoring. Indoor Built Environ. 2001, 10, 222–231. [Google Scholar] [CrossRef]
- Matthiesen, R.; Bunkenborg, J. Introduction to Mass Spectrometry-Based Proteomics. In Methods in Molecular Biology; Matthiesen, R., Ed.; Humana Press: Totowa, NJ, USA, 2013; Volume 1007, pp. 1–45. ISBN 9781627033916. [Google Scholar]
- Geer Wallace, M.A.; Pleil, J.D.; Mentese, S.; Oliver, K.D.; Whitaker, D.A.; Fent, K.W. Calibration and Performance of Synchronous SIM/Scan Mode for Simultaneous Targeted and Discovery (Non-Targeted) Analysis of Exhaled Breath Samples from Firefighters. J. Chromatogr. A 2017, 1516, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, J.; Rosso, M.C.; Kfoury, N.; Bicchi, C.; Cordero, C.; Robbat, A. Untargeted/Targeted 2D Gas Chromatography/Mass Spectrometry Detection of the Total Volatile Tea Metabolome. Molecules 2019, 24, 3757. [Google Scholar] [CrossRef] [Green Version]
- Geer, W.M.A.; McCord, J.P. High-resolution mass spectrometry in Breathborne Biomarkers and the Human Volatilome, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 253–270. [Google Scholar]
- Wilde, M.J.; Cordell, R.L.; Salman, D.; Zhao, B.; Ibrahim, W.; Bryant, L.; Ruszkiewicz, D.; Singapuri, A.; Free, R.C.; Gaillard, E.A.; et al. Breath analysis by two-dimensional gas chromatography with dual flame ionisation and mass spectrometric detection–method optimisation and integration within a large-scale clinical study. J. Chromatogr. A 2019, 1594, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Vinaixa, M.; Schymanski, E.L.; Neumann, S.; Navarro, M.; Salek, R.M.; Yanes, O. Mass Spectral Databases for LC/MS- and GC/MS-Based Metabolomics: State of the Field and Future Prospects. TrAC-Trends Anal. Chem. 2016, 78, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Rattray, N.J.W.; Hamrang, Z.; Trivedi, D.K.; Goodacre, R.; Fowler, S.J. Taking Your Breath Away: Metabolomics Breathes Life in to Personalized Medicine. Trends Biotechnol. 2014, 32, 538–548. [Google Scholar] [CrossRef]
- Sola Martínez, R.A.; Pastor Hernández, J.M.; Lozano Terol, G.; Gallego-Jara, J.; García-Marcos, L.; Cánovas Díaz, M.; de Diego Puente, T. Data Preprocessing Workflow for Exhaled Breath Analysis by GC/MS Using Open Sources. Sci. Rep. 2020, 10, 22008. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.R.; Cassells, J.; Berna, A.Z. Stability Control for Breath Analysis Using GC-MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1097–1098, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Hough, R.; Archer, D.; Probert, C. A Comparison of Sample Preparation Methods for Extracting Volatile Organic Compounds (VOCs) from Equine Faeces Using HS-SPME. Metabolomics 2018, 14, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stavropoulos, G.; Jonkers, D.M.A.E.; Mujagic, Z.; Koek, G.H.; Masclee, A.A.M.; Pierik, M.J.; Dallinga, J.W.; Van Schooten, F.J.; Smolinska, A. Implementation of Quality Controls Is Essential to Prevent Batch Effects in Breathomics Data and Allow for Cross-Study Comparisons. J. Breath Res. 2020, 14, 026012. [Google Scholar] [CrossRef]
- Woolfenden, E.A.; McClenny, W.A. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, 2nd ed.; EPA/625/R-96/010b; U.S. Environmental Protection Agency, Cincinnati: Washington, DC, USA, 1997.
