Lifestyle and Quality of Life of Women with Diagnosed Hypothyroidism in the Context of Metabolic Disorders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Study Group
2.2. Research Tools
2.3. Data Analysis
2.4. Assessment of Diet Quality
3. Results
3.1. Characteristics of the Study Group
3.2. Dietary Behaviors
3.3. Assessment of Diet Quality
3.4. Non-Nutrition Behavior
3.5. Quality of Life
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, K.; Zhou, Y.; Ke, S.; Huang, J.; Gao, X.; Li, B.; Liu, X.; Liu, X.; Ma, L.; Wang, L.; et al. Lifestyle is associated with thyroid function in subclinical hypothyroidism: A cross-sectional study. BMC Endocr. Disord. 2021, 21, 112. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Peng, D. Update on dyslipidemia in hypothyroidism: The mechanism of dyslipidemia in hypothyroidism. Endocr. Connect. 2022, 11, e210002. [Google Scholar] [CrossRef] [PubMed]
- Janota, B.; Szczepańska, E.; Adamek, B.; Janczewska, E. Hypothyroidism and non-alcoholic fatty liver disease: A coincidence or a causal relationship? World J. Hepatol. 2023, 15, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Miro, C.; Nappi, A.; Sagliocchi, S.; Di Cicco, E.; Murolo, M.; Torabinejad, S.; Acampora, L.; Pastore, A.; Luciano, P.; La Civita, E.; et al. Thyroid Hormone Regulates the Lipid Content of Muscle Fibers, Thus Affecting Physical Exercise Performance. Int. J. Mol. Sci. 2023, 24, 12074. [Google Scholar] [CrossRef] [PubMed]
- Nappi, A.; Murolo, M.; Cicatiello, A.G.; Sagliocchi, S.; Di Cicco, E.; Raia, M.; Stornaiuolo, M.; Dentice, M.; Miro, C. Thyroid Hormone Receptor Isoforms Alpha and Beta Play Convergent Roles in Muscle Physiology and Metabolic Regulation. Metabolites 2022, 12, 405. [Google Scholar] [CrossRef] [PubMed]
- Mitrou, P. Is lifestyle Modification the Key to Counter Chronic Diseases? Nutrients 2022, 14, 3007. [Google Scholar] [CrossRef]
- Ellegård, L.; Krantz, E.; Trimpou, P.; Landin-Wilhelmsen, K. Health-related quality of life in hypothyroidism—A population-based study, the WHO MONICA Project. Clin. Endocrinol. 2021, 95, 197–208. [Google Scholar] [CrossRef]
- Marcos-Delgado, A.; Hernández-Segura, N.; Fernández-Villa, T.; Molina, A.J.; Martín, V. The Effect of Lifestyle Intervention on Health-Related Quality of Life in Adults with Metabolic Syndrome: A Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 887. [Google Scholar] [CrossRef]
- Rayman, M.P. Multiple nutritional factors and thyroid disease, with particular reference to autoimmune thyroid disease. Proc. Nutr. Soc. 2019, 78, 34–44. [Google Scholar] [CrossRef]
- Ihnatowicz, P.; Drywień, M.; Wątor, P.; Wojsiat, J. The importance of nutritional factors and dietary management of Hashimoto’s thyroiditis. J. Neurol. Sci. 2020, 27, 184–193. [Google Scholar] [CrossRef]
- Wallace, T.C.; Bailey, R.L.; Blumberg, J.B.; Burton-Freeman, B.; Chen, C.-Y.O.; Crowe-White, K.M.; Drewnowski, A.; Hooshmand, S.; Johnson, E.; Lewis, R.; et al. Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Crit. Rev. Food Sci. Nutr. 2020, 60, 2174–2211. [Google Scholar] [CrossRef] [PubMed]
- Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; Al-Mssallem, M.Q. Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules 2022, 27, 2901. [Google Scholar] [CrossRef] [PubMed]
- Benvenga, S.; Famà, F.; Perdichizzi, L.G.; Antonelli, A.; Brenta, G.; Vermiglio, F.; Moleti, M. Fish and the Thyroid: A Janus Bifrons Relationship Caused by Pollutants and the Omega-3 Polyunsaturated Fatty Acids. Front. Endocrinol. 2022, 13, 891233. [Google Scholar] [CrossRef] [PubMed]
- Amarowicz, R. Legume Seeds as an Important Component of Human Diet. Foods 2020, 9, 1812. [Google Scholar] [CrossRef] [PubMed]
- Mendivil, C.O. Fish Consumption: A Review of Its Effects on Metabolic and Hormonal Health. Nutr. Metab. Insights 2021, 14, 11786388211022378. [Google Scholar] [CrossRef] [PubMed]
- Knezevic, J.; Starchl, C.; Berisha, A.T.; Amrein, K. Thyroid-Gut-Axis: How Does the Microbiota Influence Thyroid Function? Nutrients 2020, 12, 1769. [Google Scholar] [CrossRef]
- Jarosz, M.; Rychlik, E.; Stoś, K.; Charzewska, J. Normy Zywienia Dla Populacji Polski i Ich Zastosowanie; Narodowy Instytut Zdrowia Publicznego Państwowy Zakład Higieny: Warszawa, Poland, 2020; ISBN 978-83-65870-28-5. [Google Scholar]
- de Oliveira, V.M.; Ivanski, F.; de Oliveira, I.M.; Bargi-Souza, P.; Schiessel, D.L.; Romano, M.A.; Romano, R.M. Acrylamide induces a thyroid allostasis–adaptive response in prepubertal exposed rats. Curr. Res. Toxicol. 2020, 1, 124–132. [Google Scholar] [CrossRef]
- Farvid, M.S.; Sidahmed, E.; Spence, N.D.; Angua, K.M.; Rosner, B.A.; Barnett, J.B. Consumption of red meat and processed meat and cancer incidence: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2021, 36, 937–951. [Google Scholar] [CrossRef]
- Oteng, A.-B.; Kersten, S. Mechanisms of Action of trans Fatty Acids. Adv. Nutr. Int. Rev. J. 2020, 11, 697–708. [Google Scholar] [CrossRef]
- Wang, X.; Xu, W.; Song, Q.; Zhao, Z.; Meng, X.; Xia, C.; Xie, Y.; Yang, C.; Jin, P.; Wang, F. Association between the triglyceride–glucose index and severity of coronary artery disease. Cardiovasc. Diabetol. 2022, 21, 168. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, F.; Cao, Z.; Rayamajhi, S.; Zhang, Q.; Liu, L.; Meng, G.; Wu, H.; Gu, Y.; Zhang, S.; et al. Ultra-processed food consumption and the risk of subclinical thyroid dysfunction: A prospective cohort study. Food Funct. 2022, 13, 3431–3440. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Xu, C.; Zhang, P.; Wang, Y. Associations of sedentary time and physical activity with adverse health conditions: Outcome-wide analyses using isotemporal substitution model. EClinicalMedicine 2022, 48, 101424. [Google Scholar] [CrossRef] [PubMed]
- Klasson, C.L.; Sadhir, S.; Pontzer, H. Daily physical activity is negatively associated with thyroid hormone levels, inflammation, and immune system markers among men and women in the NHANES dataset. PLoS ONE 2022, 17, e0270221. [Google Scholar] [CrossRef] [PubMed]