- Woolfenden, E. Monitoring Vocs in Air Using Sorbent Tubes Followed by Thermal Desorption-Capillary Gc Analysis: Summary of Data and Practical Guidelines. J. Air Waste Manag. Assoc. 1997, 47, 20–36. [Google Scholar] [CrossRef] [Green Version]
- Harshman, S.W. Storage Stability of Exhaled Breath on Tenax TA. J. Breath Res. 2016, 10, 046008. [Google Scholar] [CrossRef]
- Wilkinson, M.; White, I.R.; Goodacre, R.; Nijsen, T.; Fowler, S.J. Effects of High Relative Humidity and Dry Purging on VOCs Obtained during Breath Sampling on Common Sorbent Tubes. J. Breath Res. 2020, 14, 046006. [Google Scholar] [CrossRef]
- Kang, S.; Paul Thomas, C.L. How Long May a Breath Sample Be Stored for at -80 °C? A Study of the Stability of Volatile Organic Compounds Trapped onto a Mixed Tenax:Carbograph Trap Adsorbent Bed from Exhaled Breath. J. Breath Res. 2016, 10, 026011. [Google Scholar] [CrossRef] [Green Version]
- de Lacy Costello, B.; Amann, A.; Al-Kateb, H.; Flynn, C.; Filipiak, W.; Ratcliffe, N.M. A review of the volatiles from the healthy human body. J. Breath Res. 2013, 8, 014001. [Google Scholar] [CrossRef]
- Bernier, U.R.; Booth, M.M.; Yost, R.A. Analysis of human skin emanations by gas chromatography/mass spectrometry. 1. Thermal desorption of attractants for the yellow fever mosquito (Aedes aegypti ) from handled glass beads. Anal. Chem. 2000, 72, 747–756. [Google Scholar] [CrossRef]
- Wagenstaller, M.; Buettner, A. Characterization of odorants in human urine using a combined chemo-analytical and human-sensory approach: A potential diagnostic strategy. Metabolomics 2013, 9, 9–20. [Google Scholar] [CrossRef]
- Mochalski, P. Blood and breath levels of selected volatile organic compounds in healthy volunteers. Analyst 2013, 138, 2134–2145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsson, B.T. Gas chromatography of organic volatiles in human breath and saliva. Acta Chem. Scand. 1965, 19, 159–164. [Google Scholar] [CrossRef] [PubMed]
- de Lacy Costello, B.; Ratcliffe, N.M. Volatile organic compounds (VOCs) found in urine and stool. In Volatile Biomarkers: Non-Invasive Diagnosis in Physiology and Medicine; Elsevier: Amsterdam, The Netherlands, 2013; pp. 405–462. [Google Scholar]
Purge | Heating | ||||
---|---|---|---|---|---|
Bag | Flushing Agent | Rep | Temp. | Duration (min) | Ref. |
1.0 L, transparent | Synthetic air | 1 | 60 °C | 720 | 49 |
1.0 L, black-layered | Synthetic air | 1 | 60 °C | <120 | 40 |
3.0 L, transparent | Synthetic air | 3 | 45 °C | 15 | 48 |
1 | 95 °C | 600 | |||
3.0 L, transparent | Synthetic air | 3 | 50 °C | n/a | 51 |
3.0 L, transparent | High-purity N2 | 5 | n/a | n/a | 50 |
1 | 95 °C | 600 | |||
10.0 L, transparent | High-purity N2 | 5 | Up to 27 °C | n/a | 52 |
Bag Volume (L) | Mode of Exhalation | Disease | Age | Ref. |
---|---|---|---|---|
1 | No special provisions | Asthma | Children | [20] |
3 | No special provisions | n/a | Adults | [63] |
3 | No special provisions | Irritable bowel syndrome | Adults | [64] |
4 |
| Hepatocellular carcinoma | Adults | [65] |
5 | No special provisions | Asthma | Children | [66] |
5 |
| Asthma | Children | [67] |
5 |
| n/a | Adults | [62] |
5 |
| Asthma | Adults | [68] |