- Elkhenany, H.; AlOkda, A.; El-Badawy, A.; El-Badri, N. Tissue regeneration: Impact of sleep on stem cell regenerative capacity. Life Sci. 2018, 214, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Taylor, G.M.; Lindson, N.; Farley, A.; Leinberger-Jabari, A.; Sawyer, K.; Naudé, R.T.W.; Theodoulou, A.; King, N.; Burke, C.; Aveyard, P. Smoking cessation for improving mental health. Cochrane Database Syst. Rev. 2021, 2021, CD013522. [Google Scholar] [CrossRef]
- Environmental Factors Affecting Thyroid-Stimulating Hormone and Thyroid Hormone Levels. Int. J. Mol. Sci. 2021, 22, 6521. [CrossRef]
- Ma, J.; Ma, D.; Kim, J.; Wang, Q.; Kim, H. Effects of Substituting Types of Physical Activity on Body Fat Mass and Work Efficiency among Workers. Int. J. Environ. Res. Public Health 2021, 18, 5101. [Google Scholar] [CrossRef]
- Min, J.; Chang, J.S.; Choi, J.Y.; Kong, I.D. Association Between Skeletal Muscle Mass, Physical Activity, and Metabolic Syndrome: The Korean National Health and Nutrition Examination Survey 2008–2011. Metab. Syndr. Relat. Disord. 2022, 20, 156–165. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Liu, M.; Zhang, Q.; Lin, Z.; Jia, M.; Liu, D.; Lin, L. Imbalance of Autophagy and Apoptosis Induced by Oxidative Stress May Be Involved in Thyroid Damage Caused by Sleep Deprivation in Rats. Oxidative Med. Cell. Longev. 2021, 2021, 5645090. [Google Scholar] [CrossRef]
- Hegedüs, L.; Bianco, A.C.; Jonklaas, J.; Pearce, S.H.; Weetman, A.P.; Perros, P. Primary hypothyroidism and quality of life. Nat. Rev. Endocrinol. 2022, 18, 230–242. [Google Scholar] [CrossRef]
- Fusar-Poli, P.; de Pablo, G.S.; De Micheli, A.; Nieman, D.H.; Correll, C.U.; Kessing, L.V.; Pfennig, A.; Bechdolf, A.; Borgwardt, S.; Arango, C.; et al. What is good mental health? A scoping review. Eur. Neuropsychopharmacol. 2020, 31, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Sporinova, B.; Manns, B.; Tonelli, M.; Hemmelgarn, B.; MacMaster, F.; Mitchell, N.; Au, F.; Ma, Z.; Weaver, R.; Quinn, A. Association of Mental Health Disorders With Health Care Utilization and Costs Among Adults With Chronic Disease. JAMA Netw. Open 2019, 2, e199910. [Google Scholar] [CrossRef] [PubMed]
- Jeżewska-Zychowicz, M.; Gawęcki, J.; Wądołowska, L.; Czarnocińska, J.; Galiński, G.; Kołłajtis-Dołowy, A.; Roszkowski, W.; Wawrzyniak, A.; Przybyłowicz, K.; Stasiewicz, B.; et al. KomPAN® Kwestionariusz do Badania Poglądów i Zwyczajów Żywieniowych dla Osób w Wieku od 16 do 65 lat, Wersja 1.2—Kwestionariusz do Samodzielnego Wypełnienia przez Respondenta. Rozdz. 2. (w:) KomPAN® Kwestionariusz do Badania Poglądów i Zwyczajów Żywieniowych oraz Procedura Opracowania Danych; Komitet Nauki o Żywieniu Człowieka Polskiej Akademii Nauk: Warszawa, Poland, 2020; pp. 22–34. Available online: http://www.knozc.pan.pl/ (accessed on 11 July 2023).
- Kowalkowska, J.; Wadolowska, L.; Czarnocinska, J.; Czlapka-Matyasik, M.; Galinski, G.; Jezewska-Zychowicz, M.; Bronkowska, M.; Dlugosz, A.; Loboda, D.; Wyka, J. Reproducibility of a Questionnaire for Dietary Habits, Lifestyle and Nutrition Knowledge Assessment (KomPAN) in Polish Adolescents and Adults. Nutrients 2018, 10, 1845. [Google Scholar] [CrossRef] [PubMed]
- The Whoqol Group. Development of the World Health Organization WHOQOL-BREF Quality of Life Assessment. Psychol. Med. 1998, 28, 551–558. [Google Scholar] [CrossRef]
- Walczak, K.; Sieminska, L. Obesity and Thyroid Axis. Int. J. Environ. Res. Public Health 2021, 18, 9434. [Google Scholar] [CrossRef]
- Korzeniowska, K.A.; Brzeziński, M.; Szarejko, K.; Radziwiłł, M.; Anyszek, T.; Czupryniak, L.; Soszyński, P.; Berggren, P.-O.; Mysliwiec, M. The association of thyroid-stimulating hormone (TSH) and free thyroxine (fT4) concentration levels with carbohydrate and lipid metabolism in obese and overweight teenagers. Endokrynol. Pol. 2019, 70, 172–178. [Google Scholar] [CrossRef]
- Mehran, L.; Mousapour, P.; Khalili, D.; Cheraghi, L.; Honarvar, M.; Amouzegar, A.; Azizi, F. BMI variability and incident diabetes mellitus, Tehran Lipid and Glucose Study (TLGS). Sci. Rep. 2022, 12, 18370. [Google Scholar] [CrossRef]
- Hassapidou, M.; Vlassopoulos, A.; Kalliostra, M.; Govers, E.; Mulrooney, H.; Ells, L.; Salas, X.R.; Muscogiuri, G.; Darleska, T.H.; Busetto, L.; et al. European Association for the Study of Obesity Position Statement on Medical Nutrition Therapy for the Management of Overweight and Obesity in Adults Developed in Collaboration with the European Federation of the Associations of Dietitians. Obes. Facts 2023, 16, 11–28. [Google Scholar] [CrossRef]
- Ostrowska, L.; Gier, D.; Zyśk, B. The Influence of Reducing Diets on Changes in Thyroid Parameters in Women Suffering from Obesity and Hashimoto’s Disease. Nutrients 2021, 13, 862. [Google Scholar] [CrossRef]
- Tinsley, G.M.; La Bounty, P.M. Effects of intermittent fasting on body composition and clinical health markers in humans. Nutr. Rev. 2015, 73, 661–674. [Google Scholar] [CrossRef]
- Becerra-Tomás, N.; Paz-Graniel, I.; Tresserra-Rimbau, A.; Martínez-González, M.; Barrubés, L.; Corella, D.; Muñoz-Martínez, J.; Romaguera, D.; Vioque, J.; Alonso-Gómez, M.; et al. Fruit consumption and cardiometabolic risk in the PREDIMED-plus study: A cross-sectional analysis. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1702–1713. [Google Scholar] [CrossRef] [PubMed]
- Grupa Robocza do Spraw Leczenia Dyslipidemii Europejskiego Towarzystwa Kardiologicznego (ESC) oraz Europejskiego Towarzystwa Badań nad Miażdżycą (EAS). Wytyczne ESC/EAS dotyczące Postępowania w Dyslipidemiach: Jak dzięki Leczeniu Zaburzeń Lipidowych Obniżyć Ryzyko Sercowo-naczyniowe. Kardiologia Polska 2022. Available online: https://ptkardio.pl/wytyczne/ (accessed on 12 August 2023).
- Cayres, L.C.d.F.; de Salis, L.V.V.; Rodrigues, G.S.P.; Lengert, A.v.H.; Biondi, A.P.C.; Sargentini, L.D.B.; Brisotti, J.L.; Gomes, E.; de Oliveira, G.L.V. Detection of Alterations in the Gut Microbiota and Intestinal Permeability in Patients With Hashimoto Thyroiditis. Front. Immunol. 2021, 12, 579140. [Google Scholar] [CrossRef] [PubMed]
- Ramezani, M.; Reisian, M.; Hezaveh, Z.S. The effect of synbiotic supplementation on hypothyroidism: A randomized double-blind placebo controlled clinical trial. PLoS ONE 2023, 18, e0277213. [Google Scholar] [CrossRef]
- Tørris, C.; Molin, M.; Småstuen, M.C. Lean Fish Consumption Is Associated with Beneficial Changes in the Metabolic Syndrome Components: A 13-Year Follow-Up Study from the Norwegian Tromsø Study. Nutrients 2017, 9, 247. [Google Scholar] [CrossRef] [PubMed]