5 | No special provisions | Non-alcoholic steatohepapatitis | Adults | [69] |
5 |
| n/a | Adults | [70] |
5 | Breath at normal rate | Sarcoidosis | Adults | [71] |
5 | Bag was tightly connected to the limb of the ventilator | Pneumonia | Adults | [72] |
5 | No special provisions | Liver cirrhosis | Adults | [73] |
10 | No special provisions | Asthma | Adults | [74] |
Volume (L) | Capacity (%) | SA:V (m-1) |
---|---|---|
0.6 | 20% | 291 |
1.2 | 40% | 145 |
2.4 | 80% | 73 |
Adsorbent Type | Sampling Range | T Max (°C) | Surface Area Range (m2/g) | Water Content (mL/g) 20 °C |
---|---|---|---|---|
Porous organic polymers (e.g., Tenax TA, GR, chromosorb) | C1–C30 | 250–350 | 35–170 | 40–180 |
Carbon-based materials (e.g., carboxen) | C2–C5 | >400 | 400–1200 | 200–800 |
Graphitized carbon black (e.g., carbotrap) | C3–C20 | >400 | 5–560 | N/A |
Gas | Gas Purity | Flow Rate (mL/min) | Temperature (°C) | Time (min) | Ref. |
---|---|---|---|---|---|
Nitrogen | 99.999% | 85 | 320 | 60 | [45] |
Helium | 99.999% | 50 | 330 | 30 | [51] |
Helium | n/a | 50 |
|
| [88] |
Nitrogen | n/a | 75 | 320 | 600 | [89] |
Helium | n/a | 60 |
|
| [90] |
Nitrogen | n/a | 100 | 335 | 30 | [91] |
Adsorbent | Flow Rate (mL/min) | Sampling Pump | Ref. |
---|---|---|---|
Tenax TA | 100 | Gilian® GilAir® PLUS | [42] |
Tenax TA | 200 | Gilian Gil Plus Pump | [45] |
Tenax TA | 200 | ACTI-VOC, Markes | [91] |
Tenax TA | 270 | MultiRAE Pro | [92] |
Tenax GR | 50 | n/a | [53] |
Tenax GR | 250 | peristaltic pump | [75] |
Tenax GR | 250 | peristaltic pump | [93] |
Tenax TA/Carbograph 1TD | 22 | ACTI-VOC, Markes | [94] |
Tenax TA/Carbograph 5 | 200 | Pocket Pump SKC | [51] |
ORBOTM 420 and Tenax TA | 100 | Schego membrane pump | [95] |
CarboxenTM 1003, CarbopackTM B and CarbopackTM Y | 25 | n/a | [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Westphal, K.; Dudzik, D.; Waszczuk-Jankowska, M.; Graff, B.; Narkiewicz, K.; Markuszewski, M.J. Common Strategies and Factors Affecting Off-Line Breath Sampling and Volatile Organic Compounds Analysis Using Thermal Desorption-Gas Chromatography-Mass Spectrometry (TD-GC-MS). Metabolites 2023, 13, 8. https://doi.org/10.3390/metabo13010008
Westphal K, Dudzik D, Waszczuk-Jankowska M, Graff B, Narkiewicz K, Markuszewski MJ. Common Strategies and Factors Affecting Off-Line Breath Sampling and Volatile Organic Compounds Analysis Using Thermal Desorption-Gas Chromatography-Mass Spectrometry (TD-GC-MS). Metabolites. 2023; 13(1):8. https://doi.org/10.3390/metabo13010008
Chicago/Turabian StyleWestphal, Kinga, Danuta Dudzik, Małgorzata Waszczuk-Jankowska, Beata Graff, Krzysztof Narkiewicz, and Michał Jan Markuszewski. 2023. "Common Strategies and Factors Affecting Off-Line Breath Sampling and Volatile Organic Compounds Analysis Using Thermal Desorption-Gas Chromatography-Mass Spectrometry (TD-GC-MS)" Metabolites 13, no. 1: 8. https://doi.org/10.3390/metabo13010008
APA StyleWestphal, K., Dudzik, D., Waszczuk-Jankowska, M., Graff, B., Narkiewicz, K., & Markuszewski, M. J. (2023). Common Strategies and Factors Affecting Off-Line Breath Sampling and Volatile Organic Compounds Analysis Using Thermal Desorption-Gas Chromatography-Mass Spectrometry (TD-GC-MS). Metabolites, 13(1), 8. https://doi.org/10.3390/metabo13010008