- Pagliai, G.; Dinu, M.; Madarena, M.P.; Bonaccio, M.; Iacoviello, L.; Sofi, F. Consumption of ultra-processed foods and health status: A systematic review and meta-analysis. Br. J. Nutr. 2020, 125, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Kaličanin, D.; Brčić, L.; Ljubetić, K.; Barić, A.; Gračan, S.; Brekalo, M.; Lovrić, V.T.; Kolčić, I.; Polašek, O.; Zemunik, T.; et al. Differences in food consumption between patients with Hashimoto’s thyroiditis and healthy individuals. Sci. Rep. 2020, 10, 10670. [Google Scholar] [CrossRef]
- Schwimmer, J.B.; Ugalde-Nicalo, P.; Welsh, J.A.; Angeles, J.E.; Cordero, M.; Harlow, K.E.; Alazraki, A.; Durelle, J.; Knight-Scott, J.; Newton, K.P.; et al. Effect of a Low Free Sugar Diet vs Usual Diet on Nonalcoholic Fatty Liver Disease in Adolescent Boys: A Randomized Clinical Trial. JAMA 2019, 321, 256–265. [Google Scholar] [CrossRef]
- Coppeta, L.; Di Giampaolo, L.; Rizza, S.; Balbi, O.; Baldi, S.; Pietroiusti, A.; Magrini, A. Relationship between the night shift work and thyroid disorders: A systematic review and meta-analysis. Endocr. Regul. 2020, 54, 64–70. [Google Scholar] [CrossRef]
- Ness, K.M.; Strayer, S.M.; Nahmod, N.G.; Schade, M.M.; Chang, A.-M.; Shearer, G.C.; Buxton, O.M. Four nights of sleep restriction suppress the postprandial lipemic response and decrease satiety. J. Lipid Res. 2019, 60, 1935–1945. [Google Scholar] [CrossRef]
- Meguro, K.; Svensson, T.; Chung, U.; Svensson, A.K. Associations of work-related stress and total sleep time with cholesterol levels in an occupational cohort of Japanese office workers. J. Occup. Health 2021, 63, e12275. [Google Scholar] [CrossRef]
- Sefat, S.M.; Shabani, R.; Nazari, M. The effect of concurrent aerobic-resistance training on thyroid hormones, blood glucose hemostasis, and blood lipid indices in overweight girls with hypothyroidism. Horm. Mol. Biol. Clin. Investig. 2019, 40, 3. [Google Scholar] [CrossRef]
- Babu, A.F.; Csader, S.; Männistö, V.; Tauriainen, M.-M.; Pentikäinen, H.; Savonen, K.; Klåvus, A.; Koistinen, V.; Hanhineva, K.; Schwab, U. Effects of exercise on NAFLD using non-targeted metabolomics in adipose tissue, plasma, urine, and stool. Sci. Rep. 2022, 12, 6485. [Google Scholar] [CrossRef] [PubMed]
- Werneck, F.Z.; Coelho, E.F.; Almas, S.P.; Garcia, M.M.D.N.; Bonfante, H.L.M.; de Lima, J.R.P.; Vigário, P.d.S.; Mainenti, M.R.M.; Teixeira, P.d.F.d.S.; Vaisman, M. Exercise training improves quality of life in women with subclinical hypothyroidism: A randomized clinical trial. Arq. Bras. Endocrinol. Metabol. 2018, 62, 530–536. [Google Scholar] [CrossRef]
- Tricarico, L.; Di Cesare, T.; Galli, J.; Fetoni, A.R.; Paludetti, G.; Picciotti, P.M. Benign paroxysmal positional vertigo: Is hypothyroidism a risk factor for recurrence? Acta Otorhinolaryngol. Ital. 2022, 42, 465–470. [Google Scholar] [CrossRef]
- Loh, H.H.; Lim, L.L.; Yee, A.; Loh, H.S. Association between subclinical hypothyroidism and depression: An updated systematic review and meta-analysis. BMC Psychiatry 2019, 19, 12. [Google Scholar] [CrossRef]
- Zhao, T.; Chen, B.M.; Zhao, X.M.; Shan, Z.Y. Subclinical hypothyroidism and depression: A meta-analysis. Transl. Psychiatry 2018, 8, 239. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Garza, L.E.; Marfil, A. Comorbidity between hypothyroidism and headache disorders in a Mexican population. Comorbilidad entre hipotiroidismo y cefalea en la población mexicana. Rev. De Neurol. 2022, 75, 13–16. [Google Scholar] [CrossRef]
- Burekovic, A.; Halilovic, D.; Sahbaz, A. Hypothyroidism and Subclinical Hypothyroidism as a Consequence of COVID-19 Infection. Med. Arch. 2022, 76, 12–16. [Google Scholar] [CrossRef]
- Thvilum, M.; Brandt, F.; Almind, D.; Christensen, K.; Brix, T.H.; Hegedüs, L. Type and Extent of Somatic Morbidity before and after the Diagnosis of Hypothyroidism. A Nationwide Register Study. PLoS ONE 2013, 8, e75789. [Google Scholar] [CrossRef]
- Miri, A.S.; Iravani, M.; Boostani, H.; Latifi, M. The effect of cognitive behavioral therapy on sexual function in reproductive aged women with hypothyroidism: A randomized controlled clinical trial. BMC Psychiatry 2023, 23, 357. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H. Effects of Hypothyroidism and Subclinical Hypothyroidism on Sexual Function: A Meta-Analysis of Studies Using the Female Sexual Function Index. Sex. Med. 2020, 8, 156–167. [Google Scholar] [CrossRef] [PubMed]
Frequency of Consumption | Frequency (Times/Day) |
---|---|
Never | 0 |
1–3 times a month | 0.06 |
Once a week | 0.14 |
Several times a week | 0.5 |
Once a day | 1 |
Several times a day | 2 |
Intensity of Nutrition Features | Range (in Points) |
---|---|
Small | 0–33 |
Moderate | 34–66 |
High | 67–100 |
BMI | Total n = 310 | Group with Lipid Metabolism Disorders n = 136 | Group without Lipid Metabolism Disorders n = 174 | U Test p-Value | |||
---|---|---|---|---|---|---|---|
n | % | n | % | n | % | ||
Underweight | 5 | 1.61 | 1 | 0.7 | 4 | 2.3 | 0.001 |
Correct body weight | 124 | 40 | 42 | 30.9 | 82 | 47.1 | |
Overweight | 89 | 28.7 | 41 | 30.1 | 48 | 27.6 | |
Obese | 92 | 29.7 | 52 | 38.2 | 40 | 23 |
Product | Frequency of Consumption | Total n = 310 | Group with Lipid Metabolism Disorders n = 136 | Group without Lipid Metabolism Disorders n = 174 | |||
---|---|---|---|---|---|---|---|
n | % | n | % | n | % | ||
Vegetables | Never | 2 | 0.6 | 1 | 0.7 | 1 | 0.6 |
1–2 times a month | 9 | 2.9 | 7 | 5.1 | 2 | 1.1 | |
Once a week | 22 | 7.1 | 3 | 2.2 | 19 | 10.9 | |
A few times a week | 90 | 29.0 | 36 | 26.5 | 54 | 31.0 | |
Once a day | 100 | 32.3 | 57 | 41.9 | 43 | 24.7 | |
Several times a day | 86 | 27.7 | 32 | 23.5 | 54 | 31.0 | |
Fruit | Never | 8 | 2.6 | 3 | 2.2 | 5 | 2.9 |
1–2 times a month | 14 | 4.5 | 6 | 4.4 | 8 | 4.6 | |
Once a week | 31 | 10.0 | 7 | 5.1 | 24 | 13.8 | |
A few times a week | 81 | 26.1 | 34 | 25.0 | 47 | 27.0 | |
Once a day | 114 | 36.8 | 67 | 49.3 | 47 | 27.0 | |
Several times a day | 61 | 19.7 | 19 | 14.0 | 42 | 24.1 | |
Legumes | Never | 53 | 17.1 | 33 | 24.3 | 20 | 11.5 |
1–2 times a month | 158 | 51.0 | 65 | 47.8 | 93 | 53.4 | |
Once a week | 73 | 23.5 | 30 | 22.1 | 43 | 24.7 | |
A few times a week | 22 | 7.1 | 7 | 5.1 | 15 | 8.6 | |
Once a day | 3 | 1.0 | 1 | 0.7 | 2 | 1.1 | |
Several times a day | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | |
Fish | Never | 23 | 7.4 | 10 | 7.4 | 13 | 7.5 |
1–2 times a month | 109 | 35.2 | 45 | 33.1 | 64 | 36.8 | |
Once a week | 135 | 43.5 | 65 | 47.8 | 70 | 40.2 | |
A few times a week | 39 | 12.6 | 14 | 10.3 | 25 | 14.4 | |
Once a day | 3 | 1.0 | 2 | 1.5 | 1 | 0.6 | |
Several times a day | 0 | 0.0 | 0 | 0.0 | 0 | 0.0 | |
Fermented milk products | Never | 35 | 11.3 | 16 | 11.8 | 19 | 10.9 |
1–2 times a month | 58 | 18.7 | 20 | 14.7 | 38 | 21.8 | |
Once a week | 62 | 20.0 | 28 | 20.6 | 34 | 19.5 | |
A few times a week | 105 | 33.9 | 50 | 36.8 | 55 | 31.6 | |
Once a day | 48 | 15.5 | 21 | 15.4 | 27 | 15.5 | |
Several times a day | 1 | 0.3 | 1 | 0.7 | 0 | 0.0 |
Product | Frequency of Consumption | Total n = 310 | Group with Lipid Metabolism Disorders n = 136 | Group without Lipid Metabolism Disorders n = 174 | |||
---|---|---|---|---|---|---|---|
n | % | n | % | n | % | ||
Processed meat | Never | 20 | 6.5 | 11 | 8.1 | 9 | 5.2 |
1–2 times a month | 25 | 8.1 | 10 | 7.4 | 15 | 8.6 | |
Once a week | 58 | 18.7 | 23 | 16.9 | 35 | 20.1 | |
A few times a week | 138 | 44.5 | 51 | 37.5 | 87 | 50.0 | |
Once a day | 54 | 17.4 | 34 | 25.0 | 20 | 11.5 | |
Several times a day | 14 | 4.5 | 7 | 5.1 | 7 | 4.0 | |
Lard | Never | 181 | 58.4 | 85 | 62.5 | 96 | 55.2 |
1–2 times a month | 78 | 25.2 | 33 | 24.3 | 45 | 25.9 | |
Once a week | 25 | 8.1 | 7 | 5.1 | 18 | 10.3 | |
A few times a week | 15 | 4.8 | 6 | 4.4 | 9 | 5.2 | |
Once a day | 7 | 2.3 | 2 | 1.5 | 5 | 2.9 | |
Several times a day | 3 | 1.0 | 3 | 2.2 | 0 | 0.0 | |
Fried foods | Never | 28 | 9.0 | 14 | 10.3 | 14 | 8.0 |
1–2 times a month | 53 | 17.1 | 25 | 18.4 | 28 | 16.1 | |
Once a week | 92 | 29.7 | 49 | 36.0 | 43 | 24.7 | |
A few times a week | 102 | 32.9 | 38 | 27.9 | 64 | 36.8 | |
Once a day | 32 | 10.3 | 10 | 7.4 | 22 | 12.6 | |
Several times a day | 2 | 0.6 | 0 | 0.0 | 2 | 1.1 | |
Sweets | Never | 29 | 9.4 | 18 | 13.2 | 11 | 6.3 |
1–2 times a month | 56 | 18.1 | 27 | 19.9 | 29 | 16.7 | |
Once a week | 58 | 18.7 | 24 | 17.6 | 34 | 19.5 | |
A few times a week | 95 | 30.6 | 38 | 27.9 | 57 | 32.8 | |
Once a day | 51 | 16.5 | 22 | 16.2 | 29 | 16.7 | |
Several times a day | 20 | 6.5 | 7 | 5.1 | 13 | 7.5 | |
Fast food | Never | 136 | 43.9 | 82 | 60.3 | 54 | 31.0 |
1–2 times a month | 131 | 42.3 | 45 | 33.1 | 86 | 49.4 | |
Once a week | 37 | 11.9 | 7 | 5.1 | 30 | 17.2 | |
A few times a week | 3 | 1.0 | 0 | 0.0 | 3 | 1.7 | |
Once a day | 2 | 0.6 | 2 | 1.5 | 0 | 0.0 | |
Several times a day | 0 | 0.0 | 0 | 0 | 0 | 0.0 |
Chosen Behavior | Possible Answers | Total n = 310 | Group with Lipid Metabolism Disorders n = 136 | Group without Lipid Metabolism Disorders n = 174 | |||
---|---|---|---|---|---|---|---|
n | % | n | % | n | % | ||
Smoking | No | 252 | 81.3 | 115 | 84.6 | 137 | 78.7 |
Yes | 57 | 18.4 | 21 | 15.4 | 36 | 20.7 | |
Number of hours of sleep per day on weekdays | ≤6 | 100 | 32.3 | 51 | 37.5 | 49 | 28.2 |
>6–≤9 | 199 | 64.2 | 78 | 57.4 | 121 | 69.5 | |
≥ 9 | 10 | 3.2 | 7 | 5.1 | 3 | 1.7 | |
Number of hours of sleep per day on weekends | ≤6 | 77 | 24.8 | 48 | 35.3 | 29 | 16.7 |
>6–≤9 | 212 | 68.4 | 80 | 58.8 | 132 | 75.9 | |
≥9 | 20 | 6.5 | 8 | 5.9 | 12 | 6.9 | |
Number of hours spent using electronic devices (including work time) | <2 | 78 | 25.2 | 32 | 23.5 | 46 | 26.4 |
2–<4 | 100 | 32.3 | 57 | 41.9 | 43 | 24.7 | |
4–<6 | 48 | 15.5 | 20 | 14.7 | 28 | 16.1 | |
6–<8 | 31 | 10.2 | 9 | 6.6 | 22 | 12.6 | |
8–<10 | 34 | 11.0 | 10 | 7.4 | 24 | 13.8 | |
≥10 | 18 | 5.8 | 8 | 5.9 | 10 | 5.7 | |
Self-assessment of physical activity in free time | Low | 126 | 40.6 | 58 | 42.6 | 68 | 39.1 |
Moderate | 146 | 47.1 | 59 | 43.4 | 87 | 50.0 | |
High | 37 | 11.9 | 19 | 14.0 | 18 | 10.3 |
Chosen Element | Possible Answers | Total n = 310 | Group with Lipid Metabolism Disorders n = 136 | Group without Lipid Metabolism Disorders n = 174 | |||
---|---|---|---|---|---|---|---|
n | % | n | % | n | % | ||
Quality of life | Very bad | 3 | 1.0 | 3 | 2.2 | 0 | 0.0 |
Bad | 6 | 1.9 | 3 | 2.2 | 3 | 1.7 | |
Neither good nor bad | 90 | 29.0 | 45 | 33.1 | 45 | 25.9 | |
Good | 183 | 59.0 | 76 | 55.9 | 107 | 61.5 | |
Very good | 27 | 8.7 | 9 | 6.6 | 18 | 10.3 | |
Health satisfaction | Very dissatisfied | 12 | 3.9 | 7 | 5.1 | 5 | 2.9 |
Not satisfied | 59 | 19.0 | 31 | 22.8 | 28 | 16.1 | |
Neither satisfied nor dissatisfied | 114 | 36.8 | 53 | 39.0 | 61 | 35.1 | |
Satisfied | 115 | 37.1 | 43 | 31.6 | 72 | 41.4 | |
Very satisfied | 8 | 2.6 | 2 | 1.5 | 6 | 3.4 | |
Self-satisfaction | Very dissatisfied | 12 | 3.9 | 5 | 3.7 | 7 | 4.0 |
Not satisfied | 25 | 8.1 | 9 | 6.6 | 16 | 9.2 | |
Neither satisfied nor dissatisfied | 75 | 24.2 | 28 | 20.6 | 47 | 27.0 | |
Satisfied | 141 | 45.5 | 63 | 46.3 | 78 | 44.8 | |
Very satisfied | 56 | 18.1 | 31 | 22.8 | 25 | 14.4 | |
Intimate life satisfaction | Very dissatisfied | 16 | 5.2 | 7 | 5.1 | 9 | 5.2 |
Not satisfied | 22 | 7.1 | 11 | 8.1 | 11 | 6.3 | |
Neither satisfied nor dissatisfied | 126 | 40.6 | 71 | 52.2 | 55 | 31.6 | |
Satisfied | 87 | 28.1 | 28 | 20.6 | 59 | 33.9 | |
Very satisfied | 56 | 18.1 | 19 | 14.0 | 37 | 21.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janota, B.; Szczepańska, E.; Noras, K.; Janczewska, E. Lifestyle and Quality of Life of Women with Diagnosed Hypothyroidism in the Context of Metabolic Disorders. Metabolites 2023, 13, 1033. https://doi.org/10.3390/metabo13101033
Janota B, Szczepańska E, Noras K, Janczewska E. Lifestyle and Quality of Life of Women with Diagnosed Hypothyroidism in the Context of Metabolic Disorders. Metabolites. 2023; 13(10):1033. https://doi.org/10.3390/metabo13101033
Chicago/Turabian StyleJanota, Barbara, Elżbieta Szczepańska, Kinga Noras, and Ewa Janczewska. 2023. "Lifestyle and Quality of Life of Women with Diagnosed Hypothyroidism in the Context of Metabolic Disorders" Metabolites 13, no. 10: 1033. https://doi.org/10.3390/metabo13101033
APA StyleJanota, B., Szczepańska, E., Noras, K., & Janczewska, E. (2023). Lifestyle and Quality of Life of Women with Diagnosed Hypothyroidism in the Context of Metabolic Disorders. Metabolites, 13(10), 1033. https://doi.org/10.3390/metabo13101033